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Abstract

In this paper we give a general definition of weighted
fairness and discuss how a pricing policy can be mapped to
general weighted (GW) fairness. The GW fairness can be
achieved by calculating theExcessFairshare (weighted
fairshare of the left over bandwidth) for each VC. We show
how a switch algorithm can be modified to support the GW
fairness by using theExcessFairshare term. We use ER-
ICA+ as an example switch algorithm and show how it can
be modified to achieve the general fairness. Simulations re-
sults are presented to demonstrate that, the modified switch
algorithm achieves GW fairness. An analytical proof for
convergence of the modified ERICA+ algorithm is given in
the appendix.

1. Introduction

To guarantee a minimum amount of service the user can
specify a MCR (minimum cell rate) in ATM ABR (available
bit rate) service. The ABR service guarantees that the ACR
(allowed cell rate) is never less than MCR. When MCR is
zero for all sources, the available bandwidth can be allo-
cated equally among the competing sources. This alloca-
tion achieves max-min fairness. When MCRs are non-zero,
ATM Forum TM 4.0 specification [12] recommends, other
definitions of fairness that allocate the excess bandwidth
(which is available ABR capacity less the sum of MCRs)
equally among sources, or proportional to MCRs. In this
paper, we give a different definition of sharing the excess
bandwidth using predetermined weighted than one recom-
mended in [12]. It can also be easily shown that our defi-
nition achieves all the recommended fairness definitions of
[12] when appropriate weight functions are used. In the real
world, the users prefer to get a service which reflects the
amount they are paying. The pricing policy requirements

can be realized by mapping appropriately the weights asso-
ciated with the sources.

The specification of the ABR feedback control algorithm
(switch algorithm) is not yet standardized. The earliest al-
gorithms used binary feedback techniques [22]. Distributed
algorithms [10] that emulated a centralized algorithm were
proposed in [5, 17]. Improved, simpler distributed algo-
rithms which achieved max-min fairness were proposed in
[13, 4, 9, 15, 18, 11]. Recently, [20, 2] discussed a gener-
alized definition of max-min fairness and its distributed im-
plementation. [19] discussed a weight-based max-min fair-
ness policy and its implementation in ABR service. [7, 21]
discussed the fairness in the presence of MCR guarantees.

In this paper we generalize the definition of the fair-
ness, by allocating the excess bandwidth proportional to
weights associated with each source. We show how a switch
schemes can support non-zero MCRs and achieve the GW
fairness. As an example, we show how the ERICA+ switch
scheme can be modified to support GW fairness.

The modified scheme is tested using simulations with
various network configurations. The simulations test the
performance of the modified algorithm, with different
weights, using simple configuration, transient source con-
figuration, link bottleneck configuration, and source bot-
tlenecked configuration. These simulations show that the
scheme realizes various fairness definitions in ATM TM 4.0
specification, that are special cases of the generalized fair-
ness. We present an analytical proof of convergence for the
modified algorithm in the appendix.

2. General weighted fairness: definition

The following is the definition of some parameters:

Al = Total available bandwidth for all ABR connections on
a given linkl.
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Ab = Sum of bandwidth of under-loaded connections that
are bottlenecked elsewhere.

A = Al � Ab, excess bandwidth, to be shared by connec-
tions bottlenecked on this link.

Na = Number of active connections

Nb= Number of active connections bottlenecked elsewhere.

n = Na � Nb, number of active connections bottlenecked
on this link.

�i = MCR of connectioni.

� =
Pn

i=1 �i Sum of MCRs of active connections bottle-
necked at this link.

wi = preassigned weight associated with the connectioni.

gi = GW fair Allocation for connectioni.

The general weighted fair allocation is defined as fol-
lows:

gi = �i +
wi(A� �)Pn

j=1 wj

Note that this definition of fairness is different from the
weighted allocation given as an example fairness criterion
in ATM TM 4.0 specifications. In the above definition, only
the excess bandwidth is allocated proportional to weights.
This above definition ensures the allocation is at least MCR.

3. Relationship to pricing/charging policies

Consider a very small intervalT of time. The costC
to the customer for using a network during this interval is
a function of the number of bitsW that the network trans-
ported successfully:C = f(W;R), where,R = W=T is
the average rate.

It is reasonable to assume thatf() is a non-decreasing
function of W . That is, those sending more bits do not
pay less. The functionf() should also be a non-increasing
function of timeT or equivalently a non-decreasing func-
tion of rateR. For economy of scale, it is important that the
cost per bit does not increase as the number of bits goes up.
That is,C=W is a non-decreasing function ofW . Mathe-
matically, we have three requirements: a)@C=@W � 0 b)
@C=@R � 0 c) @(C=W )=@W � 0.

One simple function that satisfies all these requirements
is: C = c + wW + rR. Here,c is the fixed cost per con-
nection;w is the cost per bit; andr is the cost per Mbps. In
general,c, w, andr can take any non-negative value.

In the presence of MCR, the above discussion can be
generalized to:C = f(W;R;M) where,M is the MCR.
All arguments given above forR apply toM also except

that the customers requesting largerM possibly pay more.
One possible function is:C = c+wW+rR+mM , where,
m is dollars per Mbps of MCR. In effect, the customer pays
r+m dollars per Mbps up toM and then pays onlyr dollars
per Mbps for all the extra bandwidth he/she gets over and
aboveM .

Consider two users with MCRsM1 andM2. Suppose
their allocated rates areR1 andR2 and, thus, they transmit
W1 andW2 bits, respectively. Their costs are:C1 = c +
wW1 + rR1 +mM1 andC2 = c+ wW2 + rR2 +mM2

Cost per bit (C=W ) should be a decreasing function of
bitsW . Thus, ifW1 �W2:

C1=W1 � C2=W2 ! c=W1 + w + rR1=W1 +
mM1=W1 � c=W2 + w + rR2=W2 +mM2=W2

SinceRi = Wi=T , we have:
c=(R1T ) + w + r=T + mM1=(R1T ) � c=(R2T ) +

w + r=T +mM2=(R2T )! c=R1 +mM1=R1 � c=R2 +
mM2=R2 ! (c +mM1)=(c +mM2) � R1=R2 ! (a +
M1)=(a+M2) � R1=R2

Wherea (=c=m) is the ratio of the fixed cost and cost per
unit of MCR. Note that the allocated rates should either be
proportional toa+MCR or be a non-decreasing function of
MCR. This is the weight policy we have chosen to use in
our simulations.

4. General weighted fair allocation problem

In this section we give the formal specification of the
general weighted fair allocation problem, and give a moti-
vation for the need of a distributed algorithm.

The following additional notation is necessary:

L = Set of links,Ls set of links that sessions goes through.

S = Set of sessions,Sl set of sessions that go through link
l. N =j S j.

A = (Al; l 2 L) set of of available capacity.

M = (�s; s 2 S), where�s is the minimum cell rate (MCR)
for sessions.

W = (w1; w2; : : : ; wN ) denotes the weight vector.

R = (r1; r2; : : : ; rN ) the current allocation vector (or rate
vector).

G = (g1; g2; : : : ; gN ) the general fair allocation.GSl de-
notes the set of allocations of sessions going over link
l

Definition 1 General Weighted Fair Allocation Problem
The GW fair problem is to find the rate vector equal to

the GW fair allocation, i.e.,R = G. Wheregi 2 GSl is
calculated for each linkl as defined in the section 2.



Note the 5-tuple(S;L; C;W ;R) represents an instant of
the bandwidth sharing problem. When all weights are equal
the allocation is equivalent to the general max-min fair allo-
cation as defined in [20, 2]. A simple centralized algorithm
for solving the above problem would be to first, find the cor-
rect allocation vector for the bottleneck links. Then, solve
the same problem of smaller size after deleting bottleneck
links. A similar kind of centralized, recursive algorithm is
discussed in [20]. Centralized algorithm implies that all in-
formation is known at each switch, which is not feasible,
hence a distributed algorithm is necessary.

5. Achieving general fairness

A typical ABR switch scheme calculates the excess
bandwidth capacity available for best effort ABR after
reserving bandwidth, for providing MCR guarantee and
higher priority classes such as VBR and CBR. The switch
fairly divides the excess bandwidth among the connec-
tions bottlenecked at that link. Therefore, the ACR can
be represented by the following equation:ACR(i) =
�i + ExcessFairshare(i), whereExcessFairshare is
the amount of bandwidth allocated over the MCR in a fair
manner.

In the case of GW fairness, theExcessFairshare term
is given by:

ExcessFairshare(i) =
wi(A� �)Pn

j=1 wj

If the network is near steady state (input rate = available ca-
pacity), then the above allocation enables the sources to at-
tain the GW fairness. The ATM TM 4.0 specification men-
tions that the value of(ACR �MCR) can be used in the
switch algorithms, we use this term to achieve GW fairness.
We have to ensure the(ACR � MCR) converges to the
ExcessFairshare. We use the notion ofactivity levelto
achieve the convergence [16]. A connection’sactivity level
(AL(i)) is defined as follows.

AL(i) = minimum

�
1;

SourceRate(i)� �i
ExcessFairshare(i)

�

transmitting data. Note that,SourceRate(i) is theACR(i)
given as the feedback rate earlier by the switch. The activ-
ity level indicates how much of theExcessFairshare is
actually being used by the connection. The activity level at-
tains the value of one when theExcessFairshare is used
by the connection. It is interesting to note that using activity
level for calculating is similar to the Charny’s [1]consistent
markingtechnique, where switch marks connections which
have lower rate than theiradvertised rate. The new adver-
tised rate is calculated using the equation:

Advertised Rate=
Al �

P
Rates of marked connections

j Sl j �
P

Marked connections

The activity level inherently captures the notion of mark-
ing, i.e., when a source is bottlenecked elsewhere, then ac-
tivity level times the fairshare (based on available left over
capacity) is the actual fairshare of the bottleneck source.
The computation of activity level can be done locally and
is anO(1) operation, compared toO(n) computations re-
quired in consistent marking [1].

We expect that the links use theirExcessFairshare,
but this might not be case. By multiplying the weights by
the activity level, and using these as the weights in calcu-
lating theExcessFairshare we can make sure that the
rates converge to the GW fairness allocation. Therefore,
theExcessFairshare share term is defined as:

ExcessFairshare(i) =
wiAL(i)(A� �)Pn

j=1 wjAL(j)

A switch algorithm can use the above
ExcessFairshare term to achieve general fairness.
In the next section we show how the ERICA+ switching
algorithm is modified to achieve GW fairness.

6. Example modifications to a switch algorithm

The ERICA+ algorithm operates at each output port of a
switch. The switch periodically monitors the load on each
link and determines a load factor (z), the available ABR
capacity, and number of currently active sources or VCs.
The measurement period is the “Averaging Interval”. These
measurements are used to calculate the feedback rate which
is indicated in the BRM (backward RM) cells. The mea-
surements are done in the forward direction and the feed-
back is given in the backward direction. The complete de-
scription of the ERICA+ algorithm can be obtained from
[13].

The ERICA+ algorithm uses the termFairSharewhich
is the bottleneck link capacity divided by the active number
of VCs. It also uses aMaxAllocPrevious term, which is
the maximum allocation in the previous “Averaging Inter-
val”. This term is used to achieve max-min fairness. We
modify the algorithm by replacing theFairShare term by
ExcessFairshare(i) and adding the�i. The keys steps in
ERICA+ which are modified to achieve the GW fairness are
shown below:
Algorithm A
At the end of Averaging Interval:

Total ABR Cap  Link Cap� VBR Cap

�

nX
i=0

min(SourceRate(i); �i)



Target ABR Cap  Fraction� Total ABR Cap

Input Rate  ABR Input Rate

�

nX
i=0

min(SourceRate(i); �i)

z  
Input Rate

Target ABR Cap

ExcessFairshare(i) 
(Target ABR Cap)wiAL(i)Pn

j=1 wjAL(j)

TheFraction term is dependent on the queue length [3].
Its value is one for small queue lengths and drops sharply
as queue length increases. When theFraction is less than
one,(1�Fraction)�TotalABRCap is used to drain the
queues. ERICA+ uses an hyperbolic function for calculat-
ing value of theFraction.

When a BRM is received:

VCShare  
SourceRate(i)� �i

z
ER  �i + max(ExcessFairshare(i),VCShare)

ERRM Cell  Min(ERRM Cell,ER,Target ABR Cap)

The V CShare is used to achieve an unit overload.
When the network reaches steady state theV CShare term
converges toExcessFairshare(i), achieving generalized
fairness criterion. The complexity of the computations done
at the switching interval isO(numberofV Cs). The update
operation when the BRM cell arrives is anO(1) operation.
Proof of convergence of algorithm A, is given in the ap-
pendix.

7. Simulation configurations

We use different configurations to test the performance
of the modified algorithm. We assume that the sources are
greedy, i.e., they have infinite amount of data to send, and
always send data at ACR. Poisson or self-similar sources
were not used, since in the presence of these sources (which
have varying rates) the GW fair allocation varies dynami-
cally. In all configurations the data traffic is unidirectional,
from source to destination. If bidirectional traffic is used,
similar results will be achieved, except that the convergence
time will be larger since the RM cells in the backward direc-
tion will travel along with the data traffic from destination
to source. All the link bandwidths are 149.76 (155.52 less
the SONET overhead), expect in the GFC-2 configuration.

7.1. Three sources

This is a simple configuration in which three sources
send data to three destinations over a two switches and a
bottleneck link. See figure 1.

Destination 2

Source 1

Source 2 Switch 1 Switch 2

Bottleneck
   Link

Destination 1

Source 3 Destination 3

Figure 1. N Sources - N Destinations Config-
uration

7.2. Source bottleneck

In this configuration, the source S1, is bottlenecked at 10
Mbps, which is below its fairshare (50 Mbps). This con-
figuration tests whether the GW fairness can be achieved in
the presence of source bottleneck.

            

Figure 2. 3 Sources - Bottleneck Configura-
tion

7.3. Generic fairness configuration - 2 (GFC-2)

This configuration (explained detailedly in [14]) is a
combination of upstream and parking lot configuration (See
Figure 3). In the configuration all the links are bottlenecked
links.

            

Figure 3. Generic Fairness Configuration - 2



Table 1. Simulation Parameter Values
Configuration Link Averaging Target

Name Distance interval Delay
Three Sources 1000 Km 5 ms 1.5 ms

Source Bottleneck 1000 Km 5 ms 1.5 ms
GFC-2 1000 Km 15 ms 1.5 ms

Table 2. Three sources configuration simula-
tion results

Expected
Case Src mcr a wt fair Actual

# # func. share share
1 1 0 1 1 49.92 49.92

2 0 1 1 49.92 49.92
3 0 1 1 49.92 49.92

2 1 10 1 1 29.92 29.92
2 30 1 1 49.92 49.92
3 50 1 1 69.92 69.92

3 1 10 5 15 18.53 16.64
2 30 5 35 49.92 49.92
3 50 5 55 81.30 81.30

7.4. Simulation parameters

The simulations were done on an extensively modified
version of NIST simulator [6]. The parameter values used
in the different configurations are given in Table 1. The “Av-
eraging Interval” is the period for which the switch monitors
various parameters. Feedback is given based on these mon-
itored values. The ERICA+ algorithm uses dynamic queue
control to vary the available ABR capacity dependent on
queue size. At steady state the queue length remains con-
stant. The “Target Delay” parameter specifies the desired
delay due to this constant queue length at steady state.

8. Simulation results

In this section we give the simulation results for the dif-
ferent configurations.

8.1. Three sources

Simulations using a number of weight functions were
done using the simple three sources configuration to demon-
strate that general fairness is achieved in all these cases.
The ICRs (initial cell rate) of the sources were set to the
(50,40,55) Mbps in all the simulations.

The allocations of these cases are given in Table 2. The
following can be observed from the Table 2

� Case 1: a =1, MCRs = 0. All weights are equal so
the allocation (149.76/3) = 49.92 Mbps for each con-
nection. This is allocation is the same as max-min fair
allocation.

� Case 2: a =1, MCRs 6= 0. The left over capac-
ity 149.76 - (10 + 30 + 50) = 59.76 Mbps is di-
vided equally among the three sources. So the al-
location is (10 + 19.92, 30 + 19.92, 50 + 19.92) =
(29.92,39.92,69.92) Mbps.

� Case 3: a = 5, MCRs6= 1. Hence, the weight function
is 5 + MCR. The left over capacity, 59.76 Mbps, is di-
vided proportional to (15,35,55). Hence the allocation
is (10 + 15/105� 59.76, 30 + 35/105� 59.76, 50 +
55/105� 59.76) = (16.64, 49.92, 83.2) Mbps.

The Figure 2 shows the ACRs of the three sources for
the above three cases. From the figure one can observe that
the sources achieve the GW fairness. Steady state queues
were of constant length.

8.2. Three sources: transient

In these simulations the same simple three source con-
figuration is used. Source 1 and source 3 transmit data
throughout the simulation period. Source 2 is a transient
source, which starts transmitting at 400 ms and stops at 800
ms. The total simulation time is 1200 ms. Same parameters
values from the cases 1, 2 and 3 of the previous section were
used in these simulations. The results of these simulations
are given in Table 3. The non-transient (ntr) column give
the allocation when transient source 2 is not present, i.e.,
between 0ms to 400ms and between 800 ms to 1200 ms.
The transient (tr) columns give allocation when the transient
source 2 is present, i.e., between 400 ms to 800 ms.

The ACR values of the sources for these three simula-
tions are shown in figure 5. It can be seen both from the
Table 3 and the graphs that the switch algorithm does con-
verge to the general fairness allocation even in the presence
of transient sources. We observed that the algorithm had a
good response time from the utilization graph (not shown
here due to lack of space).

8.3. Source bottleneck

Cases 1, 2 and 3 of section 8.1 were simulated using the
three sources bottleneck configuration. The total simula-
tion time was 800 ms. In these simulations the source S1
is bottlenecked at 10 Mbps for first 400 ms, i.e., it always
transmits data at rate of at most 10 Mbps, irrespective of its
ACR (and ICR).



0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1] 
ACR of abr[2] 
ACR of abr[3] 

(a) Case 1

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1] 
ACR of abr[2] 
ACR of abr[3] 

(b) Case 2

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1] 
ACR of abr[2] 
ACR of abr[3] 

(c) Case 3

Figure 4. Three Sources: ACR graphs
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Figure 5. Three Sources (Transient) : ACR graphs
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Figure 6. Three Sources Bottleneck: ACR graphs (with and without measuring Source Rate)



Table 3. Three sources transient configura-
tion simulation results

Exp Actual Exp Actual
Src wt. frshr (ntr) frshr (tr)

# # func. (ntr) share (tr) share
1 1 1 74.88 74.83 49.92 49.92

2 1 NC NC 49.92 49.92
3 1 74.88 74.83 49.92 49.92

2 1 1 54.88 54.88 29.92 29.83
2 1 NC NC 49.92 49.92
3 1 94.88 95.81 69.92 70.93

3 1 15 29.92 29.23 18.53 18.53
2 35 NC NC 49.92 49.92
3 55 119.84 120.71 81.30 81.94

nt - non-transient period, tr - transient - NC - not converged

The initial ICRs were set to 50, 30, 110 Mbps. The load
on the bottleneck link is near unity. If the switch algorithm
uses the CCR (current cell rate) value indicated in the RM
cell as the source rate the switch cannot estimate the cor-
rect value of source rate of the bottleneck source. But if
the switch uses measured source rate then it can correctly
estimate the bottlenecked source’s rate. Table 4 shows the
results both when the switch uses the CCR field and when
it measures the source rate. The correct fairness is achieved
when the measured source rates are used.

The graphs for these simulations are given in Figure 6.
Graphs in Figure 6 (a), (b) and (c) correspond to cases 1, 2
and 3 without using measured source rates. Graphs in Fig-
ure 6 (c), (d) and (e) are for the same cases using measured
source rates. The switch algorithm uses queue control, to
dynamically use part of available ABR capacity to drain the
queues. When the queue is large the available ABR capacity
is only a fraction of actual capacity. So, the algorithm takes
sometime before converging to the correct fairness values.
When the CCR value from the RM cells is used, the algo-
rithm is not able to estimate the actual rate at which the
source is sending data. So it does not converge in case 2
and case 3 (Figures 6(b) and 6(c)). In case 1 (Figure 6(a), it
converged since the bottleneck source’s rate (CCR) had the
correct value of 50 which is the same allocation it would get
in the fair allocation.

8.4. Link bottleneck: GFC-2

In this configuration each link is a bottleneck link. The
Figure 7 (a) shows the ACR graphs for each type of VCs.
The expected share for VCs of type A, B, C, D, E, F, G,
H are 10, 5, 35, 35, 35, 10, 5, and 52.5 Mbps respectively.
The actual allocation for these VCs in the simulation was
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Figure 7. GFC-2 configuration: ACRs of A
through H, VCs

9.85, 4.97, 35.56, 35.71, 35.34, 10.75, 5, and 51.95 Mbps
respectively. From the Figure and actual allocations it can
be seen that the VCs converge to their expected fairshare.
This shows that the algorithm works in the presence of mul-
tiple link bottlenecks and varying round trip times.

Table 4. Three sources bottleneck configura-
tion simulation results

Exp Using Using
Case Src wt. frshr CCR Measured

# # func. in RM cell CCR
1 1 1 49.92 49.85 49.92

2 1 49.92 49.92 49.92
3 1 49.92 49.92 49.92

2 1 1 29.92 NC 29.62
2 1 49.92 NC 49.60
3 1 69.92 NC 71.03

3 1 15 18.53 NC 18.42
2 35 49.92 NC 49.92
3 35 81.30 NC 81.93

NC - not converged

9. Conclusion

In this paper, we have given a general definition of fair-
ness, which inherently provides MCR guarantee and di-
vides the excess bandwidth proportional to predetermined
weights. Different fairness criterion such as max-min fair-
ness, MCR plus equal share, proportional MCR can be re-
alized as special cases of this general fairness. We showed
how to realize a typical pricing policy by using appropriate
weight function. The general fairness can be achieved by



using theExcessFairshare term in the switch algorithms.
The weights are multiplied by the activity level when calcu-
lating theExcessFairshare to reflect the actual usage of
the source.

We have shown how ERICA+ switch algorithm can be
modified to achieve this general fairness. The proof of con-
vergence of algorithm A is given in the appendix. The mod-
ified algorithm has been tested under different configuration
using persistent sources. The simulations results show that
the modified algorithm achieves the general fairness in all
configurations. In addition, the results show that the algo-
rithm converges in the presence of both source and link bot-
tleneck and is quick to respond in the presence of transient
sources. In source bottlenecked configuration the value of
the CCR (source rate) from the RM cells maybe incorrect.
Hence, it is necessary to used the measured source rate in
the presence of source bottlenecks.
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Appendix: proof of convergence

We make the following assumptions:

� Synchronous update of source rates

� Queue control function is a constant function

� Infinite (greedy) sources, which always have data to
send. Though there might be source or link bottleneck
present.

� If a source bottleneck is present, it does not change it
bottleneck rate during convergence.

�
P

s2Sl
�i � Al

� Load factorz > 0 andER < Al < LinkRate

Lemma 1 The Algorithm A converges to the GW fair allo-
cation, for a session bottlenecked by a link.



Proof: The proof technique used here is similar to the one
used in [13]. Letlb be the link which is bottlenecked. With-
out loss of generality assume that firstk sessions through
the link lb are bottlenecked (either link bottlenecked or
source bottlenecked) elsewhere. Letn =j Slb j �k. Let
rb1; rb2; : : : ; rbk be the bottleneck rates andr1; r2; : : : ; rn
be the rates of non-bottlenecked (under-loaded) sources.
LetAb =

Pk
i=1 rbi be total capacity of bottlenecked links.

These non-bottlenecked sources are bottlenecked at the cur-
rent link lb. According to the GW fairness definition, fair
allocation ratesgi is given by:gi = �i +

wi(Al�Ab)P
n

j=1
wj

Assume that the bottlenecks elsewhere have been
achieved, therefore the ratesrb1; rb2; : : : ; rbk are stable. For
simplicity, assume that the MCRs of these sources are zero.
Proof for the bottlenecks having non-zero MCRs is a simple
extension.

We show that rates allocated at this switch converges
to rb1; rb2; : : : ; rbk andg1; g2; : : : ; gn and load factor con-
verges toz = 1.

Case 1:Load factorz < 1. Here the link is under-loaded,
hence due to the VCShare termSourceRate(i) � �i=z,
all the rates increase. Ifn = 0, i.e. all the sessions
across this link are bottlenecked elsewhere, there are no
non-bottlenecked sources, the GW fair allocation is trivially
achieved. Assume thatn � 1, now because of the VCShare
term (in step for calculatingERin Algorithm A), the rates of
non-bottlenecked sources increase. This continues till load
factor reaches a value greater than or equal to one. Hence
we have shown that if load factor is less than one, the rates
increase till the load factor becomes greater than one.

Case 2: Load factorz > 1. In this case if the link is not
getting itsExcessFairshare then, its rate increases, which
might further increasez. This continues till all the sessions
achieve at least theirExcessFairshare. At this point the
allocation rates are decreased proportional to1=z due to the
first term. As in the previous case thez decreases, till it
reaches a value of 1 or less.

From the above two cases it can be seen that load factor
oscillates around one and converges to the value of one. As-
sume that load factor isz = 1 + �, then the number round
trip times for it to converge to one is given bylog1+� j Sl j.
Henceforth, in our analysis we assume that the network is
near the steady state that is load factor is near one. This im-
plies that

Pk
i=1 rbi+

Pn
i=1 ri = Al !

Pn
i=1 ri = Al�Ab

Let Am =
Pn

i=1 �i be the total allocation for MCRs of
the non-bottlenecked sources. Define�i = ri��i, then we
have:

Pn
i=1 �i = Al � Ab � Am = A. We have to show

that:�i = wiAP
n

j=1
wj

Case A:n = 0, i.e., there are no bottleneck sources. From
the step for calculatingER in Algorithm A, we have:�i =
max(ExcessFairshare(i); �i=z)

We observe that this equation behaves like a differen-
tial equation in multiple variables [8]. The behavior is like
that of successive values of root acquired in the Newton-
Ralphson method for finding roots of a equation. Hence
the above equation converges, and the stable values of�i is
given by:

�i = ExcessFairshare(i) = wiAL(i)AP
n

j=1
wjAL(i)

Since, we have assumed greedy sources and no bottle-
necks in this case, the activity level is one for all sessions.
Hence,�i = wiAP

n

j=1
wj

, which is indeed the desired value

for �i.
Case B:B 6= 0, i.e., there are some bottleneck sources.
Let �i be the allocated rate corresponding torbi . Let wbi
be the weight for sessionsbi . LetWb =

PK
i=1 wbiAL(bi)

andW =
Pn

i=1 wi. We know that the equation for the rate
allocation behaves as a stabilizing differential equation. In
the steady state all the above terms such asW ,Wb and rates
stabilize. For sources bottlenecked elsewhere link the algo-
rithm calculates a rate�i which is greater thanrbi , other-
wise the bottlenecked session would be bottlenecked at the
current link. For non-bottlenecked source the rate at steady
state is given by:�i =

wi(Al�Am)
Wb+W

Since the link has an overload of one at steady state
we have

Pn
i=1 �i = Al � Am � Ab, which implies thatP

n

i=1
wi(Al�Am)

Wb+W
= Al �Am �Ab !Wb =

WAb

Al�Am�Ab

Using the above value forWb we get:

�i =
wi(Al �Am)
WAb

Al�Am�Ab
+W

Therefore,�i = wi(Al�Am�Ab)
W

which is the desired
values for the�i. Hence, the sessions bottlenecked at the
link lb do indeed achieve the GW fairness. 2

Theorem 1 Starting at any arbitrary state of the network,
if only greedy sources and source bottlenecked or link bot-
tlenecked sources are present the Algorithm A converges to
GW fair allocation.

Proof: The convergence of the distributed algorithm simi-
lar to the centralized algorithm. Assume that the centralized
algorithm converges inM iterations. At each iteration there
are set of linksLi which are bottlenecked at the current it-
eration.[Mi=1Li = L.

Using lemma 1, we know that each linkl 2 Li does
indeed converge to the general fair allocationGl. The dis-
tributed algorithm converges in the above order of links un-
til the whole network is stable and allocation isG. The
number of round trips taken to converge is bounded by
M � O(logS), since each link takesO(logSl) round trips
for convergence. 2


