Overload Based Explicit Rate Switch Schemes with MCR Guarantees !

Bobby Vandalore, Sonia Fahmy, Raj Jain, Rohit Goyal, Mukul Goyal
The Ohio State University
Department of Computer and Information Science
Columbus, OH 43210-1277
Phone: 614-688-4482, Fax: 614-292-2911
E-mail: {vandalor, fahmy, jain, goyal, mukul} @cis.ohio-state.edu

Abstract

An explicit rate switch scheme monitors the load at each
link and gives feedback to the sources. We define the overload
factor as the ratio of the input rate to the available capacity. In
this paper, we present three overload based switch schemes
which providle MCR (minimum cell rate) guarantees for
the ATM (asynchronous transfer mode) ABR (available bit
rate) service. The switch schemes proposed use the overload
factor and other terms including current source rate and target
utilization to calculate feedback rates. A dynamic queue
control mechanism is used to achieve efficient usage of the link,
control queues and, achieve constant queuing delay at steady
state. The proposed algorithms are studied and compared
using several configurations. The configurations were chosen
to test the performance of the algorithms in presence of link
bottlenecks, source bottlenecks and transient sources. Finally, a
comparison of the proposed algorithms based on the simulation
results is given.

I. INTRODUCTION

The ATM (asynchronous transfer mode) is the chosen
technology for implementing B-ISDN (broad-band integrated
services digital network). ATM is a connection-oriented cell
switching standard. It uses fixed size cells which are 53 bytes
long. ATM offers different service categories for transporting
different types of traffic. The ABR (available bit rate) service
category in ATM is used to transport data traffic with minimum
rate guarantee. The ABR users specify minimum rate using
MCR parameter during connection setup. The ABR service
gives guarantee that the ACR (allowed cell rate) is never less
than MCR. ABR uses closed loop feedback to control the
source rates (see Figure 1). The source sends periodically (after
every Nrm — 1 data cells) an RM (resource management) cell
to gather information from the network [1]. The RM cells are
turned around at the destination. The switches along the path
indicate the current rate which they can support in the explicit
rate (ER) field of the RM cell. When the source receives the
backward RM cells, it adjusts its allowed rate accordingly.

The specification of the ABR feedback control algorithm
(switch scheme) is not yet standardized. An early switch
algorithm used binary feedback to advise source about
congestion information [2]. Distributed algorithms for the
congestion control using explicit rate feedback were given in

This research was sponsored in part by Rome Laboratory/C3BC
Contract #F30602-96-C-0156.

©+ 0-7803-5794-9/99/$10.00 © 1999 IEEE

Data cell
\ Switch \
ooao a

ko

Switch

Source Destination

0
Backward
RM cell
Figure 1: ABR flow control. RM cells are sent periodically by the

source. The RM cell is turned around at the destination. The RM
cells in the forward direction are called FRM cells and those in the
backward direction are called BRM cells. The switches along the RM
cell path indicate the rate which they can currently support.

(3, 4]. Improved, simpler distributed algorithms were proposed
in [5, 6,7, 8,9, 10]. Recently, a generalized definition of
max-min fairness and its distributed implementation were
presented in [11, 12]. A discussion of weight-based max-min
fairness policy and its implementation in ABR service is given
[13]. The fairness criteria in the presence of MCR guarantees
is discussed [14, 15].

In a related work, we have proposed a general definition of
fairness, and gave an overload based ABR switch scheme which
provides MCR guarantees [16]. In this paper, we propose three
additional algorithms which use the overload factor to calculate
the explicit rate feedback. All the proposed algorithms provide
MCR guarantee and achieve generalized fairness.

The load factor (also referred to as “overload factor”
or “overload”) is the ratio of the measured input rate to
the available ABR (available bit rate) capacity. ERICA+
switch scheme monitors the load on the link and calculates
feedback based on the load. It tries to achieve unit load on
links to efficiently use the link and also converge to max-min
fairness [1]. Max-min fairness assumes zero MCR values. In
this paper, we have used the generalized fairness with MCR as
defined in [16].

Section II discusses the definition of generalized fairness
used in algorithms. Section III gives a brief overview
of ERICA+ and then discusses proposed algorithms. In
section IV, various configurations used in the simulations
are discussed. In section V we present the results of the
simulations. The simulations test whether the schemes provide
MCR guarantees and converge to generalized fairness. A
comparison of the algorithms based on the simulations results
is given in section VL Finally, section VII gives the conclusions
of the paper.

655

I. GENERAL WEIGHTED FAIRNESS: DEFINITION

ATM Forum Traffic -Management Specification 4.0 [1]
recommends different definitions of fairness to be used
when MCRs are non-zero. These fairness definitions are
equal share of excess bandwidth, proportional to MCR of
excess bandwidth, proportional to predetermined weights of
bandwidth. Here, we give the definition (as defined [16]) of
generalized weighted fairness which can realize all the above
fairness definitions.

Define the following parameters:

A = excess bandwidth, to Be shared by connections bottle-
necked on this link.

= MCR of connection i,

b= S-%1 pi Sum of MCRs-of active connections which are
‘bottle- necked by IhlS link.

w; = preassigned weight assocna[ed_ with the connection z.

g: = generalized weighted fair Allocation for connection ¢.

The general welghted (GW) fair allocation is defined as
follows:

w;(A —
w=m+4%—ﬂ
Zj:l wj

The excess available bandwidth (A —~ u) is divided in
proportion to the predetermined weights.

III. THE SWITCH SCHEMES

The general structure of the algorlthms proposed are similar
to the ERICA+ (5]. First, we briefly discuss the ERICA+
algorithm and then give the general structure of the proposed
algorithms. . The three switch algorithms proposed have the
same structure .and only differ in, the way in which end of
interval accounting is done, and the manner in which the
feedback explicit rate is calculated. The switch algorithm with
MCR guarantees discussed in [16] also has the same structure
as three these algorithms.

A. Overview of ERICA+

"ERICA+ “operates it the output port-of ‘a sw1tch
periodically monitors the load, “active- number ‘of VCs and
provides feedback in the BRM (backward RM) cells.
measurement period is called the ‘averaging-interval” The
measurements are done in forward direction and feedback
is given in the reverse direction. The complete description
of ERICA+ algorithm'can be obtained from [5]. In overload
conditions, the algorithm calculates the maximum of the
FairShare (link capacity, d1v1ded by number of VCs) and
VCShare (current cell - rafe ~divided by .overload) as- the
feedback rate. In underload conditions, the maximum of
MaxAllocPrev (which is the maximum allocation given in
the previous averaging interval) and the previous two terms

The:

is the feedback rate. Part of the available ABR capacity is
used for draining queues. Target ABR capacity is obtained by
multiplying the total available ABR capacity by a Fraction
term. 1 — Fraction amount of the link capacity is ased to
drain the queues. Fraction can be either a constant less than
one (e.g., Fraction = 0.9 implies 90% link utilization), or
dynamic function of switch-queue length. ERICA+ uses a two
hyperbolic curves with which control the queue in underload
and overload regions. To ensure that a minimum amount of
link capacity is used for data, the Fraction value is limited to
a minimum of QDLF (queue drain limit factor). Typically
a value QDLF = 0.5 is used. The dynamic queue control
function given above can be expressed as follows ‘

f@={ T8 05Q<
mm(QDLF, ‘(a—-m) Qo<Q<x

The “Target Delay” parameter specifies the desired queue
length (Q0) at steady state. The a-curve’ (hyperbola given by
(—a—;‘%@) is used as long as it evaluates to value greater than
QDLEF. The design of queue control functions which enable the
switch algorithms to reduce rate oscillations, achieve constant
delay and high link utilization (100%) is discussed in detail
in [17).

B. Overload Based Algorithm: General Structure

The three different switch schemes have the following
common algorithmic structure. They differ in the manner in
which the feedback rate is calculated and in accounting. The
algorithms perform the following steps for calculating the
feedback rate:

1. The problem of non zero MCRs is reduced to one
with zero MCRs. The MCR is subtracted from each
connection’s current cell rate (CCR(i)) to obtain the
excess rate of each source (SR(i)) over MCR. If the
source is transmitting at a rate less than its MCR, an
excess rate of zero is used.

2. The switch algorithm for zero MCRs is applied to these
excess rates to obtain the feedback rate. The excess
available capacity (A ~ p) is divided in proportion to the
pre-determined welght

3. MCR for each source is added to the exphcxt feedback
+ rate calculated in the previous step. The resulting rate is
indicated in the ER field of BRM cells.. .:

The sources transmit data initially at their initial cell rate
(ICR) value. After one round trip time, the feedback from the
switches arrives at the sources, and sources adjust their allowed
rate accordingly. When a constant queue control function is
used (say Fraction =.0.9) rates converge to the GW_fairness
allocation. ‘When a dynamic. queue control function is used,
the available capacity varies depending on the queue length.‘
Therefore, the feedback rate also varies till the queues are
drained. Once the queues are drained, the feedback rates
converge to the GW fair allocation: - We. present simulation

656

results using’ both lhe constant queue and dynamxc ‘queue
control funcnons

Overload Based Algorlthm Structure:
At the End of Each Averaging Interval:

ABR Capacity .+ Link Capacity — VBR Capacity

— 5" min(S'R(z‘),u,-) |
i=0 .

TargetABRCap. - . (@) x ABR Cap

ABR Inpuf Rate — Z min(SR(3), p:)

1=0

A Input Rate <

Input Rate

e TargetABRCap

End_af_lntervalAccounting()

When an FRM is received:

CCR(@) <+ CCRrup_cen

When a BRM is received:

Ex.ER <« Calculate Excess_ER()
ER + pu; + ExER

ERRM_Cell — Min(ERRM_CeH ,ER,Target ABR Cap)

that differentiate the algorithms
End_of Interval Accounting() and

The key steps
are the procedures
Calculate Excess_ER().

C.. Algorithm A: ExcessFairShare/Overload

The ExcessFairShare term is defined as follows:

w;i(A — p)
Ej:l wj

This divides the excess available bandwidth (A — u) (i.e.,
ABR capacity) in proportion to the weights w(z). An allocation
of p; + ExcessFairShare(i) for each source 7 is the GW fair
allocation. A source might be bottlenecked at some other link,
hence using less than its fair share of link capacity. By using the
notion of activity level, the effective weight of the bottlenecked
source can be calculated. ° .. . ¢ o L.

EzcessFairShare(i) =

[P S
8

The act1v1ty level fora glven VC is deﬁned as fo]lows

SourceRate(z) =) .

(Z) _ mm (1 Ea:cessFaerhare(z)
R S ES F .

o [T
AR : BRI

“Thi ‘aétivity level-éan be used 0 accurately ‘estimate ¢ the~
effective number’ of VCs. * Effecuve number of VCs isi gwen~

by the followmg expressxon e
A U I IR :;.Z,,J

< Effective namber of.VCs‘z.;Z;A-L(j) L

=1

The VCs which are bottlenecked by this link will have
activity level of 1 and will-be counted as one VC. The VCs
bottlenecked elsewhere will are counted as fractional VCs
depending on their activity level. The proof that -above
expression estimates accurately the effective number of VCs is
given.in [18].

We extend the notion activity level to the weighted case by
multiplying the weight function with the activity level of the
ExcessFairShare term. Therefore the ExcessFairShare is:

. . w;i(A — p)
ExcessFairShare(i) Z?:l 0 ALG)

In this algorithm, the Ex_ER is calculated based on
EzcessFairShare and the overload factor z. For each source,
the activity level and the FxcessFairShare are updated at the
end of each interval. When a BRM cell arrives, the feedback
rate is calculated as the ExcessFairShare term, divided by
the overload. The source rate (VCShare term) is not used in
feedback rate calculation.

If the network is overloaded (z > 1) the Ex_ER decreases
since fairshare is divided by the overload factor z. In underload
conditions (z < 1) the sources are asked to increase their rate,
Due the recursive definition of EzcessFairShare and activity
levels these value converge.

As the network reaches steady state, the overload will
become one and the Ex_ER will converge to the required
EzcessFairShare, achieving GW fair- allocation. Proof
convergence is similar to the proof given in [16]. Since
the overload factor varies every averaging interval, the rate
oscillations increase for this algorithm. If the “averaging
interval” is greater than the feedback loop, then the switch
adjusts to the feedback rate before the next averaging interval.
If the averaging interval is smaller, then before the source can’
adjust to the feedback rate, multiple feedbacks are given. In this
situation FxcessFairShare calculation is not accurate, since
the source rate does not reflect the feedback rate, Exponential
averaging of the ExcessFairShare term is uséd to overcome
this problem. Exponential averaging is done as follows: -

ExcessFairShare =
a)PrevExcessFairShare

a Ez’ces‘staz'rSvhare + (1 -

where the PrevEzcessFairShare is.thesvalue calculated
for the previous averaging interval. The parameter « is called
the decay factor. - In the simulations a value of a = Ov 9 was
used. : '

End_ of_lnterval_Accountmg()
foreachVCtdo R

~SourceRate(i) —p; \ v
EzcessF ki‘if'Share’(i)’)
(TargetABRCapyw; AL(i)
. Z::l wJ,AL(J)

endfor T

AL(z)(—-mm (1,

EzcessFaerhare(z)(—

657

Calculate _Excess_ER():

ExceSsFairShare(i)
z

Ex_ER

D. Algorithm B: MaxAllocation/Overload

Let the GW fair allocation be (g1,92,...,9,) for n
bottle-necked sources. The excess bandwidth is divided
proportional to weights (gi — ps)/w(i) = (g5 — u7)/w(j)-
Let m be the VC such that term (gm — um)/w(m) is the
maximum of such terms of all VCs. An allocation which
assigns rates as p; + w(i)(gm — pm)/w(m) will achieve
GW fairness. The term (g, ~ pm)/w(m) is defined as the
weighted maximum allocation. In algorithm B, the feedback
is calculated as term proportional to weight of VC and
the weighted maximum allocation is divided by overload.
The overload in the denominator increases or decreases the
allocation depending on the load. The source rate is not used
in the feedback calculation. This algorithm can give rise to
large queues if the weighted maximum allocation is measured
incorrectly. This problem of large queues occurred during the
simulation of this algorithm using GFC-2 configuration.

End_of Interval _Accounting():

WtMaxAllocPrev .+ WitMaxAllocCur

WtMaxAllocCur «+ 0
Calculate_Excess_ER():
i 1
ExER <« w(i)WtMaxAllocPrev

z
WtMaxAllocCur + Max (WtMaxAllocCur,Ex ER/w(i))

E. Algorithm C: VCShare and MaxAllocation

In this algorithm, the End_.of Interval Accounting() is the
same as in the previous algorithm (algorithm B). The Ex_ER is
calculated based on the weighted maximum previous allocation
(WtMazAllocPrev) and VCShare under underloaded
conditions (z < 1 + 8). For overloaded conditions, the
VCShare is given as the feedback rate. The problem of
large queues explained in the previous algorithm is not
expected to occur since the maximum previous allocation
is given as feedback only if the link underloaded. As the
overload converges to one, the VCShare converges to
w(2)(gm — m)/w(m), achieving the GW fair allocation.

Calculate_Excess_ER():

maz(0, SourceRate(i) — ;)

VCShare 2
IF (z >1+4)
THEN Ex_ ER « VCShare
ELSE Ex.ER « max(w(i) WtMaxAllocPrev, VCShare)
WitMaxAllocCur + max(WtMaxAllocCur,Ex_ ER/w(i))

IV. SIMULATION CONFIGURATIONS

We used simple, link bottleneck and source bottleneck
configurations to test the proposed algorithms. Infinite sources
were used (which have an infinite amount of data to send,
and always send data at ACR) in all the simulations. The
rates are expected to converge to GW fair allocation values in
the presence of infinite sources. The algorithms are expected
to give minimum rate guarantees for Poisson or self-similar
sources. These types of sources were not used since the GW
fair allocation for source with varying rates is also dynamically
varying. The data traffic is only one way, from source to
destination. Using two-way traffic would produce similar
results, expect that the convergence time would be larger since
the RM cells in the backward direction would travel with traffic
from destination to source. All the link bandwidths are 149.76
(155.52 less the SONET overhead), except in the GFC-2
configuration.

A. Three Sources

This is a simple configuration in which three sources send
data to three destinations over two switches and a bottleneck
link (see Figure 2). This configuration is used to demonstrate
that the switch algorithms can achieve the GW fairness.

Source 1 Destination |

Switch2 /O Destination 2
\O Destination 3

Figure 2: N Sources - N Destinations Configuration

Bottleneck
Link

Source 2 Switch 1

Source 3

L

B. Source Bottleneck

In this configuration, the source S1, is bottle-necked to rate
(10 Mbps), which is below its fairshare (50 Mbps) for first 400
ms of the simulation (see Figure 3). This configuration tests
whether the fairness criterion can be achieved in the presence
of source bottleneck.

(DD

K .
& ®

1 [23)

Figure 3: 3 Sources - Bottleneck Configuration

Link 2

@—4 Swil

Sw3

C. Generic Faimess.Conﬁguratioh -2 (GFC-2)

This configuration is a combination of upstream and parking
fot configuration (see Figure 4). In this configuration, all the
links are bottle-necked links. This configuration is explained in
[19]. ' ‘

D. Simulation Parameters

The simulations were done using an extensively modified
version of NIST ATM simulator [20]. The parameter values for

658

different configurations are given in Table 1. The algorithms
were simulated using both constant queue control function
(Fraction = 0.9) and using dynamic queue control function.
For dynamic queue control, hyperbolic functions was used,
with curve parameters a = 1.15and b = 1. The QDLF value
was set to 0.5.

Exponential averaging was used to decrease the variation
in measured quantities such as overload and number of VCs.
Exponential averaging of overload factor and number of VCs
were done with a decay factor of 0.8 for algorithm C. The
algorithms A and B are more sensitive to overload factor. So,
a the decay factor of 0.4 was used to average overload in
algorithms A and B.

Table 1
Simulation Parameter Values
Configuration Link Averaging | Target | Wt
Name Dist interval Delay | Func
Three Sources { 1000 Km S ms 1.5ms 1
Src Bottleneck { 1000 Km Sms 1.5ms 1
GFC-2 1000 Km 15 ms 1.5ms 1

The weight function of one was used in all configurations.
This corresponds to MCR plus equal share of excess bandwidth.
The value of § = 0.1 was used for algorithm C. In [16] it was
shown that an overload based explicit rate algorithm achieves
GW fairness for various weight functions.

V. SIMULATION RESULTS

In this section we present the simulation results of
algorithms using different configurations. Table 2 gives the
expected GW fair allocation with constant queue control
function (shown as configuration name and CQF) and with
dynamic queue control function (shown as configuration and
DQF) for each simulation using three source configuration.
The queues when using constant queue control function took
longer time to drain. The bottleneck link utilization was as
expected 90% when constant queue control was used. With
dynamic queue control the algorithms achieved 100% link
utilization for bottlenecked links.

Table 2

GW fair allocation for different configurations
Config. and Queue Control Srcl | Src2 | Src3
Simple and CQF 24.93 | 4493 | 64.93
Simple and DQF 29.92 | 4992 | 69.92
Src Bottleneck + CQF (0-0.4s) | 32.39 | 52.39 | 72.39
Src Bottleneck + DQF (0-0.4s) | 39.86 | 59.86 | 79.86
Src Bottleneck + CQF (0.4-0.8s) | 24.93.{ 44.93.| 64.93
Src Bottleneck + DQF (0.4-0.8s) | 29.92 | 49.92 | 69.92

A. Three Source: Results

The MCR value for the three source configuration is
10,30,50 Mbps for the source 1, source 2 and source 3

respectively. For the simulation with queue control, the
excess bandwidth (149.76 - 90 =) 59.76 is divided equally
among the three sources. The expected allocation is
(10+59.76/3, 30+59.76/3, 50+59.76/3) = (29.92, 49.92, 69.92).
Figure 5(a)-(c) shows the ACRs for algorithms A,B, and C
(with dynamic queue control) respectively. From the graphs, it
can be seen that the expected allocation is achieved by all the
three algorithms.

B. Source Bottleneck: Results

In this configuration the MCR values of (10,30,50) Mbps
were used. The total simulation time was 800 ms. The
source S1, is bottle-necked at 10 Mbps for first 400 ms of
the simulation. It always sends data up to 10 Mbps even its
ACR larger than 10 Mbps. Figures 6 (2)-(c) shows the ACRs
for the algorithms A, B, and C with constant queue control
respectively. The expected allocation is (32.39,52.39,72.39) for
first 400 ms and it is (29.92,49.92,69.92) between 400 ms and
800 ms. The algorithms do converge to the expected allocation,
The algorithm A has lesser rate oscillations and converges
faster than algorithm B and C.

C. GFC-2: Results

MCR value of zero was used for all sources expect for
type A sources which had a value MCR of 5 Mbps. The
expected allocation for each type of VC using constant queue
control and dynamic queue control is given in the table 3.
Figure 7 (a)-(c) show the ACRs of each type of VCs A through
H for algorithms A, B, and C with constant queue control
respectively. Algorithm A converges to the expected allocation.
Algorithm B with constant queue control, does not converge to
expected GW fair allocation within the simulation time as seen
in figure 7(f). This is due the presence of sources with different
round trip times sharing the same bottleneck link. In such a
case the sources with larger round trip time take a long time to
adjust the rates compared to the ones which have smaller round
trip times. For example maximum allocation for A type VC
which has large round trip time was assigned for seven VCs
of type G which have small round trip time. This also led to
large switch queues and slow convergence of algorithm B. The
input rate at the link between SW6 and SW7 is overloaded by a
factor of seven which gives rise to the huge queues.

Table 3
GFC-2 configuration: Expected allocations when using DQF and
CQF for each type of VC
A B C D E F G H
1125 5 3375337513375 ({625] 5 | 5062
9 45| 315 31.5 31.5 9 4.5 | 47.25

V1. COMPARISON OF SWITCH SCHEMES
Table 4 gives a comparison of the algorithms.

Algorithm A has higher complexity than the other two
algorithms. Algorithm B results in large switch queues since
in presence of multiple round trip time. The algorithm C is the

659

Table 4

Comparison of the algorithms

Algo- { Endof Intrvl { Feedback | Max | Sensitivity
rithm | Complexity | Complexity | Q Len | to Qentrl
A ON) o) | Med- High
B o) o) Large Low
C o(1) o(1) Med Low

best of the proposed algorithm since it has O(1) complexity
both at the end of interval and when a BRM cell arrives. Also,
algorithm C has smaller queues compared to algorithm B.

VII. CONCLUSION

In this paper, we have presented three algorithms which
achieve GW fairness and providle MCR guarantee. The
algorithms monitor the load on the link and calculate
the overload factor. The overload and other quantities
(ExcessFairShare or WtMaxAllocPrev) are used to
calculate the feedback rates.

The algorithms proposed have similar structure. The
algorithms differ in the end of interval accounting and feedback
calculation. Simulations show that the algorithms converge
to GW fairness in most cases. Queue control can be done
using constant function and dynamic (hyperbolic) function.
Algorithm A has O(N) complexity for the end of interval
calculations. Algorithm B,-can give rise to large queues if
the configuration has sources with different round trip times
sharing the same link. The algorithm C, which uses the
VCShare and WtMazAllocPrev is the best, since it has
O(1) complexity and is less sensitive to queue control function.

VIII. REFERENCES

[1] Shirish S. Sathaye. “ATM Forum Traffic Management
Specification Version 4.0”. April 1996

{2] Nanying Yin and M. G. Hluchyj. “On closed-loop rate
control for ATM cell relay networks”. In Proc. of IEEE
INFOCOM, pp. 99-108; 1994.

{31 Anna Charny. “An algorithm for rate allocation in a
packet-switching, network with feedback”. Master’s
thesis, MIT, Cambridge, May 1994. -

[4) Danny H. K. Tsang, Wales K. F. Wong. “A new rate-
based switch algorithm for ABR traffic to achieve max-
min fairness_with analytical approximation and delay
adjustment”. In Proc-1EEE Globecom’96.

[5) Shivkumar Kalyanaraman, Raj Jain, Rohit Goyal, Sonia
Fahmy, and Bobby Vandalore. “The ERICA Switch
Algorithm for ABR Traffic Management in ATM
Networks,” 2 Submitted to JEEE/ACM Transactions on
Networking, April 1999,

[6] C. Fulton, San-Qi Li and C. S. Lim. “UT: ABR feedback
control with tracking”. Preprint.

2 All our papers and ATM Forum contributions are available through
http://www.cis.ohio-state.edu/ jain/

{7] L. Kalampoukas, A. Varma, K. K. Ramakrishnan. “An
efficient rate allocation algorithm for ATM networks
providing max-min fairness”. In Proc. of the 6th
IFIP International Conference on High Performance
Networking, September 1995. '

[8] K. Siu and T. Tzeng. “Intelligent congestion control
for ABR service in ATM networks”. Computer
Communication Review, vol. 24, no. 5, pp. 81-106,
October 1995.

[9] Y. Afek, Y. Mansour, and Z. Ostfeld. “Phantom: A simple
and effective flow control scheme”. In Proceedings of the
ACM SIGCOMM, August 1996.

[10] L. Roberts. “Enhanced PCRA (Proportional Rate Control
Algorithm)”. ATM Forum Contribution/AF-TM 94-
0735R1, August 1994.

[11] Yiewei T. Hou, Henry H.-Y. Tzeng, Shivendra S. Panwar.
“A generalized max-min rate allocation policy and its
distributed implementation using the ABR flow control
mechanism”. In Proc. of INFOCOM, April 1998.

[12] Santosh P. Abraham and Anurag Kumar. “A stochastic
approximation approach for a max-min fair adaptive rate

control of ABR sessions with MCRs”. In Proc. of
INFOCOM, April 1998.
[13] Y. T. Hou, H. Tzeng, and S. S. Panwar. “A Simple

ABR switch algorithm for the weighted max-min fairness
policy”. In Proc. IEEE ATM’97 Workshop, pp. 329-338,
Lisbon, Portugal, May 25-28, 1997.

[14] D. Hughes. “Fair share in the context of MCR”. ATM
Forum contribution/AF-TM 94-0977, October 1994.

[15] N. Yin. “Max-min fairness vs. MCR guarantee on
bandwidth allocation for ABR”. In Proc. of IEEE ATM’96
Workshop, San Franscisco, CA, August 25-27, 1996.

{16] Bobby Vandalore, Sonia Fahmy, Raj Jain, Rohit Goyal,
Mukul Goyal, “A Definition Definition of General
Weighted Fairness and its Support in Explicit Rate Switch
Algorithms”, JICNP ‘98, Austin, Texas, October 1998, pp
22-30.

[17] Bobby Vandalore, Raj Jain, Rohit Goyal, Sonia Fahmy
“Design and Analysis of Queue Control Functions for
Explicit Rate Switch Schemes”, IC3N’98, October 1998,
pp 780-786.

[18] Sonia Fahmy, Raj Jain, Shivkumar Kalyanaraman, Rohit
Goyal and Bobby Vandalore, “On Determining the
Fair Bandwidth Share for ABR Connections in ATM
Networks,” Proc. of the IEEE International Conference
on Communications (ICC) 1998, June 1998

[19] Robert J. Simcoe. “Test configurations for fairness and
other tests”. ATM Forum/94-0557, July 1994.

[20] Nada Golmie. “Netsim: network simulator”.
http:/iwww.nist.gov/. S

660

D(1). E(2) F(1) H(2) A(3) C(3) G
4D 2D : B(3
A SwWl Sw2 Sw3 Sw4a SWS5S SW6 SwW7 —(b)
50 100 50 150 150 50
T T vods T Tvwps | Mopd T™Mops T Mops T Mbps
B(1) D(1) E(2) | B(1) A1) F(1) B(1) H(2) C(3) G(7)
A1) v v
Congested tink Congested link Congested link
Jor A VCs Jor CVCs Jor B VCs
Note: Entry/exit links of length D, .rpéed 150 Mbps
Figure 4: Generic Fairness Configuration - 2
160 3 Sources: ACR for ARR sources 160 3 Sources: ACR fur ABR sources 1 3 Sources: ACR for ABR sources
ACR wfubr{l] — ACRufabr{l] —— ACRulabr{l) —
o ACR of abi]2] - 140 ACR of abr{2] -~ o ACR of abri2} -=~-
" ACR of abr{3] - 10 ACRofabr{3] - 120 ACR of abr{3] -~
20 mr"”"‘

0 50 100 150 200 250 300 350 400 450 500
Time in milliseconds

(a) Algorithm A and DQF

© 50 100 150 200 250 300 350 400 450 500
Time in milliscconds

(b) Algorithm B and DQF

Figure 5: Three Sources: ACR graphs for algorithms A, B, and C.

‘WAN Buttlenecked: ACRs

‘WAN Bottlenecked: ACRs

80 180
10 ACRtust 150 AcRiws —
140 ACRfor 83 v 140 ACRforS3 -
2o
2 2 100
2 S 0w
o SRS
) u
ol L0 S N E AR
° o 100 200 300 400 S00 S00 W0 B0 ‘ o 100 200 300 0 506 600 00 SN0
Time in milliseconds Time in milliseconds.
(a) Algorithm A with CQF (b) Algorithm B with CQF
Figure 6: Source Bottleneck: ACR graphs for Algorithm A, B, and C.
GFC-2: ACRs ‘GFC-2: ACRs
180 — —
160 st
™ S::ﬁ‘: o
120 fows
g w e 2
< 80 <
60
o 500 1000 1500 2000 - 2500 3000 o 500 1000 2000 2500 3000
Time in milliseconds : Time in milliscconds
(a) Algorithm A and CQF (b) Algorithm B and CQF

Figure 7: GFC-2 config: ACR graphs for algorithms A, B, and C.

661

ACRs

ACRs

0 50 100 150 200 250 300 350 400 450 500
Time in milllseconds

(c) Algorithm C and DQF

WAN Buttlenecked: ACRs

ACRfor §1 ——
ACR for S2
ACRfor 83 -

L —
[] 100 200 300 400 500 00 700 800
Time in milliseconds

(c) Algorithm C with CQF
GFC.2: ACRs
Wi —
C_SW5
DSWI -
E_SW2
Fsw)
G_SWs
"SW4
\’S‘M = 1000 1oo 2000 : LWO
Time in milliseconds.
(¢) Algorithm C and CQF

