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Abstract: Lately application service providers (ASPs) and Internet 

service providers (ISPs) are being confronted with the 

unprecedented challenge of accommodating increasing service and 

traffic demands from their geographically distributed users. Many 

ASPs and ISPs, such as Facebook, AT&T and others have adopted 

micro-service architecture to tackle this problem. Instead of 

building a single, monolithic application, the idea is to split the 

application into a set of smaller, interconnected services, called 

micro-services (or simply services). Such services are lightweight 

and perform distinct tasks independent of each other. Hence, they 

can be deployed quickly and independently as user demands vary. 

Nevertheless, scheduling of micro-services is a complex task and is 

currently under-researched. In this work, we address the problem of 

scheduling micro-services across multiple clouds, including micro-

clouds. We consider different user-level SLAs, such as latency and 

cost, while scheduling such services. Our aim is to reduce overall 

turnaround time for the complete end-to-end service in service 

function chains and reduce the total traffic generated. In this work 

we present a novel fair weighted affinity-based scheduling heuristic 

to solve this problem. We also compare the results of proposed 

solution with standard biased greedy scheduling algorithms 

presented in the literature and observe significant improvements. 
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weighted affinity-based scheduling; Service Function Chaining; 

SFC; virtual machines. 

I. Introduction 

With the explosion of mobile and sensory devices, service 

demands and data traffic are growing rapidly. The popularity 

of Internet of Things (IoT) has significantly contributed to this 

trend, with millions of new sensing devices exchanging data. 

According to Wireless World Research Forum (WWRF), the 

number of wireless devices connected through networks is 

expected to be 100 billion by 2025 [1]. Cloud computing has 

been considered as a major enabler for IoT [2]. The sensing 

devices, as well as end-users, are generally spread across 

geographically distributed areas. This mandates the ASPs and 

ISPs to deploy the services on multiple clouds for scalability, 

redundancy and quicker response [1, 3, 13].  

ASPs and ISPs are increasingly using virtualization 

technologies to deploy their services over standard high-

volume infrastructures. Services, which were monolithic 

software in the past, are being replaced by a set of light-weight 

services called micro-services [5, 6]. Micro-services are 

generally spread across multiple clouds for point-of-presence 

to be closer to the distributed mobile users. These services are 

then chained through a process called service function chaining 

(SFC) [7] to create a complete end-to-end service. The goal is 

to permit the traffic flow smoothly through the network, 

resulting in an optimal quality of experience for the users.  

Infrastructure as a service (IaaS) is a famous and most 

widely used service offered by cloud service providers (CSPs) 

to the ASPs and ISPs. With IaaS, cloud environment 

infrastructure resources such as computation, storage, and 

network are provisioned for service providers. A good example 

is EC2 (Elastic Compute 2) service offered by Amazon [22]. 

With the advancements in the virtualization technology, the 

services are being deployed over virtual machines (VMs). 

ASPs and ISPs send requests to CSPs and obtain the resources 

from their clouds to deploy the micro-services as per the 

requirements of the users [3]. Micro-services can easily be 

deployed over virtual machines (VMs) or containers allowing 

service providers to flexibly load balance and easily deploy 

their applications [5, 6]. The users benefit from the quick 

response and lower costs while ASPs and ISPs benefit from 

quick and comparatively cheap deployment options. Micro-

services are usually scaled depending on the dynamic user 

demands. Because of the nature of the contemporary 

information technology (IT) and telecommunications 

applications, the services need to be highly available, almost as 

much as 99.999% [13]. Additionally, most of the 

contemporary applications are sensitive to the delays, jitter, 

and packet-loss (such as online games, healthcare applications, 

video streaming and others). Many of these services are 

required to support millions of subscribers and meet the 

rigorous performance standards [13, 16]. These requirements 

mandate the optimal placement and scheduling of the services 

and proper interconnection among them.  

 Although virtual machine placement problem has already 

been studied in the literature [8-12], micro-service scheduling 

problem is relatively novel in the research community. Also, 

recently, micro-services are moving from host-centric to data-

centric model in which the computational resources are 

moving closer to end users. This results in lower response time 

to the end-users and lower costs to ASPs and ISPs because of 

shorter access links. This has led service providers to the 

concept of micro-clouds at the cellular base stations [3, 13]. 

Micro-service instances are generally smaller in capacity 

compared to the monolithic services so that they can be easily 

deployed and buffered or activated over different micro-clouds 

as per the user demands. The instances of the micro-services 

are generally short-lived and dynamic in nature. The 

scheduling of these services has become an important problem 



to reduce the total delays, total required  resources, and overall 

deployment costs [14]. 

 A sample scenario is demonstrated in Fig. 1 below. We 

consider the example of Netflix, an ASP, which is a global 

provider of streaming movies and television series. As a result 

of an explosion in mobile devices [1], it would be beneficial 

for Netflix to have a subset of videos (maybe popular videos 

for a particular mobile user-base) cached at the micro-clouds 

installed at the cellular base stations with a micro-service 

handling the user requests and sending replies as per the 

demand. This will reduce the user-latencies and may result in 

better user experience. Also, it may result in lower operational 

expense (OpEx) to Netflix by reducing the usage of expensive 

wide area network (WAN) bandwidth.  

 
Fig. 1. Micro-Clouds at the base station for quicker response. 

Researchers are working to come up with novel and 

innovative schemes to design efficient algorithms for 

appropriately placing the services [4, 8], splitting the load 

across instances on multiple clouds, and chaining them to 

improve performance parameters. However, we observe that 

there is a lack of research work in the domain of micro-service 

scheduling across multiple clouds for optimal service function 

chain (SFC) architecture, for both ASPs and ISPs [6]. 

Especially important factors such as service level agreements 

(SLAs), network parameters, and network latencies, have been 

ignored.  

The micro-service scheduling problem generally 

comprises two sub-problems: (1) selecting types and numbers 

of the service instances to be scheduled and (2) selecting 

physical machines (PMs) or virtual machines (VMs) on which 

the services should be scheduled. Please note that now 

onwards we will use the terms service and micro-service (MS) 

interchangeably. Common heuristics used in the state-of-art 

systems for these tasks are “greedy with bias” [8, 9, 19]. The 

bias is towards some factor such as: (1) select a service with 

the first finish or (2) select service with the longest finish. 

Similarly, the bias while selecting VMs/PMs are: (1) select 

most-loaded VM/PM or (2) select least-loaded VM/PM [11, 

16]. We implement all the four combinations along with our 

proposed Fair Weighted affinity-based Scheduling (FWS) 

approach (explained in Section IV). Our proposed novel 

heuristic performs scheduling of micro-services on multiple 

VMs/PMs spread across multiple clouds. We consider 

different user-level service level agreements (SLAs), such as 

traffic-affinity among services [8], user delays, and cost 

constraints. Also, we consider network parameters such as link 

loads and network traffic. Our aim is to reduce the overall 

turnaround time for the service and reduce the total inter-VM 

traffic generated.  

The rest of the paper is organized as follows. In the next 

section, we discuss the state-of-the-art of the scheduling 

problem in the SFC context to show the limitations of existing 

approaches. Section III formalizes the micro-service 

scheduling problem. In Section IV, we propose a novel FWS 

algorithm for micro-service scheduling and explain the 

experimental setup, and in Section V, we present the 

comparison results. Finally, Section VI concludes the paper.  

II. Related Work 

The problem of scheduling virtual machines has been actively 

pursued in the industry and academia for years. Researchers 

argue that the problems need to be revisited from the SFC 

perspective as SFC has some unique features [18]. For 

example, SFC is an ordered chain of services, so the order in 

which the service instance needs to be visited is defined 

dynamically by the traffic flows [7]. Researchers have 

identified the importance of micro-services as an enabler for 

SFC and have started identifying and addressing various 

problems in this context [5, 6]. Lopez-Pires and Baran [18] 

provide a comprehensive survey of the VM placement 

strategies and solutions. SFC placement is a widely studied 

topic, and works such as in [8-12, 20] provide a wide range of 

VM placement strategies in a single cloud or across multiple 

clouds forming efficient SFCs.  

Due to the time sensitive nature of contemporary 

applications, VM placement alone is not sufficient to yield 

acceptable performance in deployments of SFCs over micro-

clouds. Especially from the perspective of the short-lived 

micro-services, scheduling is more important than the 

placement problem. Also, mobile users have strict SLAs as far 

as tariffs and delays are concerned. This mandates ASPs to 

create points of presence close to the mobile users, reducing 

access latency and overall cost. Merely placing the micro-

services efficiently is not sufficient to obtain optimal results. 

Recently, researchers have become aware of the importance of 

scheduling problem for micro-services in SFCs, especially for 

the micro-clouds at the edges to guarantee carrier-grade 

performance [18].  

Yoshida et al. propose a multi-objective resource 

scheduling algorithm (MORSA) for network function 

virtualization (NFV) infrastructures [15]. The tool provides 

different options to optimize many parameters such as delays, 

cost, resources, and others. However, the authors do not 

consider multi-cloud scenarios and neglect network parameters 

such varying link delays with different traffic loads. Similarly, 

Mujambi et al. propose a set of algorithms for network virtual 

function (NVF) scheduling and find Tabu search to perform 

the best [16]. However, the algorithms proposed do not 

consider the links between physical/virtual nodes, and 

consequently, the link delays for transferring a given function 



from one node to another are considered to be negligible. This 

is not true, especially in the SFC scenario, where 

interconnection among the micro-services is critical to forming 

a complete end-to-end service.  

Ferrer et al. have tried to formulate the NFV scheduling 

problem; however, important network latency constraints are 

ignored [17]. In addition to link delays, these constraints 

include many SLA constraints, such as affinity/anti-affinity 

between service instances [14]. Lucrezia et al. introduce 

network-aware scheduling capabilities in OpenStack, the open-

source reference framework for creating public and private 

clouds [19]. The proposed solution is specific to OpenStack 

and needs to be upgraded to accommodate the various multi-

cloud scenarios over multiple platforms. Lakkakorpi, Sayenko 

and Moilanen [21] provide a comparison of a set of scheduling 

algorithms for WiMAX base stations. The focus has been on 

variants of round robin and proportional fair scheduling 

strategies. In this work, we propose a novel fair weighted 

affinity-based scheduling scheme for scheduling micro-

services and compare results with greedy strategies. We show 

significant improvements with the proposed heuristic. 

III. Problem Definition 

In this section, we discuss the micro-service scheduling 

problem in the context of SFC in more details. We start our 

discussion with a particular use case. We consider an ASP 

such as Facebook (FB) and take up a hypothetical example to 

explain the details. It is important to note that the scope of the 

problem under consideration is not only limited to the 

application services but is equally important for the 

telecommunication services, multimedia services, and network 

services as well [7, 8].  

As shown in Fig. 2, different groups of users from various 

user-bases may send different types of web requests to FB 

webserver(s). For example, some users may be interested in 

sign-up functionality and others may just login to access other 

services. The sign-up requests, after passing through the 

firewall, are passed to a set of services, which handle user 

registration logic (in this case firewall  f1  f2  f3  f4 f5 

 database). However, login requests may have to be passed 

through deep packet inspection (DPI) in addition to the 

firewall to distinguish among user demands (such as wall-post, 

photo upload or online FB integrated games). Thus a complete 

service chain may comprise IT and telecommunication 

services, combined. This example is just for an illustration 

purpose of the service flows, and it may be different in actual 

FB implementation of the services. The important point to be 

noted here is the dynamic formation of complex and hybrid 

service chains, which comprise a different set of micro-

services implemented at the application layer. Some of the 

services in the process such as the firewall, the deep packet 

inspector (DPI) and the database (DB) may stay for longer 

durations compared to other short-lived services. 

In this example, if we consider some specific 

functionality, such as user registration (sign-up), wall-post on 

FB or other integrated game applications, a specific set of 

service instances need to be executed. Such sets of service 

instances may be switched on/off as user demands vary, 

especially at the micro-clouds, since the capacities are limited. 

Scheduling these service instances over the available resources 

is an important problem. In this work, we consider four SFCs 

comprising twenty micro-services in total. The SFC shapes and 

graphs are shown in the Fig. 3. We note that the topologies of 

the SFCs also indicate their execution order. For example, in 

SFC 1, service f2 has to be executed after f1. This may be 

because of the business logic dependence or some mandatory 

network traffic flow demand. For example, web-service logic 

handling service has to be executed before the service handling 

databases; or firewall must be executed before the business 

logic, etc. 

 
Fig. 2. SFCs for different services offered by an ASP (such as FB). 

  
Fig. 3. Four SFCs with 20 virtual functions (VFs) used for evaluation.  

However, f4 and f5 may be executed in parallel after f3, 

since they are independent of each other. Similarly, in SFC 2, 

f7 and f8 may be executed at the same time after f6. However,  f9 

has to be executed only after both f7 and f8 have finished their 

execution. This mandatory ordered flow of services in SFCs 

make scheduling an important but a complex problem.  

Let us now consider three SFCs from the example above 

displayed on the left of Fig. 4. On the right-hand side, we show 

the Gantt chart for the scheduling of the micro-services over 

available resources, using the virtual machines (VM1 to VM5), 

deployed across three clouds C1, C2, and C3. Vertical lines 

indicate the time slots and each service needs different time to 

finish the execution. We assume that three user requests for 

these three SFCs arrive at the same time. The widths of the 

services indicate the total time needed to execute the services 

(longer services mean longer time for execution). Possible 



scheduling to optimize the total time and the resources 

required for the three SFCs on the available resources is shown 

in Fig. 4. We observe that all the executions finish before time-

slot t10 keeping VM5 free and ready to serve another incoming 

request. We argue that a sophisticated heuristic is needed to 

solve the large scale micro-service scheduling problem within 

acceptable time limits. In the next section, we propose our 

novel scheduling FWS scheme and explain the experimental 

setup. 

 
Fig. 4. Gantt chart for optimal scheduling.   

IV. Heuristics and Experimental Setup 

In this section, we propose a novel fair weighted affinity-based 

scheme (FWS) for the scheduling problem under 

consideration. The heuristic can be divided into two distinct 

parts, that is, (1) selection of next service instance to be 

scheduled and (2) selection of next VM (or PM) on which the 

service instance needs to be scheduled. Heuristic starts at the 

time t = t0. User requests arrive dynamically with inter-arrival 

time exponentially distributed, that is, the arrival rate is 

characterized by Poisson distribution [16, 23]. Let U be the set 

of users, waiting for the service or being served at any time t. 

Initially, we prepare the graphs for each SFC for each user u in 

U. It is to be noted that the graph may have disjoint sets of sub-

graphs. 

A sample inline service graph is shown in Fig. 5. Three 

possible service chains are highlighted by solid, dotted and 

dashed lines (there may be several other SFCs as well). Also, 

the users may demand a single functionality, such as F9 shown 

in the figure. Again, these graphs can be of any shape and size, 

depending on the service provided by a specific ASP and the 

types of end-user demands. We have used various resource 

combinations (from Amazon EC2 [22]) mentioned in Table I 

to simplify configurations so that resource requirements can 

easily be mapped to the nearest available configuration. 

Depending on the user resource demands, a particular VM is 

chosen from Table II [22] such that the requirements are the 

closest match.  Initially, we assign labels to the services using 

Coffman-Graham algorithm [9]. It ensures that the service 

instance that needs to be executed first for the particular SFC 

(starting service) gets a priority as per the arrival time. The 

service instance with the highest value of the label is scheduled 

first. Further, we propose following additional steps (Table II) 

for fair scheduling as well as to minimize the total turnaround 

time and total inter-VM traffic.  

 
Fig. 5. An inline graph for services forming different SFCs. 

Table I. Resource configuration taken from Amazon EC2. 

 

Steps 1 and 2 make sure that the longer SFCs and the SFCs 

which have waited longer in the queue get a fair chance for 

their scheduling. Step 3 makes sure that the services for the 

same SFC get scheduled on the same machine, if possible, to 

minimize the total traffic generated. Otherwise, it tries to 

schedule the service on the machine with which inter-VM 

traffic will be minimized, and all capacity constraints are 

satisfied. We may combine two or more services and deploy 

them on a single VM as well, provided a VM of that capacity 

is available. Availability of the VMs depends on the cloud 

capacity. If a service instance is not serving any user demands, 

it is buffered in the cloud. In the buffered stage, the service 

uses fewer resources (such as storage only to save the state). 

However, it can be brought up quickly whenever relevant user 

demand arrives, saving resources and time [16]. For simplicity, 

we assume clouds have infinite buffering capacity. 

Table II. FWS algorithm for service scheduling.  
Step 1: We assign weight w to the services, such that: 

w   (number of dependent services in that chain) and 

w   (time spent by the services in the waiting queue).  

Step 2: If there are ties between two services for scheduling (that 

is, services having the same labels), the service with 

higher weight is selected.  

Step 3: While selecting the VMs/PMs for service deployment, the 

affinity between services is taken into consideration. Two 

services belonging to the same instance of an SFC are 

considered to have higher affinity, and we try to place 

them on the same VM/PM. This ensures minimum delays 

and less inter-VM traffic overhead.  

Name API Name Memory Cores
Max
Bandwidth On Demand cost

T2 Small t2.small 2.0 GB 1 cores 25 MB/s $0.034 hourly

T2 Medium t2.medium 4.0 GB 2 cores 25 MB/s $0.068 hourly

T2 Large t2.large 8.0 GB 2 cores 25 MB/s $0.136 hourly

M4 Large m4.large 8.0 GB 2 cores 56.25 MB/s $0.140 hourly



We consider a 20-node topology out of which, 16 are the 

micro-clouds deployed at the edges such as cellular base 

stations, closer to end users and four are the core public clouds, 

with larger capacities, as shown in Fig. 6. Computation and/or 

data extensive services which need more processing and/or 

storage capacities and which tend to run for longer times, such 

as firewall, database services, are generally deployed at core 

clouds. We assume that each service instance produces data in 

the range of 5 kB to 20 kB. Also, the number of user requests 

each micro-service instance can handle at average load is 

selected from a range of 20 to 100 requests/sec. Time needed 

for execution of each service is chosen from the range of 10 to 

100 milliseconds (ms) [18]. All the values are selected 

randomly from the given ranges. Also, we assign each user 

request with some delays and cost constraints it may tolerate. 

We also make sure these constraints are satisfied while 

scheduling the micro-services on the clouds. In the next 

section, we present our results.  

 
Fig. 6. 20-node topology with 16 micro-clouds and 4 core clouds. 

V. Results 
We now present the results obtained through the 

experimental setup. In addition to our FWS approach, we have 

implemented four additional algorithms based on the greedy 

biased approach for comparison. Service labeling step is 

common for all the heuristics. Table III displays the basic steps 

for the following strategies: 

1. Least-full first with First Finish (LFFF) 

2. Most-full first with First time (MFFF) 

3. Least-full first with Decreasing time (LFDT) 

4. Most-full first with Decreasing Finish (MFDT) 

Table III. The selection criterion for greedy biased heuristics. 

 

Graphs in Fig. 7 show the comparison of the four 

approaches mentioned above and our FWS approach in terms 

of the total inter-VM traffic generated. FWS approach (thick 

yellow line) performs best with the least inter-VM traffic. For 

example, with 3000 user demands, greedy algorithms produce 

more than 20 MB of data, whereas FWS only produces less 

than 10 Mbps data, which is an improvement of 50%.  

 
Fig. 7. Total traffic generated (in KB).  

Similarly, Fig. 8 shows the average turnaround time for 

each user where FWS performs best. For example, with 4000 

user demands FWS results in turnaround time of less than 220 

ms whereas the other algorithms need around 330 ms.  

 
Fig. 8. Total turnaround time (in milliseconds). 

However, the average turnaround time alone is not 

sufficient to measure the performance, especially in the context 

of the time sensitive applications. Most of the time, if the user 

demands are not satisfied within the given time constraints, it 

is as bad as service denied. Hence, we also find out the 

percentage of user demands which got satisfied in the given 

time constraints (Fig. 9). We observe that a significantly higher 

percent of the user demands got satisfied with the FWS 

approach. The total percentage varies from 100% to 96% as 

user demands vary from 100 to 5000. On the contrary the 

percentage drops to 70% for LFFF, 62% for LFDT & MFFF 

and 74% for MFDT.  

We have also analyzed the effect of traffic loads on 

average turnaround time or average time to schedule all the 

services. We observe exponential growth in the total 

turnaround delays as traffic loads in the network grow. We 

generated dummy traffic to obtain different average traffic 

loads. The links were modeled as M/D/1 queues, and by the 

standard formula, we calculate the delays in the links as given 

in Equation (1) below [23]. We note that Τij is the total delay 



on the link (i, j). λij is the arrival rate of packets and μij is the 

processing rate of the same link. 𝛵𝑖𝑗  = 
1

2𝜇𝑖𝑗 
 × 

2−(𝜆𝑖𝑗/𝜇𝑖𝑗) 

1−(𝜆𝑖𝑗/𝜇𝑖𝑗)
    (1) 

 
Fig. 9. Percentage of user demands satisfied. 

In Fig. 10 we observe that even at 90% traffic load the total 

delays with the proposed FWS scheme still remain within the 

range of 250 ms which is proposed to be acceptable within the 

limits for the contemporary real-time applications [24], while 

for other schemes, it varies from 400 to more than 600 ms. 

 
Fig. 10. Average turnaround time. 

VI. Concluding Remarks and Future Work 

In this paper, we have proposed a novel FWS approach for 

micro-service scheduling in the multi-cloud scenario to form 

optimal SFCs. We take into account different delay and cost 

related SLAs. Also, we consider link loads and network delays 

while minimizing the total turnaround time and total traffic 

generated. The proposed approach demonstrates significant 

improvement compared to standard biased greedy approaches. 

However, there is still a wide area open for the research in 

developing novel scheduling algorithms, such as proactive 

scheduling, to produce better results. 
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