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Abstract— In this paper, we propose a new dynamic resource 

allocation (DRA) scheme to support the constantly increasing 

online video stream traffic, especially high definition (HD) video 

streams. Our DRA scheme is based on online traffic prediction 

using seasonal time analysis. Our scheme seeks to provide 

accurate traffic prediction, to minimize the resource negotiation 

frequency, and to increase the utilization of the network 

resources while meeting maximum delay requirements. We 

validate our approach using various video traces, including our 

video collection of more than 50 HD video traces. We show 

through our results that our proposed scheme achieve up to 

19.8% improvement in allocating bandwidth for short-length 

video traces, and up to 25% for long traces compared to the 

variable step-size adaptive (VSA) algorithm. 
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I.  INTRODUCTION 

Video streaming traffic is continuously increasing its share 
of Internet traffic. Video streaming accounted for 27% of the 
Internet traffic in 2009, leveling up from 13% share during 
2008 [8]. Video streams’ traffic management is considered a 
challenging task because of their unique characteristics. Video 
streams are resource demanding traffic, and exhibit high 
variability in video frame sizes, which results in a bursty 
traffic. With the advent of a high definition (HD) video codec 
like MPEG-4 advanced video codec (AVC), the variability of 
the frame sizes have increased [1]. Online video traffic has 
high requirements for acceptable frame delay. Lost or delayed 
video frames are discarded at the end nodes if they do not 
arrive before their specified display time.   

Video streams exhibit both short-term and long-term 
variances in frame size. For these reasons, static resource 
allocation is not preferable for managing video streams and 
providing quality of service (QoS) support. In order to 
conserve the computational resources and have a better control 
over the incoming video streams, per-flow management and 
bandwidth allocation is done usually at the edges of the 
network as shown in Fig. 1. Such position also allows the 
deployment of a better admission control mechanisms. In such 
schemes, the emphasis is to increase the network resources 
utilization while maintaining the desired level of QoS.  

 

Figure 1.   Dynamic resource allocation scheme 

Dynamic resource allocation (DRA) schemes are especially 
important for live streams, where the video stream 
characteristics are not known in advance. In order to provide an 
accurate estimation of the needed network resources for a 
certain flow, which indicate the cost of transmitting such a 
flow, the chosen DRA scheme has to be able to predict the 
required bandwidth for future video frames. Such prediction is 
preferably dependent only on the information available from 
the incoming video stream (content-based), since the 
broadcasted information from the video source can either be 
unrepresentative of the video stream, or not available for live 
streams. To adjust the bandwidth assignment for a certain 
video stream, DRA renegotiate the assigned bandwidth for that 
flow.    

The main goals for a DRA scheme are: to predict the 
longest possible period with the least prediction error, and to 
provide the best possible resource utilization with the lowest 
achievable frame delay. Content-based dynamic bandwidth 
allocation can be at the video frame level [2], group of pictures 
(GoP) level [3], or scene level [4, 5]. These types of QoS based 
video streaming management approaches are still considered 
essential for live video streaming [20, 21]. In [4] the authors 
proposed a DRA scheme based on neural network (NN) 
prediction. The scheme contains several modules to provide an 
accurate prediction. The results were based on 13175-frame 
video encoded via MPEG-1 VBR that is divided into 177 shots. 
To achieve the desired results, the first 50 shots were used as 
training samples. The proposed complicated approach reduces 
it applicability to support live video deadline requirements.  

In [5], the authors proposed an object based video content 
classification scheme to map video scenes into their bandwidth 



resource requirements. This approach is also considerably 
complex. In [3], the author used a fixed-size adaptive least 
mean-square (LMS) error linear predictor to determine the 
required bandwidth allocation based on both a frame-level 
prediction, that requires separate prediction process for each 
frame type, and a simpler GoP level prediction. The used 
adaptive algorithm utilizes a fixed size adjustment to adapt to 
the traffic changes. In [7], the authors used the variable size 
LMS predictor proposed in [6] to predict the future bandwidth 
requirements based on the prediction of I-frames.  

The main challenge with content-based predictions using a 
mathematical model is that they require precious computing 
resources and may not be applicable to video traces encoded 
with different encoding standards or settings [4]. Simplified 
Seasonal autoregressive integrated moving average (ARIMA) 
model, or SAM, has demonstrated its capability of modeling 
movies encoded with different encoding settings and standards 
[9, 10]. In addition, our simplification of SARIMA modeling as 
represented in SAM, as shown in Section II, allows real time 
implementation. 

In this paper we propose a dynamic resource allocation 
scheme to support real time video streaming based on SAM 
model. In our design we consider the applicability of the 
scheme and compare it to the variable size LMS predictor 
using more than 54 HD video traces. In the next section, we 
describe SAM model and show our approach to predict future 
video frames.  Section III demonstrates the design of our delay 
guaranteed SAM-based DRA scheme. Section IV describes our 
simulation experiments comparing SAM to variable size LMS 
predictor. Section V concludes this paper and provides a 
summary of our contributions.         

II. SIMPLIFIED SEASONAL ARIMA MODEL (SAM) 

In this section we discuss the SAM model and its 
representation as a seasonal autoregressive integrated moving-
average (SARIMA) model. To allow a better representation of 
autoregressive (AR) model, we use the backward operator B, 
where: 

jtt
j
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An autoregressive moving-average (ARMA) model that 
combines the both models can be expressed as: 
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where tε ~N(0,σ2) is the error term, and φ is the autoregressive 

coefficient, θ is the moving-average coefficient,  and tX  is the 

frame size at time t . ARIMA can also be written as: 
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To remove the non-stationarity of a series, a differencing 
operator is introduced. This process results in an autoregressive 
integrated moving average (ARIMA) model. The order of 
differencing is denoted by d, and the differencing operator for d 
degree of differencing using backward operator notation is:  

t
d

t
d

XBX )1( −=∇                               (4) 

and ARIMA process can be described as: 
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A seasonal time series is a series that exhibits a seasonal 
periodic behavior every s observations. This behavior can be 
expressed by extending the definition of ARIMA. Seasonal 
ARIMA or SARIMA has a seasonal autoregressive part of 

order P as PΦ  , and a seasonal moving average of Q order as 

QΘ , and a seasonal differencing of order D as . SARIMA 

thus can be denoted as: 

            (6) 

A simpler notation to represent the order of each of the 
SARIMA model components is: 

                   (7) 

In order to represent a time series model using SARIMA, 
the model’s components order and seasonality need first to be 
identified. The identification process requires human 
intervention to determine the best model to represent the 
analyzed data [12].  The next step is to estimate the model 
coefficients using different estimation methods. The most 
common used methods are: maximum likelihood (ML) 
estimation, conditional sum-of-squares (CSS) estimation, and a 
hybrid approach where the starting values are estimated using 
CSS then ML is used to complete the estimation process (CSS-
ML) [12]. This two-step process, (i.e. determining the model 
order and estimating its parameters), is a time consuming 
process and requires a substantial statistical background to 
identify the best possible model to represent a time series [13]. 

A. The SAM Model 
SAM provides the means to model video traces accurately 

without the need of human intervention. In previous research 
results, it was shown that SAM is capable of capturing the 
statistical characteristics of video traces with less than 1% 
difference from the optimal models for each video trace. The 
model has been tested against video traces encoded using 
different encoding settings and standards: MPEG-Part2, 
MPEG4-Part10/AVC, and AVC’s scalable extension for 
temporal scalability (SVC-TS) [9, 10]. SAM can be 
represented using the simplified notation: 

z
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where z here represents the seasonality of the video trace. This 
means that SAM requires only 4 coefficients to be estimated. 
These coefficients are: AR coefficient (φ), MA coefficient (θ), 
seasonal AR or SAR coefficient (Φs), and seasonal MA or 
SMA coefficient (Θs). SAM can be represented using 
SARIMA notation as: 
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Since SAM requires only 4 parameters to be estimated, 
such convenient simplification allows it to be used in real time 
applications. 

B. Model Parameters Estimation Methods 
The estimations of SAM parameters can be achieved, as 

mentioned before, using ML, CSS, or CSS-ML methods. Most 
literature books suggest ML as the best option to obtain the 
best parameters estimations [12, 13].  

To support real time prediction, the estimation method 
should provide a good tradeoff between high accuracy and high 
computation speed. To determine the best suitable estimation 
method, we compared ML, CSS, and CSS-ML methods in 
modeling our collection of 54 HD video traces encoded with 
AVC codec. The videos cover a wide variety of texture/details 
and motion levels. The selected video traces represent a 
random set of the most visited videos, and three random videos 
from each of the 15 video subcategories available to 
YouTube’s users [11]. The average video trace length is 3212 
frames, with a maximum of 9388 frames, and a minimum of 
580 frames. The encoding settings have been chosen to confirm 
with the expert’s recommendations and the majority of HD 
YouTube videos [14, 23, 24].  

The results of the comparison are shown in Table 2 and 
Table 3. First we compared the three methods in the total time 
needed to model our collection of video traces. As shown in 
Table 2 CSS method has a clear advantage over both ML and 
CSS-ML. Using CSS it took only 0.22 seconds on average to 
model a full video trace, compared to 39.54 seconds using ML.  

As mentioned before, high computation speed should not 
come at the expense of modeling accuracy. We used three 
statistical measures to compare the modeling accuracy of the 
three methods: Mean Absolute Error (MAE), Mean Absolute 
Relative Error (MARE), and Root Mean Square Error (RMSE): 
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where N is number of video frames, ei is the prediction error at 
the i-th frame, and Xi is the i-th frame size.  

Both Table I and Table II show that the difference between 
ML and CSS, in terms of accuracy, is less than 2.5%. We argue 
that such degradation of accuracy is acceptable compared to 
the significant boost in computation speed. Based on these 
results we recommend using CSS as the parameter estimation 
method for SAM. In this paper, all our results are based on 
using CSS method.   

TABLE I. ESTIMATION METHODS COMPARISON RESULTS 

Comparison/Method ML CSS CSS-ML 

Total execution time (s) 2135.06 15.6 1202.68 

Average time per video (s) 39.54 0.22 22.27 

MAE (average) 12437.8 12568.1 12523.48 

MARE (average) 2.395 2.447 2.417 

RMSE (average) 21712.3 22162.3 22004.9 

TABLE II. PERCENTAGE OF IMPROVEMENT BETWEEN ESTIMATION METHODS  

Comparison/Method ML vs CSS 
CSS-ML 

vs CSS 

ML vs CSS-

ML 

MAE 1.04% 0.35% 0.68% 

MARE 2.12% 1.27% 0.86% 

RMSE 2.03% 0.71% 1.33% 
 

C. Forecasting Using SAM 
In [14], the authors showed that SAM requires only around 

100 previous data values to provide an accurate representative 
model. This observation confirms with the recommended 
guidelines for forecasting using ARIMA models [13]. In 
addition, in [4], the authors showed that most useful traffic 
information are presented in the short-term bandwidth 
statistics. This approach provides a valid method to achieve the 
desired forecasting without sacrificing performance since in 
practical applications the resulting forecasts are dependent 
significantly only on the recent values of the observed data 
series [15].   

We achieve forecasting or prediction of future values of 

tX directly from the previously mentioned SAM’s difference 

equation. In this process the values of tX  and the estimation 

error terms are substituted as follows: 
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where tX̂  is the estimated frame size at time t. Such 

assumptions are valid since forecasts values are unaffected by 
the small changes that are introduced by the estimation errors 
[15].   

III. SAM-BASED DRA SCHEME 

In this section, we discuss our approach to determine the 
required adjustment to the allocated bandwidth upon detecting 
a trend change. In our scheme, SAM predictor analyzes the 
observed traffic information and then it accordingly predicts 
the future incoming traffic and adjusts the previously allocated 
bandwidth.  In case of a prediction error, if the traffic predictor 
allocates more bandwidth for the incoming flow than it 
requires, there will be a waste of network resources (link 
utilization). On the other hand, if the prediction process results 
in a less bandwidth than the flow requires, the difference 
should be buffered and then sent later within the acceptable 
delay limits for live video streams 

Fig. 2 shows the proposed SAM based DRA model. The 
incoming video flow is processed through the SAM-based 
stream resource controller (SRC), where the prediction process 
is performed. The prediction difference due to the prediction 
errors is buffered. At renegotiation points, a simple 
request/response mechanism is used to communicate with the 
network resource manager (NRM). Depending on the available 
network resources, NRM determines whether the requested 
increase or a new flow request can be supported. In case the 
incoming flow cannot be supported by the network, SRC may 
send a feedback to the video source encoder to use a lower bit 
rate [17]. To simplify the simulation, we assume that all 
bandwidth requests are granted.       



 
Figure 2.  SAM-based DRA model 

As can be noticed from Fig. 2, by using SAM to predict and 
reserve the bandwidth dynamically, the allocation problem has 
changed from supporting highly variant incoming video flows 
to servicing the predicted allocations and buffering the possible 
prediction errors. Thus, the better the predictor, the better the 
system performance in servicing the existing flows and 
admitting new video flows.  

IV. EXPERIMENTAL RESULTS 

SAM-based SRC aims to manage the dynamic bandwidth 
allocation while meeting the one-way delay requirement. IPTV 
QoS requirements for MPEG-4 AVC encoded HDTV service, 
as described in DSL Forum technical report (TR-126) for triple 
play service [25], are set to maximum of 200 ms one-way 
delay. To meet the desired maximum deadline, we incorporated 
in our DRA design the QoS guaranteed dynamic bandwidth 
allocation (QDBA) algorithm [18]. QDBA operates at the GoP-
level. This approach provides two advantages to the forecasting 
process: it simplifies the calculation of the incoming flows, and 
it also acts as a smoother for the variable video stream allowing 
easier prediction.  

QDBA algorithm compares the required bandwidth 
allocation at each time slot, taking into consideration the buffer 
status, against both the predicted and currently allocated 
bandwidth. If the current rate is higher than the required rate 
considering the required link utilization, then it renegotiates a 
lower rate that is the max of the predicted and required rates. If 
the allocated rate is lower than the required rate, the 
renegotiated rate is set to the required rate. Otherwise, the 
allocated rate remains the same.  

We compare the proposed SAM-based traffic predictor to 
the traffic predictor based on the non-linear variable step-size 
adaptive (VSA) algorithm proposed in [7]. VSA is an 
improvement over the fixed step-size adaptive (FSA) algorithm 
[22, 3]. VSA bases its prediction on the GoP size instead of the 
frame size. This approach was favored since modeling and 
predicting the GoP size is considered a simpler problem. By 
operating on the frame-level instead, SAM aims to provide 
better prediction results. Let us consider Gi the i-th GoP size, 
then the p-th order of VSA predictor is:     
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achieve the best results. The prediction error and filter 
coefficients can be calculated using: 
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where i
T

ii GGG ×=
2 . Instead of using a fixed value for the 

updating coefficient µ , its value is updated to allow variable 

step-size adjustments. Increasing the value of µ  results in fast 

convergence but at the expense of higher prediction errors. 
Smaller µ  value results in smaller prediction errors with 

slower convergence rate. For highly variable input stream like 
HD video traces, it is important to choose the correct value for
µ  to allow fast adaption to the stream variation with the lowest 

possible prediction errors. iµ is updated using: 
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here α is the previous µ weight, γ is the collective error terms 

weight, 1q and 2q are the current and the previous prediction 

errors weights respectively. maxµ and minµ are used to bound 

the step-size adjustment. maxµ is chosen to ensure that the mean 

square error (MSE) remains bounded, while minµ is the same 

value as that chosen for FSA algorithm. As shown here, VSA 
requires 7 coefficients to be determined empirically before 
being deployed in real-time applications, which is considered a 
down-side to this approach. SAM, on the other hand, does not 
require any prior information or prior empirical calculations.   

Following the suggestions in [18], we chose α = 0.98, γ

=0.015, 1q = 0.7, and 2q = 0.3. Following the suggestions in 

[7], we set the initial value of the updating coefficient 0µ =

minµ = 0.009, maxµ = 0.3, and the prediction order p = 12. In 

our simulations we found out that to achieve the best prediction 
results we need to set maxµ = 0.03, and p = 5. In our 

experiments we used a quad-core i7 (2.8Ghz) machine with 
6GB of RAM.  

As we stated before, one of the main targets in bandwidth 
allocation schemes design is to minimize the number of the 
renegotiations points. Therefore, we modified VSA to allow 
the prediction for more than one GoP. The modification simply 
allows VSA to operate on aggregation of multiple GoP sizes, 
instead of one GoP size. 

The performance of the two compared dynamic bandwidth 
predictors using QDBA algorithm is measured using three 
parameters: renegotiation frequency, the total allocated 
bandwidth, and the total buffer usage or occupancy. A better 
predictor will result in fewer prediction errors to be buffered 
(smaller queue occupancy), better future prediction (fewer 



renegotiation points), and better utilization of the network 
resources under the defined delay requirements (lower 
bandwidth allocation rate).  

Table III shows the average performance comparison 
results using our collection of 54 HD video traces for 
maximum allowed delay of 100 ms, and required bandwidth 
utilization of ρ = 0.9. SAM-n /VSA-n indicates the performing 

SAM/VSA over n-aggregated GoPs. For example, SAM-2 
means two GoP sizes are aggregated. 

TABLE III.  PERCENTAGE OF IMPROVEMENT FOR USING SAM OVER VSA  

Comparison/Method 
SAM-1 Vs 

VSA-1 

SAM-2 

Vs VSA-2 

SAM-3 Vs 

VSA-3 

Allocated Bandwidth 19.8% 8.6% 7.7% 

Negotiation Freq. 0.5% 3.5% 5.77% 

Queue Occupancy 25.2% 13.8% 13% 
 

We notice that SAM outperforms VSA in all the 
performance comparisons due to its higher ability to predict 
future traffic. Even with the low number of frames tested with 
average of ~3000 frames, SAM provides 7.7% (SAM-3) to 
19.8% (SAM-1) bandwidth utilization improvement, and 13% 
(SAM-1) to 25.2% (SAM-1) queue occupancy improvement. 
By increasing the number of aggregated GoPs the difference 
between the two approaches becomes lower because it 
represents a smoother version of the video trace. The same 
observation is noticed in the queue occupancy comparison. It is 
important to mention that increasing data aggregation results in 
higher error rates and thus higher queue occupancy and higher 
bandwidth allocation rates. Table IV shows the average 
percentage of increment for both queue occupancy and 
allocated bandwidth.  

TABLE IV. PERCENTAGE OF INCREMENT FOR PERFORMANCE METRICS 

Comparison GoP-2 vs GoP-1 GoP-3 vs GoP-1 

Allocated Bandwidth 12% 14.8% 

Queue Occupancy 10.6% 12.8% 

The improvements of negotiation frequency increases with 
increasing the number of aggregated GoPs since the total 
number of renegotiations are fewer with higher level of 
aggregation. For instance, 0.5% reflects the improvement from 
105 (VSA) to 104 (SAM), where 3.5% reflects the 
improvement from 55 (VSA) to 53 (SAM). Renegotiation 
frequency is almost cut in half when using GoP-2 aggregation. 
Thus, as a tradeoff between high accuracy and lower 
renegotiation frequency GoP-2 aggregation can be used. 

Fig. 3 illustrates a close-up comparison between the VSA-1 
and SAM-1 in their ability to predict future traffic using one of 
the simulated video trace samples. It is clear that SAM predicts 
the traffic better especially in the case of sudden events since it 
operates on frames level.    

To support our assumption that the difference between 
SAM and VSA will be even more substantial using longer 
video traces, we compared the two methods using three long 
traces obtained from [19]. The three selected traces are chosen 
to represent various video characteristics: Silence of the Lambs 
(~30 min, 52384 frames), Tokyo Olympics (~74 min, 131520 
frames), and Star Wars IV (~30 min, 52384 frames), 

representing action, thriller, and sports video genres, 
respectively. All these movies are encoded using AVC main 
profile, with a frame rate of 30 fps, a GoP size of 16, 7 B-
frames per GoP,  and a quantization level of 28 for all frames. 

 
Figure 3.   SAM versus VSA prediction rate comparison 

Table V shows the performance analysis results for the 
three movies tested movie traces. Again, SAM has a clear 
advantage over VSA in all the tested GoP aggregations. We 
can also see that the performance gain has increased using 
longer traces. Therefore, using SAM especially for live and 
continuous streams applications like IPTV will result in better 
utilization of network resources.   

     TABLE V. PERCENTAGE OF IMPROVEMENT FOR SAM OVER VSA  

Video Trace 

Comparison/Method 

SAM-1 

Vs 

VSA-1 

SAM-2 

Vs 

VSA-2 

SAM-3 

Vs 

VSA-3 

Star Wars IV Allocated Bandwidth 21.7% 25.3% 17.7% 

Negotiation Freq. 1.68% 5.8% 7.95% 

Queue Occupancy 22.8% 26.6% 19.3% 
Silence of the 

Lambs 
Allocated Bandwidth 22.4% 15.5% 22.6% 

Negotiation Freq. 3.9% 5.65% 8.04% 

Queue Occupancy 23% 16% 23.8% 
Tokyo 

Olympics 
Allocated Bandwidth 25% 24.7% 25.8% 

Negotiation Freq. 3.1% 8.7% 9.4% 

Queue Occupancy 27.9% 27.2% 28.2% 
 

As we stated before, our proposed design takes into 
consideration the maximum allowed bandwidth delay for the 
incoming video flows. Using QDBA algorithm enforces the 
acceptable deadline delay and provides a good supports for the 
QoS requirements. Fig. 4 shows how the deadline requirement 
is met when the maximum delay requirement is set to T = 200 
ms, and the required bandwidth utilization is set to ρ = 0.9 for 

Silence of the Lambs video trace.   

 
Figure 4.   Meeting delay requirements in SAM-based DRA (T=200ms) 



As can be noticed, the proposed SAM-based DRA scheme 
meets the deadline requirements while maximizing the 
utilization of the available network resources through 
providing better prediction performance.   

V. CONCLUSIONS AND DISCUSSIONS 

In this paper we proposed a dynamic resource allocation 
scheme based on SAM video trace model to provide a better 
support for online video streams. Our contributions through 
this paper can be summarized in the following points: 

• We illustrated the mechanism of using SAM model to 
forecast the incoming video frames depending only on the 
short-term history of the previously observed frames. 
Additionally, we compared the SAM modeling accuracy 
using three parameter-estimation algorithms (CSS, ML, 
and CSS-ML) to achieve a higher computational 
performance. Using CSS algorithm provides a significant 
boost in computation speed, 0.22 seconds per video versus 
39.54 using ML on average, with less than 2.5% loss of 
accuracy in our comparisons using MAE, MARE, and 
RMSE. 

• Based on our proposed DRA scheme, we compared SAM 
and VSA using our collection of 54 HD video traces. 
Based on the three performance measures: allocated 
bandwidth, renegotiation frequency, and queue occupancy, 
we showed that SAM outperforms VSA in all of them 
providing up to 7.7% (SAM-3) to 19.8% (SAM-1) 
improvement in bandwidth utilization, and up to 13% 
(SAM-1) to 25.2% (SAM-1) improvement in queue 
occupancy on average. 

• We extended our analysis results by comparing VSA and 
SAM using three long video traces representing different 
video genres. The results confirmed our assumption that 
SAM has a clear edge over VSA especially for long video 
traces. Thus, we believe that SAM will provide significant 
network resource utilization improvements for continuous 
video stream applications like IPTV.  

The dynamic bandwidth allocation performance 
improvement using our proposed SAM-based DRA scheme 
and its proven real time applicability, while meeting the strict 
delay deadlines of live videos, makes it a strong candidate for 
real time deployment to support live video streams, especially 
for continuous video stream applications like IPTV, and 
improve network resources utilization. 
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