
An Explicit Rate Control Framework for Lossless
Ethernet Operation

Jinjing Jiang, Raj Jain and Chakchai So-In
Department of Computer Science and Engineering

Washington University in Saint Louis
{jinjing, jain, cs5}@cse.wustl.edu

Abstract—In this paper, the explicit rate control framework for
Ethernet applications, especially data centers, is described. The
framework guarantees zero packet drops at the congested switch
and fast convergence to fair and stable state. In order to manage
the congestion, design choices on 2-point and 3-point structure,
the reactive and proactive signaling, explicit and implicit rate con-
trol are compared. Then the core component of the framework,
queueing control, is carefully studied. Furthermore, we show
that this framework can seamlessly cooperate with IEEE 802.3x
PAUSE mechanism to recover from severe congestion scenarios.
Numerical results are provided to support the claims.

I. INTRODUCTION

Ethernet networks are increasingly being used for data
center applications involving storage and exchange of huge
amounts of data. It is competing to replace Fiber Channel
and Infiniband that are used to connect storage subsystems
and that provide loss-free transmission. IEEE 802.1 standards
group is developing mechanims to provide similar operation
on Etherent networks.

Currently, Ethernet networks provide best effort service
and depend on the transport layer protocols, like TCP, to
respond to congestion. Even after 30 years of its invention,
Ethernet networks run without congestion control in the data
link layer though significant amount of work has been done
on congestion control in TCP/IP networks. This may be
acceptable for elastic applications but not tolerable for data
center applications. TCP retransmissions and long timeouts
could impair system performance significantly. Due to bursty
nature of the traffic, switch buffers can overflow resulting
in packet loss even when the average utilization is 50%.
Without congestion control mechanisms, Ethernet networks
are not very suitable for data center applications which are
very sensitive to packet losses. Some of these applications use
UDP and some don’t even use IP (e.g., Veritas Cluster os[1]).
Therefore, these applications cann’t rely on TCP’s congestion
control mechansims.

In the literature, McAlpine and Wadekar [13] proposed the
general architecture for congestion management in Ethernet
Clusters, where link level control, layer 2 subnet control
and end-to-end higher layer control protocols are discussed.
Through simulations, they endeavor to find the appropriate
set of congestion management methods that are compatible
with IEEE802.1/802.3 standards. Santos et al[6] describe a
simple switch-based explicit congestion notirication (ECN)
mechanism for Infiniband with a new source rate control

mechanism using window limit. It improves fairness and
throughput for both static and dynamic traffic. However, this
scheme only works with TCP traffic.

In the IEEE 802.1 standards group, four proposals are
currently being discussed. First, a general Ethernet Conges-
tion Management (ECM) scheme using Backward Congestion
Notification (BCN) was proposed by Davide Bergasamo and
his colleagues at Cisco and is described in [1][2]. The BCN
messages contain current queue status. We proposed a forward
explicit congestion notification mechanism (FECN) and argued
in favor of explicit feedback of allowed rates to the sources.
A modification to ECM, called Explicit Ethernet congestion
management (E2CM) was proposed as combining some of
the ideas of FECN and ECM. The fourth proposal is quan-
tized congestion notificaiton (QCN)[7] in which ECN queue
feedback is quantized to few bits and network provides only
negative feedback. There are no positive feedback messages
allowing sources to increase the rate. In stead, sources use a
search algorithm to find the acceptable rate.

In this paper, we present new results on the performance of
FECN and show that FECN provides better performance (fast
convergence to stable and fair allocation). Also, using the Eth-
ernet Pause mechanism along with FECN, good performance
can be obtained even under severe congestion.

The remainder of the paper is organized as follows. Section
II gives the system model and the components used for
Ethernet link layer congestion management. Various design
issues concerning the architecture are discussed in Section III.
The queue control functions, which is the key part of the FECN
mechanism, is described in Section IV. Section V analyzes
the interaction between FECN and PAUSE mechanism. Then
follows the conclusion.

II. SYSTEM MODEL AND ASSUMPTIONS

For data center applications using Ethernet networks, end
stations are connected to switches with high speed links,
typically with line rate of 10 Gbps. For simplicity, we call
these Data Center Ethernet (DCE) networks.

At the data link layer, in order to control the traffic, flows are
rate regulated if there is congestion on the path. The rate reg-
ulation is realized by the hardware implementations of leaky
bucket algorithm in network interface cards (NICs). Generally,
the switches are equipped with measurement modules, which
can detect the congestion by monitoring the queue length, the



load on the link, etc. The control messages and tags used
for flow control are specially formatted packets sent by the
switches in DCE. It is assumed that the congestion mechanism
operates in a region consisting only of DCE-aware switches.
The congestion control packets are not sent to or pass through
legacy DCE-unware switches or hosts.

Fig. 1. A typical example of Ethernet for data center applications

An simple example of DCE is shown in Fig. 1. The network
diameter of DCE is limited. Typically, the maximum path
length is about 8 hops, with delay of 0.5 µs for each hop.
The rate control for sources and switch congestion detection
algorithms are expected to work in these limited environments.

III. DESIGN ISSUES FOR THE ARCHITECTURE

In the IEEE802.1 standards group, architectures using either
backward notification, forward probing or both are under
debate. This results in two types of architectures as discussed
below.

A. 2-Point and 3-Point Architectures

In our proposed FECN scheme, sources periodically gen-
erate probe packets that are modified by the switches along
the path and then reflected by the destinations back to the
sources. The sources react to the feedback received in the
returning probes and set their rate accordingly. Thus, there are
three types of points in the control loop: reaction points at the
sources, congestion points at the switches, and reflection points
at the destination. This is known as a 3-point architecture.

It is also possible to have a control loop without reflection
points. In this case, the sources react to the feedback received
directly from the congestion point. The feedback is sent in the
backward direction from the switch to the source. This is the
2-point architecture as shown in Figure 2.

Fig. 2. The Architecture for Congestion Notification

Both ECM and QCN use 2-point architecture. If there are
multiple congestion points on the path of a flow, multiple
backward control messages will be sent back while only one
of these - one with the highest level of congestion indication
- will dominate the future rate of the flow. Sophisticated
mechanisms are needed for sources to respond to messages
from different congestion points. While in FECN, the sources
do not have to keep track of congestion points and can increase
their rate to the received feedback immediately. [The bit-based
QCN was 3 point architecture but the received feedback was
not explicit].

B. Proactive and Reactive Signaling

In some scenarios, a sudden change of the link capacity or
traffic patterns will cause the network to be severely congested.
Since proactive probes are sent only periodically, at least one
periodic interval is needed to respond to the sudden overload.
This may cause long queues in the switch buffer. In this case,

reactive signaling with feedback as soon as the congestion
happens will help. In Fig. 2, BCN messages are sent from the
switch to sources as long as the queue length is above some
predefined level. The problem with this approach is that it
reduces the rate of some flows too much and then these flows
may not recover. This is reported in [3].

C. Explicit and Implicit Rate Control

ECM, QCN, E2CM, all three proposals send the queue
dynamics back to the sources. Then the sources perform the
Additive Increase Multiplicative Decrease (AIMD) algorithm
to adjust their transmission rate. However, the queue based
congestion sensor cannot not tell directly what bandwidth the
congested link can support since queue length depends upon
the queue service architecture, and is highly related to the
bottleneck link rate. For example, ten 1500B packets at a 1
kbps link are a big queue while the same queue would be
considered negligible at a 10 Gbps link. Therefore, queue
length feedback from different links cannot be compared.

On the contrary, FECN uses rate based sensor - the link
utilization - to detect the congestion. The switches calculate
the fair share for each flow without maintaining any per-flow
information. Using the link utilization as congestion indicator
is much easier for the network administrator, since desired
utilization is same at 1 Gpbs and 10 Gbps links.

Mathematically, queue length is an instantaneous random
variable, while rate of sources is a time averaged variable
measured in a predefined interval. For the same load, the
instantaneous queue length can vary a lot. Consider a simple
M/M/1 queue for example. Suppose ρ is the load factor
(equivalent to link utilization), the probability that queue
length is equal to n is

P (Q = n) = (1− ρ)ρn.

Therefore, rate based sensor is more stable (less variance) than
queue-based load sensor.

Furthermore, this explicit rate control messages are much
simpler in terms of message format since it is not necessary
to indicate the identification of different congestion points. In
[4], it is reported that FECN’s overhead is only around one
tenth of the overhead of other schemes. Moreover, in [11], it is
shown that FECN can converge to fair and stable state much
faster than ECM does, simply because AIMD-like algorithms
can achieve fairness only in the long term sense, which means
that the transient time of the system is long [14].

In summary, considering both the system performance and
complexity issues, the forward explicit rate control is better
than implicit rate control schemes.

IV. FECN QUEUE CONTROL

In the previous sections, we have shown that FECN has
many merits over other mechanisms. In this following section
we answer the question - how FECN bounds the maximum
delay and jitter in the Ethernet. Queue control plays a key
role in the task of congestion management in FECN [11].



This paper discusses the queue control design and other queue
related enhancements in depth.

First, we summarize the basic switch operations as follows.
The switches perform time-based measurement to monitor the
load and queue length. Let us denote the sequential measure-
ment time instants as t0, t1, t2, . . . , ti, where T = ti − ti−1 is
the fixed measurement interval. See Fig.3. Then, the following

Fig. 3. Illustration of rate calculation

variables are defined for the ith interval (ti−1, ti]: ρi is the
load factor for this interval; qi is the number of packets in the
buffer at the end of the interval (at time ti); ri is the advertised
rate for the ith interval; Ai is the average arrival rate during
the interval. In addition, assume that the link capacity is C
and Pm is the packet size. Note that we measure the queue
length qi by number of packets and use fixed size packets.
However, FECN can handle random packet sizes simply by
measuring queue lengths in bytes. In brief, the notation rules
are as follows: if the value is effective for the i + 1th interval,
its subscript is denoted as i + 1; if the value is measured in
the ith interval (at time spot ti), its subscript is denoted as i.

• Computation:
– Initialization: Initial advertised rate r0 = C

N0
; where

N0 is a constant determined by the network admin-
istrator.

– Measurement of effective load: ρi = Ai

f(qi)×C ;
– Bandwidth Allocation: ri+1 = ri

ρi
;

• Marking: If the ri+1 < r where r is the rate value in the
rate discovery probes, then r = ri+1.

Note that in the last measurement interval, Ai is the sum
of rates of all input flows at the switch port, thus

ri+1 =
ri

ρi
=

Cf(qi)
Ai

ri

,

where Cf(qi) could be thought as the effective bandwidth
available; N = Ai

ri
is the effective number of flows. f(q) is

the queue control function to ensure that the queue length is
kept at a constant level. Since in each measurement interval,
the advertised rate is updated in a multiplicative fashion, we
call our queue control a multiplicative control.

The analytic formula for the hyperbolic queue control
function, which is the default in FECN and ERICA[15], is
written as

f(q) =

{
aQeq

(a−1)q+Qeq
, if q ≤ Qeq,

max(c, bQeq

(b−1)q+Qeq
), otherwise.

(1)

where q is the instantaneous queue length in the switch
measured by packets. a, b, c are constants.

Fig.4 plots the above function with parameters a =
1.002, b = 1.1, c = 0.1 and Qeq = 16. We have the following
observations:

• If q < Qeq, f(q) is only slightly larger than 1;

• If q ≥ Qeq, the hyperbolic function is very close to the
linear control f(q) = −0.00375q+1.06 = −0.00375(q−
Qeq) + 1;

• For 100 packet buffer size, c = 0.1 does not take any
effect. Generally, it helps for large buffers and large Qeq.

Fig. 4. queue control function, a = 1.002, b = 1.1, c = 0.1

For q < Qeq, f(q) > 1 and ρ = A
f(q)C . Therefore f(q)

reduces the estimated load level and leads to an aggressive
increment of advertised rate. If f(q) = 1, it is possible
that the queue never approaches Qeq, since the input rate
cannot be larger than the link capacity and the initial queue
length is always far less than Qeq. Furthermore, for q > Qeq,
generally f(q) < 1. Then the queue control function attempts
to aggressively decrease the advertised rate. In the next section,
we prove the stability of this queue control.

A. Stability Criteria for Queue Control

The hyperbolic queue control function, though it has a
smooth control on queue length, is nonlinear. So it is not
trivial to analyze its fluid model. However, we can use the
linear queue control function to get an approximation (or lower
bound) to study the conditions for system stability.

Suppose f(q) is a linear function written in the following
form

f(q) = 1− k
q −Qeq

Qeq
, (2)

where k is some constant. Note that for q ≤ Qeq and q > Qeq,
different k should be applied. Without loss of generality, we
only discuss the choice of k for q > Qeq. Similar results for
q ≤ Qeq can be obtained easily.

The fluid model gives

qi+1 = qi +
(Nri+1 − C)T

Pm
= qi + α(f(qi)− 1), (3)

where α = CT
Pm

, Pm is the packet size.
Thus, a closed form solution to qi is written as

qi+1 =
(

1− αk

Qeq

)
qi + αk,

Then

qi =
(

1− αk

Qeq

)i

q0 + αk
i∑

j=0

(
1− αk

Qeq

)j

. (4)

With a sufficient condition that 0 < αk
Qeq

< 2, limi→∞ qi =
Qeq. Note that this sufficient condition is the key criterion
in choosing the queue control function parameters given the
length of measurement interval. For example, suppose C = 10
Gbps and T = 1 ms, the sufficient condition gives k ≤ Qeq

α =
0.0384. Note that in FECN, a moving average process is done
on advertised rate, which further relaxes the conditions for k
to achieve system stability.



γ Throughput(Mbps)
0.98 9154.14
0.99 9329.22
1.00 9154.14

TABLE I
FECN WITH γ

B. Queue Control Enhancement with Heavy Traffic

Real world traffic is bursty, which can fill up the queue very
quickly. One key observation is that when the initial queue
length is larger than Qeq, and at the equilibrium point (when
every source sends out packets with fair share rate), the queue
cannot approach Qeq either. If the link load is equal or larger
than 1, the queue can still build up to infinity by the theory
of heavy traffic. In order to cope with heavy traffic, when
q > Qeq, we use γC to replace the link capacity, where 0.95 <
γ < 1. Therefore, when the queue length is high and sources
get the fair share, the queue can continue to drain. Simulation
results with 100 CBR flows with 200 Mbps data rate going
through one switch output queue with 10 Gbps service rate
are shown in the following table. From Table I, we see that
γ = 0.99 is a good choice.

C. Equivalence of Multiplicative and Additive Queue Control

An alternative to multiplying the capacity by f(q) is to
subtract f(q) from the capacity. Both of these will lead to re-
duction in capacity when the queue length is large. Simulation
results[5] show that multiplicative control performs well. In the
following, we show that the multiplicative and additive queue
control are equivalent. Based on the fluid model, we adopt the
form of additive queue control which is extensively studied in
[12]. It is written as

ri+1 = ri

[
1 +

α(γC −Ai)− β
qi−Qeq

T

γC

]
, (5)

where α, β, γ are moving average parameters. γC −Ai is the
available capacity to share among flows. If γC − Ai > 0,
there is spare capacity; Otherwise, the link is overloaded. (qi−
Qeq)/T is used to drain the queue to Qeq in one measurement
interval. γ < 1 gives some additional space for the queue to
drain as we discussed in last section to cope with heavy traffic.
Note that large α helps in utilizing available spare bandwidth
and large β helps in draining the queue aggressively.

Recall that the advertised rate update in FECN is

ri+1 =
ri

ρi
= ri

(
1 +

1
ρi
− 1

)
. (6)

Without loss of generality, assume q > Qeq, then (3) can be
rewritten as

ri+1 = ri

1 +
C
Ai

(C −Ai)− C
Ai

kT
Qeq

(qi−Qeq)
T

C

 . (7)

Comparing (5) and (7), we can find that they are quite
similar except for the moving average parameters. Note that

C
Ai

< 1 when there is congestion. Hence, there is no substan-
tial difference between the multiplicative and additive queue
control. In other words, since multiplicative queue control still
follows the fluid model, the system will eventually converge
to stable state given proper conditions.

D. Multistage Queue Control Function
When a switch is congested, the queue length in the switch

is a big concern in data center applications. In this section,
we further refine the queue control into a multistage function
shown in Fig.5, which enables fast queue draining when the
queue length is larger than a predefined threshold, such as
2Qeq. Here the nth stage is defined as the piecewise control
defined on (nQeq, (n + 1)Qeq]. For larger n, the queue drain
is faster. For simplicity, only piecewise linear queue control
functions are considered. It is straightforward to extend them
into hyperbolic multistage queue controls. For 100 flows

Fig. 5. Multistage queue control function with n = 2

with average rate 200 Mbps injecting into one switch output
queue with 10 Gbps service rate, the link utilization for the
multistage queue control function is shown in Table II. Both
non-bursty Bernoulli UDP traffic[3], and bursty UDP traffic
with Pareto ON/OFF bursts of 10 ms and shape parameter 1.5
are simulated. Here, we use k = 0.002n for the nth stage.
Comparing with the previous results, we see that multistage
queue control improves the link utilization. For the bursty
traffic, the improvement is smaller than that for the continuous
traffic.

V. FECN AND PAUSE MECHANISM

IEEE 802.3x PAUSE mechanism is a hop by hop flow
control mechanism, which is used in DCE to ensure zero
loss when there is a sudden surge of link load due to link
failure or traffic rerouting. When the queue length is larger
than a threshold Qon, the switch sends out PAUSE/ON to all
its uplink neighbors. The neighbors stop transmitting packets.
This in turn results in neighbor’s buffers getting filled up and
PAUSE/ONs are issued to their previous hops. Ultimately,
PAUSE signal reaches the source end stations. When the queue
length in the switch becomes lower than some predefined level
Qoff , a PAUSE/OFF frame is sent out on the input ports
to restart transmission of packets. Note that in each PAUSE
interval, the number of dequeued packets is at most L−Qoff ,
where L is the buffer size in packets. Therefore, the PAUSE
interval tP is

tP =
(L−Qoff )× Pm

C
.



Queue Control Throughput(Mbps)(Bernoulli) Throughput(Mbps)(Pareto)
Single Stage 9329.22 9376.32

Multi Stage n = 2 9446.28 9366.78
Multi Stage n = 3 9814.68 9401.22

TABLE II
FECN WITH SINGLE STAGE AND MULTISTAGE QUEUE CONTROL, BERNOULLI AND PARETO TRAFFIC

For a typical DCE with 10 Gbps link, Qon = 90, Qoff =
80, Pm = 1500 B and L = 100, each PAUSE interval
lasts 20×1500×8

10×109 = 0.000024 s, which is much shorter than
one measurement interval (typically 1 ms). Therefore, in
one measurement interval, there could be multiple PAUSE
intervals. Meanwhile, due to the effect of PAUSE mechanism,
no packets are dropped. During that measurement interval,
the average load is around 1, otherwise, the congestion has
already been controlled. Note that the queue control function
still take effects since the queue length at the measurement
time is at least Qoff , which leads to ρ > 1. Typically for
the queue control function shown in Fig. 4, ρ ≈ 1.4. Clearly,
after several measurement intervals, the advertised rate will be
exponentially reduced to the equilibrium rate.

VI. CONCLUSION

IEEE 802.1Qau group is developing a standard for con-
gestion notification in Data Center Ethernet. Various design
aspects are discussed in this paper to show that the forward
explicit congestion notification (FECN) scheme presented in
[11], is the better choice considering various system perfor-
mance metrics and the complexity of implementation. This
paper explains the design philosophy of our proposal. In
addition, we have presented a thorough treatment on the queue
control, which is the key for low-loss congestion management.
Analytical and numerical results for different queue control
functions and several enhancements are discussed. Finally,
the analysis on the interaction between PAUSE mechanism
and FECN scheme is presented, which together guarantee the
convergence of the system and zero frame loss.

REFERENCES

[1] D. Bergamasco, ”Data Center Ethernet Congestion Management: Back-
ward Congestion Notification,” IEEE 802.1 Meeting, May 2005.

[2] D. Bergamasco and R. Pan, ”Backward Congestion Notification Version
2.0,” IEEE 802.1 Meeting, September 2005.

[3] D. Bergamasco, ”CN-SIM: A Baseline Simulation Scenario”, IEEE 802.1
Meeting, 2006.

[4] D. Bergamasco, ”CN-SIM: A Single Stage Output Generated Scenario”,
IEEE 802.1 Meeting, 2007.

[5] B. kwan and J. Ding, ”Preliminary Simulation Results on FECN In
Symmetric Topology w/Single Hot Spot Scenario”, IEEE 802.1 Meeting,
March 2007.

[6] J.R. Santos, Yoshio Turner, G. Janakiraman, ”End to end congestion
control for Infiniband,” IEEE INFOCOM, 2003.

[7] P. Prabhakar, ”QCN,”IEEE 802.1 Meeting, 2007.
[8] IBM Zurich Lab, ”E2CM,”IEEE 802.1 Meeting, 2007.
[9] J. Jiang and R. Jain, ”Analysis of Backward Congestion Notification

(BCN) for Ethernet Datacenter Applications,” IEEE INFOCOM Minisym-
posium, Anchorage, Alaska, May 7-11, 2007.

[10] Y. Lu, R. Pan, B. Prabhakar, D. Bergamasco, V. Alaria and A. Baldini,
”Congestion control in networks with no congestion drops,” Allerton,
September 2006.

[11] J. Jiang, R. Jain, and C. So-In, ”Congestion Management for Ethernet
In Datacenter Applications Using Forward Explicit Rate Notification,”
submitted, 2007.

[12] Nandita Dukkipati and Nick McKeown, ”Why Flow-Completion Time
is the Right Metric for Congestion Control,” ACM SIGCOMM Computer
Communication Reiview, Jan 2006.

[13] G. Mcalpine, M. Wadeker et. al., ”An architechture for congestion man-
agement in Ethernet clusters,” IEEE International Parallel and Distributed
Processing Symposium, 2005.

[14] D.X. Xie, P. Cao, and S.H. Low,”Fairness Convergence of Loss-based
TCP,” Paper Draft, Caltech 2006.

[15] Bobby Vandalore, Raj Jain, Rohit Goyal and Sonia Fahmy, ”Design and
Analysis of Queue Control Functions for Explicit Rate Swich Schemes,”
IEEE IC3N, Oct. 1998.

[16] IEEE 802.1au Work Group, http://www.ieee802.org/1/pages/802.1au.html.


