
Multi-Objective Scheduling of Micro-Services for Optimal Service

Function Chains

Deval Bhamare

Qatar University,

Doha, Qatar

devalb@qu.edu.qa

Mohammed Samaka

Qatar University,

Doha, Qatar

samaka.m@qu.edu.qa

Aiman Erbad

Qatar University,

Doha, Qatar

aerbad@qu.edu.qa

Raj Jain

Washington Univ.,

St. Louis, USA

jain@wustl.edu

Lav Gupta

Washington Univ.,

St. Louis, USA

lavgupta@wustl.edu

H. Anthony Chan

Huawei Technologies,

Plano, USA

h.a.chan@ieee.org

Abstract: Lately application service providers (ASPs) and Internet

service providers (ISPs) are being confronted with the

unprecedented challenge of accommodating increasing service and

traffic demands from their geographically distributed users. Many

ASPs and ISPs, such as Facebook, AT&T and others have adopted

micro-service architecture to tackle this problem. Instead of

building a single, monolithic application, the idea is to split the

application into a set of smaller, interconnected services, called

micro-services (or simply services). Such services are lightweight

and perform distinct tasks independent of each other. Hence, they

can be deployed quickly and independently as user demands vary.

Nevertheless, scheduling of micro-services is a complex task and is

currently under-researched. In this work, we address the problem of

scheduling micro-services across multiple clouds, including micro-

clouds. We consider different user-level SLAs, such as latency and

cost, while scheduling such services. Our aim is to reduce overall

turnaround time for the complete end-to-end service in service

function chains and reduce the total traffic generated. In this work

we present a novel fair weighted affinity-based scheduling heuristic

to solve this problem. We also compare the results of proposed

solution with standard biased greedy scheduling algorithms

presented in the literature and observe significant improvements.

Keywords — greedy scheduling; micro-services; multi-cloud; fair

weighted affinity-based scheduling; Service Function Chaining;

SFC; virtual machines.

I. Introduction

With the explosion of mobile and sensory devices, service

demands and data traffic are growing rapidly. The popularity

of Internet of Things (IoT) has significantly contributed to this

trend, with millions of new sensing devices exchanging data.

According to Wireless World Research Forum (WWRF), the

number of wireless devices connected through networks is

expected to be 100 billion by 2025 [1]. Cloud computing has

been considered as a major enabler for IoT [2]. The sensing

devices, as well as end-users, are generally spread across

geographically distributed areas. This mandates the ASPs and

ISPs to deploy the services on multiple clouds for scalability,

redundancy and quicker response [1, 3, 13].

ASPs and ISPs are increasingly using virtualization

technologies to deploy their services over standard high-

volume infrastructures. Services, which were monolithic

software in the past, are being replaced by a set of light-weight

services called micro-services [5, 6]. Micro-services are

generally spread across multiple clouds for point-of-presence

to be closer to the distributed mobile users. These services are

then chained through a process called service function chaining

(SFC) [7] to create a complete end-to-end service. The goal is

to permit the traffic flow smoothly through the network,

resulting in an optimal quality of experience for the users.

Infrastructure as a service (IaaS) is a famous and most

widely used service offered by cloud service providers (CSPs)

to the ASPs and ISPs. With IaaS, cloud environment

infrastructure resources such as computation, storage, and

network are provisioned for service providers. A good example

is EC2 (Elastic Compute 2) service offered by Amazon [22].

With the advancements in the virtualization technology, the

services are being deployed over virtual machines (VMs).

ASPs and ISPs send requests to CSPs and obtain the resources

from their clouds to deploy the micro-services as per the

requirements of the users [3]. Micro-services can easily be

deployed over virtual machines (VMs) or containers allowing

service providers to flexibly load balance and easily deploy

their applications [5, 6]. The users benefit from the quick

response and lower costs while ASPs and ISPs benefit from

quick and comparatively cheap deployment options. Micro-

services are usually scaled depending on the dynamic user

demands. Because of the nature of the contemporary

information technology (IT) and telecommunications

applications, the services need to be highly available, almost as

much as 99.999% [13]. Additionally, most of the

contemporary applications are sensitive to the delays, jitter,

and packet-loss (such as online games, healthcare applications,

video streaming and others). Many of these services are

required to support millions of subscribers and meet the

rigorous performance standards [13, 16]. These requirements

mandate the optimal placement and scheduling of the services

and proper interconnection among them.

 Although virtual machine placement problem has already

been studied in the literature [8-12], micro-service scheduling

problem is relatively novel in the research community. Also,

recently, micro-services are moving from host-centric to data-

centric model in which the computational resources are

moving closer to end users. This results in lower response time

to the end-users and lower costs to ASPs and ISPs because of

shorter access links. This has led service providers to the

concept of micro-clouds at the cellular base stations [3, 13].

Micro-service instances are generally smaller in capacity

compared to the monolithic services so that they can be easily

deployed and buffered or activated over different micro-clouds

as per the user demands. The instances of the micro-services

are generally short-lived and dynamic in nature. The

scheduling of these services has become an important problem

to reduce the total delays, total required resources, and overall

deployment costs [14].

 A sample scenario is demonstrated in Fig. 1 below. We

consider the example of Netflix, an ASP, which is a global

provider of streaming movies and television series. As a result

of an explosion in mobile devices [1], it would be beneficial

for Netflix to have a subset of videos (maybe popular videos

for a particular mobile user-base) cached at the micro-clouds

installed at the cellular base stations with a micro-service

handling the user requests and sending replies as per the

demand. This will reduce the user-latencies and may result in

better user experience. Also, it may result in lower operational

expense (OpEx) to Netflix by reducing the usage of expensive

wide area network (WAN) bandwidth.

Fig. 1. Micro-Clouds at the base station for quicker response.

Researchers are working to come up with novel and

innovative schemes to design efficient algorithms for

appropriately placing the services [4, 8], splitting the load

across instances on multiple clouds, and chaining them to

improve performance parameters. However, we observe that

there is a lack of research work in the domain of micro-service

scheduling across multiple clouds for optimal service function

chain (SFC) architecture, for both ASPs and ISPs [6].

Especially important factors such as service level agreements

(SLAs), network parameters, and network latencies, have been

ignored.

The micro-service scheduling problem generally

comprises two sub-problems: (1) selecting types and numbers

of the service instances to be scheduled and (2) selecting

physical machines (PMs) or virtual machines (VMs) on which

the services should be scheduled. Please note that now

onwards we will use the terms service and micro-service (MS)

interchangeably. Common heuristics used in the state-of-art

systems for these tasks are “greedy with bias” [8, 9, 19]. The

bias is towards some factor such as: (1) select a service with

the first finish or (2) select service with the longest finish.

Similarly, the bias while selecting VMs/PMs are: (1) select

most-loaded VM/PM or (2) select least-loaded VM/PM [11,

16]. We implement all the four combinations along with our

proposed Fair Weighted affinity-based Scheduling (FWS)

approach (explained in Section IV). Our proposed novel

heuristic performs scheduling of micro-services on multiple

VMs/PMs spread across multiple clouds. We consider

different user-level service level agreements (SLAs), such as

traffic-affinity among services [8], user delays, and cost

constraints. Also, we consider network parameters such as link

loads and network traffic. Our aim is to reduce the overall

turnaround time for the service and reduce the total inter-VM

traffic generated.

The rest of the paper is organized as follows. In the next

section, we discuss the state-of-the-art of the scheduling

problem in the SFC context to show the limitations of existing

approaches. Section III formalizes the micro-service

scheduling problem. In Section IV, we propose a novel FWS

algorithm for micro-service scheduling and explain the

experimental setup, and in Section V, we present the

comparison results. Finally, Section VI concludes the paper.

II. Related Work

The problem of scheduling virtual machines has been actively

pursued in the industry and academia for years. Researchers

argue that the problems need to be revisited from the SFC

perspective as SFC has some unique features [18]. For

example, SFC is an ordered chain of services, so the order in

which the service instance needs to be visited is defined

dynamically by the traffic flows [7]. Researchers have

identified the importance of micro-services as an enabler for

SFC and have started identifying and addressing various

problems in this context [5, 6]. Lopez-Pires and Baran [18]

provide a comprehensive survey of the VM placement

strategies and solutions. SFC placement is a widely studied

topic, and works such as in [8-12, 20] provide a wide range of

VM placement strategies in a single cloud or across multiple

clouds forming efficient SFCs.

Due to the time sensitive nature of contemporary

applications, VM placement alone is not sufficient to yield

acceptable performance in deployments of SFCs over micro-

clouds. Especially from the perspective of the short-lived

micro-services, scheduling is more important than the

placement problem. Also, mobile users have strict SLAs as far

as tariffs and delays are concerned. This mandates ASPs to

create points of presence close to the mobile users, reducing

access latency and overall cost. Merely placing the micro-

services efficiently is not sufficient to obtain optimal results.

Recently, researchers have become aware of the importance of

scheduling problem for micro-services in SFCs, especially for

the micro-clouds at the edges to guarantee carrier-grade

performance [18].

Yoshida et al. propose a multi-objective resource

scheduling algorithm (MORSA) for network function

virtualization (NFV) infrastructures [15]. The tool provides

different options to optimize many parameters such as delays,

cost, resources, and others. However, the authors do not

consider multi-cloud scenarios and neglect network parameters

such varying link delays with different traffic loads. Similarly,

Mujambi et al. propose a set of algorithms for network virtual

function (NVF) scheduling and find Tabu search to perform

the best [16]. However, the algorithms proposed do not

consider the links between physical/virtual nodes, and

consequently, the link delays for transferring a given function

from one node to another are considered to be negligible. This

is not true, especially in the SFC scenario, where

interconnection among the micro-services is critical to forming

a complete end-to-end service.

Ferrer et al. have tried to formulate the NFV scheduling

problem; however, important network latency constraints are

ignored [17]. In addition to link delays, these constraints

include many SLA constraints, such as affinity/anti-affinity

between service instances [14]. Lucrezia et al. introduce

network-aware scheduling capabilities in OpenStack, the open-

source reference framework for creating public and private

clouds [19]. The proposed solution is specific to OpenStack

and needs to be upgraded to accommodate the various multi-

cloud scenarios over multiple platforms. Lakkakorpi, Sayenko

and Moilanen [21] provide a comparison of a set of scheduling

algorithms for WiMAX base stations. The focus has been on

variants of round robin and proportional fair scheduling

strategies. In this work, we propose a novel fair weighted

affinity-based scheduling scheme for scheduling micro-

services and compare results with greedy strategies. We show

significant improvements with the proposed heuristic.

III. Problem Definition

In this section, we discuss the micro-service scheduling

problem in the context of SFC in more details. We start our

discussion with a particular use case. We consider an ASP

such as Facebook (FB) and take up a hypothetical example to

explain the details. It is important to note that the scope of the

problem under consideration is not only limited to the

application services but is equally important for the

telecommunication services, multimedia services, and network

services as well [7, 8].

As shown in Fig. 2, different groups of users from various

user-bases may send different types of web requests to FB

webserver(s). For example, some users may be interested in

sign-up functionality and others may just login to access other

services. The sign-up requests, after passing through the

firewall, are passed to a set of services, which handle user

registration logic (in this case firewall  f1  f2  f3  f4 f5

 database). However, login requests may have to be passed

through deep packet inspection (DPI) in addition to the

firewall to distinguish among user demands (such as wall-post,

photo upload or online FB integrated games). Thus a complete

service chain may comprise IT and telecommunication

services, combined. This example is just for an illustration

purpose of the service flows, and it may be different in actual

FB implementation of the services. The important point to be

noted here is the dynamic formation of complex and hybrid

service chains, which comprise a different set of micro-

services implemented at the application layer. Some of the

services in the process such as the firewall, the deep packet

inspector (DPI) and the database (DB) may stay for longer

durations compared to other short-lived services.

In this example, if we consider some specific

functionality, such as user registration (sign-up), wall-post on

FB or other integrated game applications, a specific set of

service instances need to be executed. Such sets of service

instances may be switched on/off as user demands vary,

especially at the micro-clouds, since the capacities are limited.

Scheduling these service instances over the available resources

is an important problem. In this work, we consider four SFCs

comprising twenty micro-services in total. The SFC shapes and

graphs are shown in the Fig. 3. We note that the topologies of

the SFCs also indicate their execution order. For example, in

SFC 1, service f2 has to be executed after f1. This may be

because of the business logic dependence or some mandatory

network traffic flow demand. For example, web-service logic

handling service has to be executed before the service handling

databases; or firewall must be executed before the business

logic, etc.

Fig. 2. SFCs for different services offered by an ASP (such as FB).

Fig. 3. Four SFCs with 20 virtual functions (VFs) used for evaluation.

However, f4 and f5 may be executed in parallel after f3,

since they are independent of each other. Similarly, in SFC 2,

f7 and f8 may be executed at the same time after f6. However, f9

has to be executed only after both f7 and f8 have finished their

execution. This mandatory ordered flow of services in SFCs

make scheduling an important but a complex problem.

Let us now consider three SFCs from the example above

displayed on the left of Fig. 4. On the right-hand side, we show

the Gantt chart for the scheduling of the micro-services over

available resources, using the virtual machines (VM1 to VM5),

deployed across three clouds C1, C2, and C3. Vertical lines

indicate the time slots and each service needs different time to

finish the execution. We assume that three user requests for

these three SFCs arrive at the same time. The widths of the

services indicate the total time needed to execute the services

(longer services mean longer time for execution). Possible

scheduling to optimize the total time and the resources

required for the three SFCs on the available resources is shown

in Fig. 4. We observe that all the executions finish before time-

slot t10 keeping VM5 free and ready to serve another incoming

request. We argue that a sophisticated heuristic is needed to

solve the large scale micro-service scheduling problem within

acceptable time limits. In the next section, we propose our

novel scheduling FWS scheme and explain the experimental

setup.

Fig. 4. Gantt chart for optimal scheduling.

IV. Heuristics and Experimental Setup

In this section, we propose a novel fair weighted affinity-based

scheme (FWS) for the scheduling problem under

consideration. The heuristic can be divided into two distinct

parts, that is, (1) selection of next service instance to be

scheduled and (2) selection of next VM (or PM) on which the

service instance needs to be scheduled. Heuristic starts at the

time t = t0. User requests arrive dynamically with inter-arrival

time exponentially distributed, that is, the arrival rate is

characterized by Poisson distribution [16, 23]. Let U be the set

of users, waiting for the service or being served at any time t.

Initially, we prepare the graphs for each SFC for each user u in

U. It is to be noted that the graph may have disjoint sets of sub-

graphs.

A sample inline service graph is shown in Fig. 5. Three

possible service chains are highlighted by solid, dotted and

dashed lines (there may be several other SFCs as well). Also,

the users may demand a single functionality, such as F9 shown

in the figure. Again, these graphs can be of any shape and size,

depending on the service provided by a specific ASP and the

types of end-user demands. We have used various resource

combinations (from Amazon EC2 [22]) mentioned in Table I

to simplify configurations so that resource requirements can

easily be mapped to the nearest available configuration.

Depending on the user resource demands, a particular VM is

chosen from Table II [22] such that the requirements are the

closest match. Initially, we assign labels to the services using

Coffman-Graham algorithm [9]. It ensures that the service

instance that needs to be executed first for the particular SFC

(starting service) gets a priority as per the arrival time. The

service instance with the highest value of the label is scheduled

first. Further, we propose following additional steps (Table II)

for fair scheduling as well as to minimize the total turnaround

time and total inter-VM traffic.

Fig. 5. An inline graph for services forming different SFCs.

Table I. Resource configuration taken from Amazon EC2.

Steps 1 and 2 make sure that the longer SFCs and the SFCs

which have waited longer in the queue get a fair chance for

their scheduling. Step 3 makes sure that the services for the

same SFC get scheduled on the same machine, if possible, to

minimize the total traffic generated. Otherwise, it tries to

schedule the service on the machine with which inter-VM

traffic will be minimized, and all capacity constraints are

satisfied. We may combine two or more services and deploy

them on a single VM as well, provided a VM of that capacity

is available. Availability of the VMs depends on the cloud

capacity. If a service instance is not serving any user demands,

it is buffered in the cloud. In the buffered stage, the service

uses fewer resources (such as storage only to save the state).

However, it can be brought up quickly whenever relevant user

demand arrives, saving resources and time [16]. For simplicity,

we assume clouds have infinite buffering capacity.

Table II. FWS algorithm for service scheduling.
Step 1: We assign weight w to the services, such that:

w  (number of dependent services in that chain) and

w  (time spent by the services in the waiting queue).

Step 2: If there are ties between two services for scheduling (that

is, services having the same labels), the service with

higher weight is selected.

Step 3: While selecting the VMs/PMs for service deployment, the

affinity between services is taken into consideration. Two

services belonging to the same instance of an SFC are

considered to have higher affinity, and we try to place

them on the same VM/PM. This ensures minimum delays

and less inter-VM traffic overhead.

Name API Name Memory Cores
Max
Bandwidth On Demand cost

T2 Small t2.small 2.0 GB 1 cores 25 MB/s $0.034 hourly

T2 Medium t2.medium 4.0 GB 2 cores 25 MB/s $0.068 hourly

T2 Large t2.large 8.0 GB 2 cores 25 MB/s $0.136 hourly

M4 Large m4.large 8.0 GB 2 cores 56.25 MB/s $0.140 hourly

We consider a 20-node topology out of which, 16 are the

micro-clouds deployed at the edges such as cellular base

stations, closer to end users and four are the core public clouds,

with larger capacities, as shown in Fig. 6. Computation and/or

data extensive services which need more processing and/or

storage capacities and which tend to run for longer times, such

as firewall, database services, are generally deployed at core

clouds. We assume that each service instance produces data in

the range of 5 kB to 20 kB. Also, the number of user requests

each micro-service instance can handle at average load is

selected from a range of 20 to 100 requests/sec. Time needed

for execution of each service is chosen from the range of 10 to

100 milliseconds (ms) [18]. All the values are selected

randomly from the given ranges. Also, we assign each user

request with some delays and cost constraints it may tolerate.

We also make sure these constraints are satisfied while

scheduling the micro-services on the clouds. In the next

section, we present our results.

Fig. 6. 20-node topology with 16 micro-clouds and 4 core clouds.

V. Results
We now present the results obtained through the

experimental setup. In addition to our FWS approach, we have

implemented four additional algorithms based on the greedy

biased approach for comparison. Service labeling step is

common for all the heuristics. Table III displays the basic steps

for the following strategies:

1. Least-full first with First Finish (LFFF)

2. Most-full first with First time (MFFF)

3. Least-full first with Decreasing time (LFDT)

4. Most-full first with Decreasing Finish (MFDT)

Table III. The selection criterion for greedy biased heuristics.

Graphs in Fig. 7 show the comparison of the four

approaches mentioned above and our FWS approach in terms

of the total inter-VM traffic generated. FWS approach (thick

yellow line) performs best with the least inter-VM traffic. For

example, with 3000 user demands, greedy algorithms produce

more than 20 MB of data, whereas FWS only produces less

than 10 Mbps data, which is an improvement of 50%.

Fig. 7. Total traffic generated (in KB).

Similarly, Fig. 8 shows the average turnaround time for

each user where FWS performs best. For example, with 4000

user demands FWS results in turnaround time of less than 220

ms whereas the other algorithms need around 330 ms.

Fig. 8. Total turnaround time (in milliseconds).

However, the average turnaround time alone is not

sufficient to measure the performance, especially in the context

of the time sensitive applications. Most of the time, if the user

demands are not satisfied within the given time constraints, it

is as bad as service denied. Hence, we also find out the

percentage of user demands which got satisfied in the given

time constraints (Fig. 9). We observe that a significantly higher

percent of the user demands got satisfied with the FWS

approach. The total percentage varies from 100% to 96% as

user demands vary from 100 to 5000. On the contrary the

percentage drops to 70% for LFFF, 62% for LFDT & MFFF

and 74% for MFDT.

We have also analyzed the effect of traffic loads on

average turnaround time or average time to schedule all the

services. We observe exponential growth in the total

turnaround delays as traffic loads in the network grow. We

generated dummy traffic to obtain different average traffic

loads. The links were modeled as M/D/1 queues, and by the

standard formula, we calculate the delays in the links as given

in Equation (1) below [23]. We note that Τij is the total delay

on the link (i, j). λij is the arrival rate of packets and μij is the

processing rate of the same link. 𝛵𝑖𝑗 =
1

2𝜇𝑖𝑗
 ×

2−(𝜆𝑖𝑗/𝜇𝑖𝑗)

1−(𝜆𝑖𝑗/𝜇𝑖𝑗)
 (1)

Fig. 9. Percentage of user demands satisfied.

In Fig. 10 we observe that even at 90% traffic load the total

delays with the proposed FWS scheme still remain within the

range of 250 ms which is proposed to be acceptable within the

limits for the contemporary real-time applications [24], while

for other schemes, it varies from 400 to more than 600 ms.

Fig. 10. Average turnaround time.

VI. Concluding Remarks and Future Work

In this paper, we have proposed a novel FWS approach for

micro-service scheduling in the multi-cloud scenario to form

optimal SFCs. We take into account different delay and cost

related SLAs. Also, we consider link loads and network delays

while minimizing the total turnaround time and total traffic

generated. The proposed approach demonstrates significant

improvement compared to standard biased greedy approaches.

However, there is still a wide area open for the research in

developing novel scheduling algorithms, such as proactive

scheduling, to produce better results.

Acknowledgement
This publication was made possible by the NPRP award

[NPRP 6-901-2-370] from the Qatar National Research Fund

(a member of The Qatar Foundation) and Huawei

Technologies. The statements made herein are solely the

responsibility of the author[s].

References
[1] L. Sorensen and K. E. Skouby, “User Scenarios 2020 - a worldwide

wireless future report,” WWRF, July 2009.

[2] M. Daniele, et al., “Internet of things: Vision, applications and research

challenges,” Ad Hoc Networks 10.7, 2012, pp. 1497-1516.

[3] Q. Zhang, L. Cheng, R. Boutaba, “Cloud computing: state-of-the-art and
research challenges." Journal of Internet services and applications 1.1,

2010, pp. 7-18.

[4] European Telecommunications Standards Institute (ETSI), “Network

Functions Virtualisation,” NFV white paper, October 2014,
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.

pdf

[5] K. Indrasiri, “Microservices in Practice: From Architecture to

Deployment,” [Online] Available:
https://dzone.com/articles/microservices-in-practice-1

[6] D. Namiot, S. Manfred, “On micro-services architecture,” International
Journal of Open Information Technologies, 2014.

[7] M. Boucadair, Ed. “Service Function Chaining (SFC) Control Plane
Components & Requirements,” Internet-Draft, draft-ietf-sfc-control-

plane-07, August 2016, 29 pp.

[8] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, A. Erbad, “Multi-Cloud
Distribution of Virtual Functions and Dynamic Service Deployment:

OpenADN Perspective,” 2015 IEEE International Conference on Cloud

Engineering, Tempe, AZ, March 9-13, 2015, pp. 299-304.

[9] Y. Kwok, I. Ahmad, “Static scheduling algorithms for allocating directed

task graphs to multiprocessors,” ACM Computing Surveys (CSUR),
1999, pp. 406-471.

[10] S. Mehraghdam, M. Keller, H. Karl, “Specifying and Placing Chains of
Virtual Network Functions,” IEEE 3rd International Conference on

Cloud Networking, CloudNet 2014, pp. 7-13.

[11] R. Ruiz, T. Stützle. "A simple and effective iterated greedy algorithm for

the permutation flowshop scheduling problem." European Journal of
Operational Research, 2007, pp. 2033-2049.

[12] M. Luizelli, L. Bays, L. Buriol M. Barcellos, L. Gaspary, “Piecing
Together the NFV Provisioning Puzzle: Efficient Placement and

Chaining of Virtual Network Functions,” International Federation for
Information Processing (IFIP), 2015, pp. 98-106.

[13] D. Bhamare, R. Jain, M. Samaka, A. Erbad, "A Survey on Service
Function Chaining." Journal of Network and Computer Applications,

2016, pp. 138-155.

[14] F. Riera et al., “Virtual network function scheduling: Concept and
challenges,” International Conference on Smart Communications in
Network Technologies (SaCoNeT) 2014, pp. 1-5.

[15] M. Yoshida, et al., “MORSA: A multi-objective resource scheduling
algorithm for NFV infrastructure." 16th Asia-Pacific Network Operations

and Management Symposium (APNOMS), 2014, pp. 1-6.

[16] R. Mijumbi, et al., “Design and evaluation of algorithms for mapping and
scheduling of virtual network functions,” 1st IEEE Conference on
Network Softwarization (NetSoft), 2015, pp. 1-9.

[17] F. Riera et al., “On the complex scheduling formulation of virtual
network functions over optical networks,” 16th International Conference

on Transparent Optical Networks (ICTON), 2014, pp. 1-5.

[18] F. Lopez-Pires and B. Baran, “Virtual machine placement literature
review,” Polytechnic School, National University of Asuncion, Tech.
Rep., 2015.

[19] L. Francesco, et al., “Introducing network-aware scheduling capabilities
in OpenStack,” 1st IEEE Conference on Network Softwarization

(NetSoft), 2015, pp. 1-5.

[20] M. Xia, et al., “Network function placement for NFV chaining in
packet/optical datacenters,” Journal of Lightwave Technology 33.8,
2015, pp. 1565-1570.

[21] J. Lakkakorpi, A. Sayenko, J. Moilanen, “Comparison of Different
Scheduling Algorithms for WiMAX Base Station,” IEEE Wireless

Communications and Networking Conference (WCNC), 2008, pp. 1991-

1996.

[22] EC2Instances.info, “Easy Amazon EC2 Instance Comparison.” [Online].
Available: http://www.ec2instances.info/

[23] R. Jain, “The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and

Modeling,” Wiley- Interscience, New York, NY, April 1991.

[24] ITU-T Recommendation Y.1541, “Network performance objectives for
IP-based services,” 2011.

