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Abstract: Industrial Control System (ICS) is a general 
term that includes supervisory control & data acquisition 
(SCADA) systems, distributed control systems (DCS), and 
other control system configurations such as programmable 
logic controllers (PLC). ICSs are often found in the 
industrial sectors and critical infrastructures, such as 
nuclear and thermal plants, water treatment facilities, 
power generation, heavy industries, and distribution 
systems. Though ICSs were kept isolated from the Internet 
for so long, significant achievable business benefits are 
driving a convergence between ICSs and the Internet as 
well as information technology (IT) environments, such as 
cloud computing. As a result, ICSs have been exposed to 
the attack vectors used in the majority of cyber-attacks. 
However, ICS devices are inherently much less secure 
against such advanced attack scenarios. A compromise to 
ICS can lead to enormous physical damage and danger to 
human lives. In this work, we have a close look at the shift 
of the ICS from stand-alone systems to cloud-based 
environments. Then we discuss the major works, from 
industry and academia towards the development of the 
secure ICSs, especially applicability of the machine 
learning techniques for the ICS cyber-security. The work 
may help to address the challenges of securing industrial 
processes, particularly while migrating them to the cloud 
environments. 

Keywords — Industrial control system, cloud computing, 
cybersecurity, machine learning, intrusion detection 
system. 

I. INTRODUCTION 
Industrial control systems (ICSs) are often found in 
the industrial sectors and critical infrastructures, 
such as nuclear and thermal plants, water treatment 
facilities, power generation, heavy industries, and 
distribution systems. Formally, ICS is a term that 
covers numerous control systems, including 
supervisory control and data acquisition (SCADA) 
systems, distributed control systems (DCS), and 
other control system configurations such as 
programmable logic controllers (PLC). An ICS is a 

combination of wireless and control components 
(e.g., electrical, mechanical, hydraulic, pneumatic), 
which achieve various industrial objectives (e.g., 
manufacturing, transportation of matter or energy). 
A typical ICS consists of numerous control loops, 
human-machine interfaces (HMIs), and remote 
diagnostics and maintenance tools built using an 
array of network protocols [1, 2]. From now on, we 
will be using the term “ICS” to represent all of its 
aforementioned components. 

SCADA systems monitor and control different 
industrial control system components by collecting 
data from and issuing commands to geographically 
remote field stations. SCADA systems and DCS are 
often networked together to operate in tandem. 
Although the industrial facility operation is 
controlled by a DCS, the DCS must communicate 
with the SCADA system to coordinate production 
output with transmission and distribution demands 
(Fig. 1). For a long time, until very recently, ICSs 
were kept disconnected from the Internet. 
Communication among remote components 
happened over private networks and some specially 
designed protocols, for example, Modbus RTU, 
Modbus TCP, or various wireless technologies such 
as Wi-Fi, Z-Wave, Zigbee, and others. Other 
protocols also exist, such as common industrial 
protocol (CIP), Actuator-sensor interface (AC-i), 
DeviceNet, Highway Addressable Remote 
Transducer Protocol (HART) protocols for end-to-
end automation. However, recently, industries are 
realizing the benefits that may be derived from the 
Internet as well as Information Technology (IT) 
environment, such as cloud computing [2]. 

Infrastructure as a service (IaaS) is a service 
offered by cloud providers, which is gaining 
significant attention recently. Industries can benefit 
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from such cloud-based services. Instances of 
SCADA systems and PLC controllers can be 
implemented as a service using the infrastructure 
provided by the clouds, through IaaS. This might 
save significant hardware and infrastructure cost for 
the industries. However, connecting ICS 
components to the cloud and the Internet exposes 
ICSs to the majority of cyber-attack scenarios. 
Moreover, ICS devices are inherently less secured 
against such advanced attacks compared to the 
traditional ICS attacks (e.g., catastrophic human 
error or insider sabotage). This is due to their 
different characteristics and thread complexity. 

 
Fig. 1. Components of an ICS. 

Examples of potential ICS-related threats 
include [61]:  

• Advanced Persistent Threats (APTs) 
• Unintended spillover of corporate network 

compromises 
• Disruption of voice & data network services 
• Coordinated physical & cyber-attack 
• Hacktivist attacks 
• Supply chain disruption or compromise 
• Distributed Denial of Service (DDOS) 
Moving towards cloud-computing for ICSs has 

several advantages, such as scalability, cost-
efficiency, flexibility. However, while moving 
towards the cloud, ICSs may get exposed to new 
threats and vulnerabilities [88], [89]. 

• ICS managers have limited security controls 
over the data. Therefore, loss of data privacy 

and opening up an easy point of illegal 
access to the assets. 

• Loss of connection with the remote 
components from the local devices or vice 
versa. Therefore, a threat of loss of data, 
delays in the production process, 
propagating error and negatively impacting 
other related sections, etc. 

• Abusing the current flaws in the local 
security controls by other remote cloud 
users. Therefore, a threat of data breach, data 
theft, data manipulation, data exploitation, 
etc. 

• Lack of security standardization for cloud-
based ICSs. All the components must follow 
the same security framework to provide 
consistency in operation. 

Existing defenses such as firewalls and VPNs 
have repeatedly proven inadequate on their own, 
especially with the increasing usage of cloud 
platforms for the ICSs. In general, data encryption 
technologies to secure data transmission over the 
network have been proposed. Various encryption 
algorithms have been adopted in the literature, such 
as Data Encryption Standards (DES), Triple DES, 
Advanced Encryption standards (AES), Blowfish, 
and others. A general scheme of the performance 
comparison for such algorithms is provided in [52]. 
Other advanced techniques such as digital signature 
have been proposed in the literature and used in 
cloud computing for additional security, which can 
be applied to the ICSs as well [53]. A significant 
amount of work has already been done in academia 
to build secure cloud-platforms for control systems. 
Secure and scalable access control for cloud 
computing has been proposed in [54]. Authors of 
[54] achieve this goal by exploiting and uniquely 
combining techniques of attribute-based encryption 
(ABE), proxy re-encryption, and lazy re-encryption. 
On the other hand, various research works have 
argued and demonstrated that data encryption alone 
is not sufficient for network security [55]. Recently 
there has been a trend in the applications of machine 
learning techniques in developing the intrusion 
detection systems (IDS) for ICS. 



In this work, we focus on securing cloud 
platforms for ICSs to detect any malice or abnormal 
behavior. In other words, we study about building a 
secure ICS and advanced intrusion detection system 
(IDS) for ICS against the cyber-attacks. It is 
imperative that first, we have a closer look at the 
cloudification of the ICSs and recent works, which 
address the cyber-security issues in the ICSs. Our 
major focus in this work has been applicability of 
the machine learning techniques for anomaly and 
intrusion detection in the ICS and SCADA systems. 
In addition, we propose a simulation testbed to 
collect the data traces for ICS operations to build 
rigorous machine learning models. 

The rest of the paper is organized as follows. In 
Section II, we critically analyze the survey work 
available in the field of ICS security. In Section III, 
we discuss the major research works in academia 
and industry on the application of cloud computing 
in ICSs, the cloud-related security issues, and the 
proposed solutions. Section IV lists the machine 
learning approaches for the cyber-security of the 
ICSs. In Section V, we present several case studies 
while in Section VI we argue for the need of a 
testbed to collect the data traces for ICS systems to 
aid building rigorous machine learning models. In 
Section VI, we also discuss future research 
directions. Finally, we conclude the paper. Table 1 
summarizes the related work critically while the list 
of acronyms used in the paper is given in Table 2 at 
the end. 

 

II. AVAILABLE SURVEYS 
In this section, we critically analyze the major 
surveys in the field of industrial control systems 
(ICSs) and their security and justify the need for 
further research. Kriaa et al. [84] have provided an 
extensive survey in the field of safety and security 
of industrial control systems. The borderline 
between these two concepts (safety and security for 
ICSs) has been clearly defined. Different approaches 
proposed in the literature for these issues are also 
categorized as either generic or non-generic. 
Cherdantseva et al. [77] review state of the art in 
cybersecurity risk assessment of Supervisory 

Control and Data Acquisition (SCADA) systems as 
well. However, both these works lack the survey of 
cloud-based approaches and machine learning 
techniques for ICS security, which is the main focus 
of research currently.  
Knowles et al. [85] have surveyed the cyber-security 
of ICSs and the risk management aspects of it. The 
related standard in this domain are discussed and 
how the current systems lack built-in security 
considerations. Sajid et al. [78] have provided a 
review focusing on the security challenges of cloud-
based ICS systems. Remarks such as additional 
challenges after cloud integration along with the 
general security shortcoming of SCADA systems 
are mentioned. However, a more in-depth security 
analysis is required, especially the applicability of 
the machine learning approaches. 

Ding et al. [86] have provided a survey on the 
developed mathematical approaches for distributed 
filtering and control of ICSs. The main focus is on 
the differential dynamic models, while a small 
section is dedicated to security controls. There is a 
need to develop model-based approaches for the 
security of these systems. Molina and Jacob [87] 
have surveyed the current techniques based on 
software-defined networking solutions for the cyber-
security of industrial settings. However, their focus 
is on the general concept of cyber-physical systems 
and not specific on ICSs. Zeng and Zhou [90] have 
studied the available approaches for intrusion 
detection systems (IDSs) deployed in ICSs. A 
taxonomy of the relevant vulnerabilities in these 
systems is also brought up. They discuss machine 
learning-based solutions along with other types of 
IDSs. However, none of the mentioned techniques 
are cloud-specific, and more detailed work 
regarding the available machine learning solutions 
for multi-cloud scenarios is required. In the next 
section we focus on the related work in the 
literature, more specific to multi-cloud deployment 
of the industrial control systems.  

III. RELATED WORK 
Moving towards the cloud-based environments 
benefits both the control system providers and the 
users significantly by reducing the cost and 



increasing the throughput. In addition, higher 
reliability and enhanced functionality will be 
achieved by embracing cloud-based approaches for 
ICSs. In addition to eliminating the expenses and 
complexities associated with the hardware layer of 
the ICS infrastructure, a cloud-based control system 
allows connectivity among the remote components 
as well as enabling the users to utilize the system 
remotely [63]. SCADA, PLC and DCS systems, 
with their reliance on proprietary network protocols 
and equipment, have long been considered immune 
to the network attacks that have emerged recently in 
the networking paradigm. However, recent studies 
prove that this assumption is not correct. 

Recently, standards such as Ethernet, TCP/IP, 
and web technologies have been compromised to 
attack the ICSs. Works presented in [2] and [40] 
demonstrate that there is a definite shift in the 
source of cyber-attacks on the ICSs. Threats 
originating from outside the organization are likely 
to have very different attack characteristics 
compared to the internal threats. Regarding the 
studies by the industry, such as IBM, attacks 
targeting the ICSs are already up by 110 percent 
[64]. Specifically, the spike in malicious ICS traffic 
was related to SCADA brute-force attacks, which 
uses automation to attack the system. Once the 
system is breached, attackers can remotely monitor 
or control the connected SCADA devices. Some 
recent notable ICS attacks include the cyber-attacks 
on the European Energy Company, New York dam 
attack, Russian cyber-attack on the Ukrainian power 
grid [64]. 

The associated costs of security breaches in real-
time industrial platforms could be very high. They 
result in the loss of sensitive data, loss of revenues, 
environmental impacts, production, and financial 
loss, and even human injury. Hence, companies and 
industries are mandated to reassess their security 
risk models and their assumptions. It has become 
imperative to have a closer look at the state of the 
art of the security options for ICSs. This helps to 
better understand the current risks associated with 
the enhancements offered by the novel cloud 
technologies and the available solutions. In this 
section, we investigate the major works in academia 

and industry on the cloud computing applications in 
ICSs as well as the cloud-related security issues and 
available solutions. Such research works might 
encourage the industries to shift from the standard 
hardware systems to cloud-based platforms to 
leverage their advantages.  

As mentioned before, there have been significant 
efforts in the industry as well as academia towards 
shifting the standard ICS system from the 
monolithic hardware to the cloud-based platforms. 
Pollet [9] has discussed the security strategies for 
SCADA in his work. The author describes specific 
threats to SCADA systems and some sample 
hacking scenarios and then ranks these threats in a 
security matrix. Igure et al. [7] highlight some major 
threats and vulnerabilities in the SCADA systems. 
The authors also provide a brief overview of some 
of the ongoing works in this field along with 
ongoing technical problems that should be 
addressed to improve the overall security of 
SCADA networks. Nicholson et al. [8] identify the 
security issues related to SCADA from the cyber-
security perspectives. Attack mitigations, standards, 
and forums related to SCADA systems are also 
discussed. 

Chandia et al. [10] propose two practical 
strategies for the security of the SCADA systems. 
The first strategy utilizes a security service suite that 
minimizes the impact on time-critical industrial 
processes while adhering to industry standards. The 
second strategy implements a sophisticated forensic 
system for collecting and analyzing the SCADA 
network traffic. Recent attacks on SCADA systems 
highlight the need for a SCADA security testbed, 
which can be used to model a real SCADA system 
and study the effects of attacks on them. Queiroz et 
al. [11] propose an architecture for a modular 
SCADA testbed and describe a tool, which mimics a 
SCADA network, monitors and controls the sensors 
and actuators using Modbus/TCP protocol. Bowen 
et al. [12] discuss the next-generation security issues 
in the SCADA systems and discuss best practices to 
avoid the attacks on the SCADA systems. 

Wang et al. [14] confirm that simulation 
experiments are a potential means of analyzing and 
assessing the security of SCADA systems. 



However, existing simulation environments have 
flexibility and extensibility limitations. In that work, 
the authors establish abstract models of a SCADA 
system based on the industry standards and propose 
a reference architecture of the SCADA simulation 
environment. Some experiments on attack scenarios 
have been conducted in the proposed simulation 
environment. Finally, they have analyzed and 
assessed the system’s security status, and the results 
to demonstrate the effectiveness and practicability 
of the simulation environment [6]. Shahzad et al. 
[15] propose cryptography-based solutions to 
protect SCADA protocols and communications. 
Attack (abnormal) scenarios have been created 
within the testbed implementation (cryptography 
testbed), and the level of security is measured and 
compared based on the attack detection level and 
attack impact level. Qin et al. [16] design a neuron 
model, which combines reasoning machine based on 
the cloud generator with the factor neural network 
theory. The authors claim that the proposed system 
demonstrates substantial flexibility, mobility, 
scalability and other features across multiple 
platforms with distributed characteristics. 

Zhang et al. [17] propose a fuzzy Petri network-
based security defense model for SACADA 
systems. The authors also demonstrate the 
effectiveness of the proposed method with their 
results. The authors in [18] propose the need to 
extend the existing power-grid security models to 
secure the distributed smart grids. Colombo et al. 
[19] discuss the cloud-based cyber-physical ICSs. 
Similarly, the authors in [20] present a testbed 
platform for the implementation of cloud computing 
in SCADA systems for electrical power systems. 
The authors demonstrate the operations of the 
traditional SCADA systems over the cloud 
computing platforms and integrate the main 
application modules of SCADA for electrical power 
metering on the cloud platforms. Different types of 
control center servers along with physical 
networking solutions of the cloud platforms are also 
visualized. Similar work has been presented in [22] 
on implementing the SCADA systems over the 
cloud platforms. These are some of the pioneering 
works demonstrating the usability and advantages of 

the cloud platforms for the ICSs. Simmhan et al. 
[21] propose a cloud-based software system for big 
data analytics in the smart grids. The authors 
highlight the feasibility and effectiveness of such 
systems.  

There are several works that investigate the 
security issues of cloud-based SCADA systems. For 
example, authors in [23] propose a secure cloud-
based platform for SCADA systems considering the 
use case of the water supply networks. The authors 
present a proof of concept for a cloud-based water 
supply network monitoring (WSNM) application, 
called RiskBuster (RB). The proposed platform 
ensures the confidentiality and integrity of the 
SCADA system while monitoring and collecting the 
data from dam sensors and storing in the cloud by 
using the innovative Intel Software Guard eXtension 
(SGX) technology. Sajid et al. [24] highlight the 
security challenges in the cloud-based SCADA 
systems. Authors also provide the existing best 
practices and recommendations for improving and 
maintaining security along with future directions to 
secure the cyber-physical systems. 

Shahzad et al. [25] have implemented a SCADA 
system within a cloud computing environment to 
minimize the costs related to real-time infrastructure 
for SCADA implementation through cloud 
computing. Cardenas et al. [62] have performed a 
risk assessment for SCADA systems and discussed 
various attack models with experiments. Authors 
have categorized the attacks in various groups and 
discussed the response schemes to such attacks. The 
authors in [26] identify the service-oriented 
architecture paradigm empowered by resource 
virtualization as a lighthouse for cloud-based ICSs. 
The proposed framework has the potential of 
empowering the seamless integration and interaction 
among the heterogeneous stakeholders in the future 
industrial automation domain. They have fulfilled 
this concept by integrating web services, Internet 
technologies, cloud systems, and the power of the 
Internet of Things. A similar security-oriented 
cloud-based SOA platform for ICSs has been 
proposed by Baker et al. in [27]. Qui and Gooi [42] 
propose a web-based SCADA display system 
through which users can view as well as control the 



operations of the sub-stations at the server sides. 
The authors in [2] identify various sources of 
possible threats to the ICSs, i.e., adversarial, 
accidental, structural, and environmental. Such 
source categorizing helps to create a risk 
management strategy that protects the system 
against possible threats. 

Recently, there has been a trend towards 
implementing machine learning techniques for 
anomaly detection and prevention in the networks 
[5]. Karnouskos et al. [28] discuss trends and 
challenges for cloud-based industrial cyber-physical 
systems. The authors identify machine learning as a 
key trend in the security implementation for the 
cloud-based ICSs. It has been shown that machine 
learning methods are indeed able to provide useful 
security information for various physical problems 
and practical contexts. Thames and Schaefer [79] 
have investigated the integration of software-defined 
networks (SDN) in ICSs. Their proposed cloud-
based workflow is called Software-Defined Cloud 
Manufacturing (SDCM). Utilizing the abstraction, 
provided through SDN architecture, provides low 
latency and efficiency in updating the security 
solutions and hardware designs. All these outcomes 
are promising in improving the manufacturing 
processes. 

There has been a great effort in identifying the 
threats and attack vectors specific to ICSs. Rubio et 
al. [80] first discuss the common threats exposed to 
industrial control systems, and then the 
corresponding potential defense mechanisms are 
highlighted. In this paper, a threat analysis specific 
to cloud-based computing in these systems has been 
conducted. Zhou et al. [81] have studied one of the 
most relevant attacks against these systems, DDoS. 
They have utilized a fog-based computation to run 
real-time traffic monitoring and low latency 
communication with the cloud center for proper 
mitigations. As per the studies in [5], authors argue 
that automatic machine learning approaches are 
more systematic, easier to handle and master, and 
therefore, more reliable and robust than the 
traditional security measures such as firewalls. 
These possibilities open up new perspectives to 
respond to the challenges of planning and operating 

future industrial systems with an acceptable level of 
security. In the next section, we will have a closer 
look at the security measures for the ICSs using 
machine learning approaches. 

IV. MACHINE LEARNING APPROACHES FOR ICS 
SECURITY 

With the discovery of the Stuxnet attack, 
increasing attention is being paid to the potential 
malware targeting the PLCs. Contemporary 
advanced malware may infer the structure of the 
physical plant and can use this information to 
construct a dynamic payload to achieve an 
adversary’s end goal, such as Stuxnet [56, 57]. To 
counter such situations, recently, there has been a 
trend towards the implementation of machine 
learning techniques for anomaly detection and 
prevention in the networks of the ICSs [58-60].  

ICSs, such as SCADA systems, have very 
regular communication patterns. Often the same 
limited set of read and write commands are repeated 
in a loop. For example, the gas pipeline system 
presented by Zhang et al. [17] repeats the same two 
commands in a loop. First, it writes the contents of 
all registers and coils used for control. Next, a 
Modbus read command is used to read the measured 
state of the system. Modbus protocol is often used in 
many ICSs, specifically SCADA systems. It 
implements a master/slave configuration in which 
the slave does not request the data. It only receives 
commands from the master. Data is transmitted over 
serial lines (Modbus RTU/ASCII) or Ethernet 
(Modbus TCP). These two commands are followed 
by a set of two responses. Such regularity leads to a 
set of commands in which all device addresses are 
constant, and each of the four packets has the same 
length. This lack of variation is expected. These 
regular patterns can be exploited by machine 
learning algorithms, which can be used to build 
models of normal behavior and detect abnormal 
deviations [1]. 

As per the studies in [5], it has been observed 
that machine learning methods are indeed able to 
provide important security information for various 
physical problems and practical contexts. Authors 
argue that automatic machine learning approaches 



are more systematic, easier to handle, and master. 
These possibilities open up new perspectives to 
respond to the challenge of planning and operating 
future industrial systems with an acceptable level of 
security. Brundle and Naedele [3] discuss the 
importance of securing the ICSs by listing the 
challenges of SCADA security. Recently, 
researchers have started studying intrusion detection 
systems using SCADA network traffic traces. With 
the advent of the novel multi-cloud networking 
paradigm, subsets of ICSs may be shifted to the 
clouds leveraging the advantages of the IaaS 
platform offered by various cloud service providers 
[63, 67]. However, security issues in such novel 
platforms need to be addressed before this major 
shift. To achieve this, more attention must be paid to 
studying machine learning applications for anomaly 
detection in multi-cloud environments. 

Contemporary IDSs use machine learning 
algorithms for pattern recognition to detect threat 
activities that are anomalous for a particular system. 
There are other IDSs, which use signature-based 
systems to compare the activities to a database of 
known threats [29-31]. These functionalities can be 
combined together for a robust detection system and 
will provide a sufficient layer of protection for 
various attack scenarios. Despite the popularity of 
the machine learning techniques, IDS researcher 
groups lack standard datasets to train and test the 
algorithms. This results in an inability to develop 
robust ML models to detect anomalies in the ICSs 
[1]. Many of the datasets, especially in the context 
of the ICSs, used by researchers do not contain all 
types of attacks, hence gauging the performance of 
the IDS is hard when all patterns of attack are not 
considered, for instance, work presented in [4]. 

The authors in [1] develop a standard dataset to 
provide third-party validation of the IDS solutions. 
The dataset created from this research was purposed 
to fill the void in this area. However, a significant 
amount of future research is still required in this 
domain. Authors in [29] propose an IDS for 
SCADA protection based on machine learning 
approaches. Specifically, the authors compare rule-
based approaches, ANN (Artificial Neural 
Networks), HMM (Hidden Markov Model) and 

SVM (Support Vector Machines). Similarly, authors 
in [30] propose an OCSVM (One-Class SVM) 
intrusion detection mechanism, which is based on 
unsupervised machine learning methods, that does 
not need any labeled data for training or any 
information about the anomaly. Dua and Du [31] 
propose data mining-based machine learning 
techniques for cybersecurity in SCADA systems. 

In [1], the authors argue that IDS researchers 
lack a common framework to train and test the 
proposed algorithms. The authors try to bridge the 
gap by documenting two approaches of data sharing 
for the IDSs of the ICS research community. In their 
work, first, a network traffic data log captured from 
a gas pipeline is presented. The log was captured in 
a laboratory and included artifacts of normal 
operation and cyber-attacks. Second, an expandable 
virtual gas pipeline is presented which includes an 
HMI, PLC, Modbus/TCP communication, and a 
Simulink based gas pipeline model. The virtual gas 
pipeline provides the ability to model the cyber-
attacks and normal behavior. In total 35 cyber-
attacks were used in the creation of the data log. 
Also, the data log contains records from 214,580 
Modbus network packets with 60,048 packets 
associated with cyber-attacks. In the data logs, each 
packet is labeled with the attack number or the label 
0 for packets associated with normal events (no 
attack) [1]. Different models using the simulation 
tools can be prepared to represent the traffic in the 
related ICSs, which can then be used to train the 
machine learning models. 

Hink et al. [33] have demonstrated the use of 
machine learning techniques for power system 
disturbance and cyber-attack discrimination. The 
authors in [32] focus on the detection of cyber-
attacks in water distribution systems using machine 
learning techniques. A simple one-class 
classification approach in the feature space is 
proposed. The tests are conducted on a real dataset 
from the primary water distribution system in 
France, and the proposed approach is compared with 
other well-known one-class approaches. Similarly, 
authors in [34] propose the use of machine learning 
techniques by considering the diagnosis of wind 
turbine faults. The authors have demonstrated the 



use of classification techniques to predict the faults 
in advance. Beaver et al. [35] compare and evaluate 
various machine learning algorithms for anomaly 
detection in SCADA communication channel. Erez 
and Wool [36] describe a novel domain-aware 
anomaly detection system that detects irregular 
changes in Modbus/TCP SCADA control register 
values. The research focuses on discovering the 
presence of three classes of registers (sensor 
registers, counter registers, and constant registers) 
using the proposed automatic classifier. 
Additionally, parameterized behavior models are 
developed for each class. 

Zhang et al. [37] propose a SCADA intrusion 
detection system based on self-learning semi-
supervised OCSVM (S2 OCSVM). The authors 
demonstrate that S2 OCSVM can improve detection 
accuracy. The authors in [38] propose anomaly 
detection in electrical substation circuits via 
unsupervised machine learning methods. The 
authors present preliminary results of characterizing 
normal, faulty, and attack states in smart distribution 
substations. However, further investigation for the 
broader applicability of the proposed methods is 
needed. The authors in [39] propose an architecture 
of an anomaly detection system based on the Hidden 
Markov Model (HMM) algorithm for intrusion 
detection in ICSs, especially in SCADA systems 
interconnected using TCP/IP.  

Table 1 summarizes the research works 
performed in the context of cloud-based industrial 
systems and approaches for the cyber-security of the 
ICSs. Besides academia, various industries have 
taken the initiative for the security of the ICSs. In 
the remainder of this section, we describe some of 
the important industry efforts in the field of 
cybersecurity for the ICSs. Cisco Systems Inc. has 
developed an open-source Linux-based firewall that 
is capable of filtering Modbus packets. The firewall 
adds Modbus functionality to Linux’s Netfilter tool 
that addresses the SCADA protocol. Authors at 
Cisco have proposed to detect malicious behavior 
based on the analysis of network proxy logs using 
weak supervision methods [47]. In another paper, 
[48], the same authors claim that weak supervision 
can be adopted on the level of properly defined bags 

of proxy logs by leveraging the Internet domain 
blacklists, security reports, and sandboxing analysis. 
The authors focus on training the detectors to 
identify the malicious URLs in the network traffic 
by using the proxy logs of HTTP requests. They 
have utilized a classification system that uses 
statistical feature representation computed from the 
network traffic and learn to recognize malicious 
behavior. 

Table 1: Summary of approaches for ICS/SCADA cyber-security 
Work Description 
Category: Implementation of Machine learning 

Algorithms, Academia 
[5]  Use of decision tree induction, 

multilayer perceptron and nearest 
neighbor classifiers for power system 
security assessment 

[62] Attack categorization and IDS for 
SCADA security. 

[31] Data mining-based machine learning 
techniques for cybersecurity 

[29] IDS using ANN, HMM and SVM 
[35] Compare and evaluate various 

machine learning algorithms for 
anomaly detection in SCADA 
communication channel 

[30] IDS using One-Class Support Vector 
Machine 

[33] Demonstrate the use of machine 
learning techniques for power system 
disturbance and cyber-attack 
discrimination 

[37] Self-learning semi-supervised one-
class Support Vector Machine (S2 
OCSVM) system for intrusion 
detection in SCADA 

[36] Domain-aware anomaly detection 
system to detect irregular changes in 
Modbus/TCP SCADA control register 
values 

[47] Weak supervision techniques on the 
network logs for network traffic 
security 

[32] Detection of cyber-attacks in water 
distribution systems using machine 
learning techniques 

[34] Use of classification machine learning 
techniques for the diagnosis of wind 
turbine faults in advance. 

[38] Anomaly detection in electrical 
substation circuits via unsupervised 
machine learning methods. 



[39] The architecture of an anomaly 
detection system based on the Hidden 
Markov Model (HMM) for intrusion 
detection in ICS 

[48] A classification system that uses the 
statistical feature based on SVM 

Category: SCADA system architecture, protocols, 
and security, Academia 

[8], [9] Identification of the security-related 
issues for SCADA from the cyber-
security perspective 

[42] A web-based SCADA display system 
is proposed through which users can 
view as well as control the operations 
of the sub-stations at the server sides 

[12] Next-generation security issues in the 
SCADA systems are discussed 

[10] Two practical strategies for the 
security of the SCADA systems 

[11] The architecture of a modular 
SCADA testbed and a tool, which 
mimics a SCADA network, monitors 
and controls real sensors and actuators 
using Modbus/TCP protocol has been 
described 

[13] The PowerCyber testbed has been 
designed to resemble power grid 
communication utilizing actual field 
devices and SCADA software 

[14] A reference architecture of SCADA 
system simulation environment 

[21] A cloud-based software system for the 
big data analytics in the smart grids 

[15] Cryptography based solutions to 
protect the SCADA protocols and 
communications 

[19] A cloud-based cyber-physical 
industrial control system 

[25] Implemented a SCADA system within 
a cloud computing environment, to 
minimize the cost that is related to 
real-time infrastructure or SCADA 
implementation 

[26] Identify the service-oriented 
architecture paradigm empowered by 
virtualization of resources as a 
lighthouse for cloud-based ICSs 

[28] Discuss trends and challenges for 
Cloud-based industrial cyber-physical 
systems.  Also, identify machine 
learning as a key trend in the security 
implementation for the cloud-based 
industrial control systems 

[27] A security-oriented cloud-based SOA 
platform for ICSs has been proposed. 

[17] A fuzzy Petri network-based security 
defense model for SACADA systems 

[24] Best practices and recommendations 
for improving and maintaining 
security along with future directions 
to secure the cyber-physical systems 
are discussed 

[23] Use of Intel Software Guard 
eXtension (SGX) technology for 
confidentiality and integrity of 
SCADA monitoring data. 

[20] A testbed platform for the 
implementation of Cloud Computing 
in SCADA systems for Electrical 
Power Systems 

Category: Implementation and Standardization, 
Industry 

[43] Information security and risk 
assessment for the ICSs by PSCC 

[44] 21 steps by Department of Energy, 
USA, to make the SCADA systems 
secure  

[45] Standards for managing the data 
access, alarms, event management, 
and even Web access to the SCADA 
network devices by OPC foundation 

[47] An open-source Linux-based firewall 
that is capable of filtering Modbus 
packets by CISCO 

[48] Training the detectors to identify the 
malicious URLs in the network traffic 
by using the proxy logs of HTTP 
requests by CISCO 

Category: Dataset generation to train machine 
learning algorithms, Academia 

[73] Lawrence Berkeley National Lab 
(LBNL) dataset 

[68] ISOT dataset 
[76] Information Security Center of 

Excellence (ISCX) 
[74] UNSW (University of New South 

Wales) dataset 
[1] Setup for dataset generation 

[75] next-generation IDS dataset (NGIDS-
DS) 

Category: IEEE Standardization 
[49] IEEE standard for security systems for 

nuclear power generating stations 
[50] IEEE Guide for electric power 

substation physical and electronic 
security 

[65] IEEE guide for Security aspects 
regarding the access, operation, 
configuration, and data retrieval from 
IEDs 



Department of Energy, USA, has identified 21 
steps to make the SCADA systems secure [44]. The 
OPC Foundation is also another organization 
working towards the development of security 
standards for regulating the client-server access and 
open connectivity in industrial automation. OPC 
Foundation started as OLE (object linking and 
embedding) for Process Control. It has developed 
standards for managing data access, alarms, event 
management, and even Web access to the SCADA 
network devices [45].  

IEEE Power Engineering Society (PES) Power 
System Communications Committee (PSCC) has 
also done significant work in the domain of 
information security and risk assessment for the 
ICSs [43]. An instance is the IEEE standard for 
security systems for nuclear power generating 
stations [49]. This standard addresses the equipment 
for security-related detection, surveillance, access 
control, communication, data acquisition, and threat 
assessment. Security issues related to the human 
intrusion upon electric power supply substations are 
identified and discussed in E7.1402 - the IEEE 
Guide for electric power substation physical and 
electronic security [50]. Security aspects regarding 
access, operation, configuration, firmware revision 
and data retrieval from intelligent electronic devices 
(IEDs) are addressed in IEEE  1686 [65]. 

IEEE Power Engineering Power System 
Communications and Cybersecurity (PE/PSCC) 
Working Group C1 has developed a standard for 
cybersecurity requirements in control systems [51]. 
Cybersecurity measures require that a balance be 
achieved between the technical feasibility and the 
economic feasibility and that this balance addresses 
the risks expected to be present at a substation. 
Further, cybersecurity measures must be designed 
and implemented in such a manner that access and 
operation to legitimate activities are not impeded, 
particularly during times of emergency or 
restoration activity. IEEE presents a balance of the 
above factors in this standard. 

ISA/IEC standardization bodies with the 
ISA99/IEC 62443 have taken an initiative towards 
the security of ICSs even though some industries in 
few countries have taken more focused initiatives, 

such as API (American Petrol Institute), AGA 
(American Gas Association) or IAEA (International 
Atomic Energy Agency) for nuclear technology 
[45]. France has even developed protection profiles 
(a concept drawn from ISO 15408 evaluation 
criteria for IT security) for ICS components. 
Numerous security solutions such as data diodes and 
industrial firewalls exist, but they usually address 
the upper part of an ICS classical architecture (ISA 
95 model). Security solutions, in the context of 
communications between the PLCs and the 
actuators/sensors, installed by an exploit (in 
particular, if they are related to internal threats) have 
yet to be developed and deployed.  

Security products providers such as FireEye, 
Darktrace, and Cisco have included machine 
learning in their security-related products and 
services [61, 66]. Similarly, other organizations such 
as North American Electric Reliability Corporation 
(NERC), International Organization for 
Standardization (ISO), International Society of 
Automation (ISA) have also contributed towards the 
development of the standards for the cybersecurity 
of the SCADA and PLC systems. In the next 
section, we discuss four different case studies 
presented in four different research works available 
in the literature. 

V. CASE STUDY EXAMPLES 
In this section we discuss four specific case studies 
for multi-cloud deployment of ICSs and 
applicability of machine learning techniques for ICS 
security, which are: (1) Cyber risk assessments 
based on machine learning for the ICSs [82], (2) 
Cloud-based computing in these systems and how it 
improves the attack mitigation [81], (3) Comparison 
of several machine learning methods to detect 
malicious SCADA communications [35] and (4) 
Thorough step by step cloud mitigation of the 
SCADA systems [91]. 

The relevant threats in ICSs have been 
investigated comprehensively in [82] with a case 
study. Challenges in the way of utilizing machine 
learning and how it can help in defense mechanisms 
are also discussed. Nine different prevalent attacks 
along with reasons whether machine-learning-based 



approaches are useful or not are discussed. One of 
the main obstacles in utilizing a learning model for 
real-world industrial setups is imbalanced datasets 
[83]. An imbalanced dataset simply means the 
number of instances in one class is significantly 
lower than the other class. If the machine learning 
model does not train with enough samples from a 
particular class, it fails in real-time detection of that 
particular class, and it would misclassify them. This 
is a bottleneck in ICSs since most of the time, the 
number of attack samples is relatively very low 
compared to the massive amount of normal traffic 
flowing in the network. Utilizing common and 
traditional machine learning models will result in a 
large number of false negatives (attack traffic 
classified as normal). Based on the results in [82], 
machine learning is useful when the traffic flow is 
somehow manipulated. For instance, in 
confidentiality attacks, where the intruder just 
eavesdrops on the network traffic, machine learning 
might not be the best tool to detect that sort of 
breach. 

A cloud-based framework for ICSs for DDoS 
mitigation is discussed in [81]. Mitigation simply 
means the attack is discovered, and then appropriate 
countermeasures are applied. The authors have 
worked on a case study of integrating fog computing 
into cloud computing for faster results. A testbed 
has been simulated to demonstrate the performance. 
All parts of an ICS (the field devices, e.g., sensors 
and actuators, RTUs) are simulated. Fog 
environment and cloud environment using a cloud 
server are also simulated to run the experiments. 
The effectiveness of the scheme is tested against 
two different DDoS attacks. A flooding technique, 
TCP SYN, and exploitation of the Modbus’s 
vulnerability with forged command data are the two 
types of deployed DDoS attacks. The proposed 
scheme shows an improvement of average 8.98% in 
the detection rate, demonstrating a good 
improvement in the performance. 

Six Different types of machine learning 
approaches for IDS of SCADA systems are 
evaluated in [35]. These techniques include Naive 
Bayes, random forests (RF), OneR, J48, NNge 
(Non-Nested Generalized Exemplars), SVM 

(support vector machines). In this specific case 
study, the authors have used labeled RTU telemetry 
data from a gas pipeline system in Mississippi State 
University’s Critical Infrastructure Protection 
Center. Attack traffic is simulated to test the 
machine learning performance and is generated 
from two types of code injection sets including 
command injection attacks, and data injection 
attacks. Seven different variants of data injection 
attacks were tried to change the pipeline pressure 
values, and four different variants of command 
injection attacks to manipulate the commands that 
control the gas pipeline. Two performance metrics, 
precision and recall have been used for evaluation. 
The imbalanced ratio of the proposed dataset is 
about 17%. 

The performance of the machine learning 
techniques is evaluated for the two types of attacks 
separately. The results of their case study show that 
for data injection attacks, NNge, and random forest 
have the highest score for both metrics. However, 
for the command injection, all the models show 
consistent and almost the same performance. The 
authors have declared that this is due to the 
simplicity of the command injection attacks 
compared to data injection attacks. 

In the fourth case study [91], the authors have 
done an excellent analysis by presenting how a 
SCADA system can be deployed over an 
Infrastructure as a Service (IaaS) cloud setting. They 
have utilized EclipseSCADA as the open-source 
base system and the cloud server providing the IaaS 
is NeCTAR. Comprehensive comparison among 
different available open-source SCADA platforms 
has also been conducted. They have compared 
different aspects such as architecture and feature, 
code manageability, and adoption. Therefore, 
EclipseSCADA was chosen as it provides enough 
flexibility for cloud infrastructure. This platform and 
its components have been explained with details. 
However, the field devices (sensors and actuators) 
have been simulated. 
In the evaluation setup, a complete set of 
performance metrics are investigated. Since in an 
ICS environment, real-time monitoring is crucial, 
they have used metrics such as the effect of the size 



of the monitored field and delays, the effect of the 
location of SCADA components, and the 
relationship between the processing time and the 
communication time. Various experimental settings 
were tested out to provide a thorough 
recommendation list for moving to the cloud in a 
real-world scenario. For instance, centralizing all the 
functionalities is not useful even though it sounds 
promising. Moreover, to lower the network load, 
event-driven communication protocols must be 
utilized. It is suggested to do the protocol 
conversion close to the field devices, and a lot more 
that can be further studied in the paper. In the next 
section, we propose a simulation testbed to collect 
the data traces for industrial control system 
operations to build rigorous machine learning 
models and discuss future research directions. 

 

VI. RESEARCH CHALLENGES 
In this section, we describe some of our initial 
research related to SCADA security and the 
challenges that we plan to address in the near future. 
 
A. Our Preliminary work: In our preliminary work 
[41, 46], we have demonstrated that machine 
learning techniques need significant rework to 
perform satisfactorily in the context of anomaly 
detection in ICSs. The major challenge in the 
application of machine learning methods is 
obtaining real-time and unbiased datasets. Many 
datasets are internal and cannot be shared due to 
confidentiality and user privacy restrictions or may 
lack specific statistical characteristics. Industry 
settings usually avoid sharing their protected 
network data information because of these issues. 
Therefore, researchers prefer to generate datasets for 
training and testing purposes in the simulated or 
closed experimental environments that may lack 
comprehensiveness. Machine learning models 
trained with such a single dataset generally result in 
a semantic gap between results and their application. 

As demonstrated in [41], we have obtained 
satisfactory results with UNSW (University of New 
South Wales) training and testing datasets [74] and 
supervised machine learning algorithms (Fig. 2) for 

the security of cloud platforms. However, we argue 
that the supervised machine learning models that 
perform well with a particular dataset may or may 
not perform suitably with completely different 
datasets generated with different simulation or 
experimental conditions. To demonstrate this, we 
have tested the above models with a different 
dataset (ISOT [68]) and observed much-degraded 
performance as shown in Fig. 3. 

 
Fig. 2: Overall accuracy with UNSW Dataset. 

 
Fig. 3: True positive and true negative rates with the ISOT dataset.  

The same issue applies to the application of 
machine learning methods to the cybersecurity of 
ICS as well. There is a dearth of research work, 
which demonstrates the effectiveness of machine 
learning models across multiple datasets obtained in 
different environments. There is a dearth of research 
work, which demonstrates the effectiveness of these 
models across multiple datasets obtained in different 
environments. We argue that it is necessary to test 
the robustness of the machine learning models, 
especially in diversified operating conditions, which 
are prevalent in cloud-based control system 
scenarios. Our results highlight the need for an ICS 
security testbed, which can be used to model real 



ICSs and study the effects of attacks on them. The 
testbed would provide an innovative environment 
where researchers can explore cyber-attacks and 
defense mechanisms while evaluating their impact 
on control systems. 

 
B. Future Work: As future work, we believe it is 
important to prepare a hybrid dataset using various 
major datasets, which are available online and the 
datasets obtained through the testbed simulation 
setup or at the industry campuses. We aim to extend 
our preliminary work in the context of the ICSs with 
the hybrid datasets including the one presented in 
[1] to test the accuracy of the machine learning 
techniques in the contest of ICSs. 
 As a part of our future research, we aim to 
prepare hybrid datasets using multiple publicly 
available datasets such as UNSW (University of 
New South Wales) dataset [74], ISOT dataset [68], 
Lawrence Berkeley National Lab (LBNL) dataset 
[73], Information Security Center of Excellence 
(ISCX) [76], next-generation IDS dataset (NGIDS-
DS) [75] and other relevant datasets. 

 
Fig. 4: Setup at an industrial premise to collect real-time  

traffic traces. 
To achieve this, we propose to extract a common 

set of features from the raw TCP dumps of these 
datasets. This will provide the required robustness to 
the hybrid datasets for multi-cloud scenarios. A 
point to be noted here is that the datasets obtained 
through the lab-setups or simulated cloud 
environments may not represent the real-time data 
traffic in actual industrial control system scenarios. 
Therefore, in addition to preparing the hybrid 
dataset with the online datasets, we aim to augment 
the existing datasets using the real-time data traces 

captured at an industry campus. A possible setup at 
the industry premise is shown in Fig. 4, where 
connectivity among the remote sensors, actuators 
through PLC and SCADA over the Internet, using a 
cloud platform is shown. As shown in Fig, 4, we 
will collect the traffic dumps before and after the 
firewall as indicated in the diagram. After 
comparing the two dumps, malicious and normal 
flows can be labeled and used for the training 
purpose. Such dataset can be mixed with already 
available datasets, such as in [1] to obtain the hybrid 
datasets. In addition, to augment the real-time traces 
to prepare more robust training models, a simulation 
testbed for ICS may be built. A sample lab setup is 
shown in Fig. 5, demonstrating the interaction 
between PLC, SCADA, and the sensors as well as 
the actuators. 

 

 
Fig. 5: Simulation testbed with the lab setup. 

 
A sample cloud-based setup, with a possible 

attack scenario, is shown in Fig. 6, where a cloud is 
introduced for communication among various 
components such as remote sensors and actuators. 
Towards this goal, the Tennessee Eastman (TE) 
control process system, which is a well-known 
industrial process control system benchmark with 
well-understood dynamical behavior, can be 
considered. 
The open-loop TE system is a complex, highly 
nonlinear unstable system, and hence it represents a 
real-world vulnerable system where cyber-attack 
can lead to unstable operations leading to human, 
environmental, and economic consequences. It 



should be mentioned that TE benchmark has been 
recently considered from cyber-security perspective 
[69-72] with the main focus on evaluating the 
behavior of the system under cyber-attack. 
 

 
Fig. 6: Simulation testbed with cloud and infected traffic. 

However, intrusion detection has not been 
thoroughly investigated in the literature. 
Consequently, it can serve as the perfect benchmark 
to test and validate the developed ML algorithms in 
future works. The effects of attacks in the process 
control domain can be analyzed using the simplified 
model of the TE process, which is mentioned in 
[69]. An ICS simulation testbed, we believe, can 
serve the following purpose: 
1. Be a prototype of a common technical platform 

aimed at facilitating the creation of future ICS 
cybersecurity test centers.  

2. Provide industries with a cost-effective test 
platform that reduces the costs of simulation and 
testing and delivers more significant results than 
a traditional testbed approach. 

3. Perform cyber-attacks on a hybrid model of real 
ICS configuration. 

4. Create a testbed that is easy to deploy, more 
realistic than simulation and less expensive. 

5. Prepare hybrid datasets to train the machine 
learning models to build robust intrusion 
detection systems for ICSs. 

VII. CONCLUDING REMARKS 
Despite the recent popularity of employing big 

data analytics and cloud computing for ICSs, their 
security is still an open issue. ICSs and eventually, 

the industries would benefit from the cloud 
platforms; however, lack of proper security in novel 
multi-cloud platforms may cause high costs 
associated with the security breaches in the real-time 
industry platforms. The sophistication of new 
malware attacking control systems, such as zero-day 
attacks and rootkits, has made it very difficult to 
prevent and detect attacks at the ICS component 
level. Therefore, there is a need for new schemes of 
intrusion detection for ICS systems at the process 
control level. Applicability of the machine learning 
techniques has proven to be very useful for this 
matter. 

In this work, first, we took a close look at the 
shift of the ICS from stand-alone systems to cloud-
based environments. Then we discussed the major 
works, from industry and academia towards the 
development of the secure cloud-based ICS 
leveraging the advancements in the field of machine 
learning techniques. In addition, we believe that a 
testbed may help to address the challenges 
associated with securing an industrial process, 
providing more insights into the knowledge about 
how the process is actually being managed with the 
help of actuators and control laws, and an 
understanding of the security requirements specific 
to process control using cloud platforms. 
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Table 2: List of Acronyms 

 
Acronym Description 
ABE Attribute-based encryption 
AC-i Actuator-sensor interface 
AES Advanced encryption standards 
AGA American gas association 
API American petrol institute 
APT Advanced persistent threats 
ASP Application service provider 
CIP Common industrial protocol 
DCS Distributed control systems 
DDoS Distributed denial of service 
DES Data encryption standards 
DoS Denial of service 

HART Highway addressable remote transducer 
protocol 

HMM Hidden Markov Model 
HTTP Hypertext Transfer Protocol 
IaaS Infrastructure as a service 
IAEA International atomic energy agency 
ICS Industrial control system 
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IDS Intrusion detection system 
IEC International Electrotechnical commission 
IED Intelligent electronic device 
ISA International society of automation 

ISO International organization for 
standardization 

IT Information Technology 
ML Machine learning  

NERC North American electric reliability 
corporation 

NIDS Network intrusion detection system 
OCSVM One-class support vector machine 
PES Power engineering society 
PLC Programmable logic controllers 
PSCC Power system communications committee 
RTU Remote terminal unit 
SCADA Supervisory control & data acquisition 
SGX Software guard extension 
SOA Service-oriented architecture  
SVM Support vector machine 
TCP Transmission control protocol 
TE Tennessee Eastman 
UNSW University of New South Wales 
URL Uniform Resource Locator 
WSNM Water supply network monitoring 

 




