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Abstract— Cloud computing is gaining significant attention and
virtualized data-centers are becoming popular as cost-effective
infrastructure. Recently, there has been a trend to collocate the
baseband unit (BBU) functionalities and services from multiple
cellular base stations into centralized BBU pool for statistical
multiplexing gain. The technology is known as Cloud Radio
Access Network (C-RAN). C-RAN is a novel mobile network
architecture that can address a number of challenges the mobile
operators face while trying to support growing end users’ needs.
The idea is to virtualize BBU pools, which can be shared by
different cellular network operators, allowing them to rent radio
access network (RAN) as a cloud service. However, manual
configuration of the BBU services over the virtualized
infrastructure may be inefficient and error-prone with the
increasing mobile traffic. In this work, we propose development
of a novel automated service deployment platform, which will
help to automate the instantiation of virtual machines at the
central clouds as per user demands vary and achieve end-to-end
automation in service delivery for C-RANs. *

Index Terms—C-RANSs; APIs; SDN; NFV; MCAD; OpenStack.

I. INTRODUCTION

Capital expenditure (CAPEX) and Operational expenditure
(OPEX) in mobile networks are increasing significantly with
the increase in user demands. Base stations are the most
expensive components of a cellular network infrastructure.
CAPEX increases significantly, as the mobile operator installs
a new base station. OPEX is directly proportional with the
requirements of base stations in terms of power, electricity and
hardware to operate. However, the revenues for mobile
operators are still flat. Therefore, novel architectures that
minimize the CAPEX and OPEX for mobile operators while
serving to the increasing user demands have become a
necessity in the field of mobile network. Cloud-Radio Access
Network (C-RAN) is a novel mobile network architecture,
which has the potential to answer the above mentioned
challenges. In C-RAN, baseband processing units (BBUs) are
centralized and shared among sites using a virtualized BBU
pool [5, 13]. Since BBUs from many cellular stations are co-
located in one pool, resources can be shared increasing the
utilization and reducing the power consumption. In addition,
cellular sites become less expensive and easy to deploy,
reducing the CAPEX significantly. Additional advantage is,
BBU services can interact with lesser delays.

Traditionally, in cellular networks, users communicate
with a base station that serves the particular cell under
coverage. The main functions of a base station can be divided
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into two, which are baseband unit (BBU) functionalities and
remote radio head (RRH) functionalities. The RRH module is
responsible for digital processing, frequency filtering and
power amplification. The main sub-functions of the baseband
processing module are coding, modulation, Fast Fourier
Transform (FFT) and others [5, 7]. Data generally flows from
RRH to BBU for further processing. Such BBU functionalities
may be shifted to the cloud based resource pool, called as
Cloud-Radio Access Network (C-RAN) to be shared by
multiple RRHs. Advancements in the field of cloud
computing, software defined networking and virtualization
technology may be leveraged by operators for the deployment
of their BBU services, reducing the total cost of deployment
[16, 17].

The actual concept of C-RAN is based on a WNC concept
proposed in [9], which allows mobile virtual network
operators to share the network resources and balance the
workload over a low cost platform. Sample C-RAN
architecture is shown in Fig. 1. As depicted in Fig. 1, BBU
baseband signal functionalities (including physical, mac and
layer 3), which require most of the processing resources, are
relocated from RRH site to a collocated site i.e. the cloud [5,
7, 19]. However, RRH is still responsible for tranceiving radio
signals, amplification of signal power and A/D conversion.
Interface between RRH and BBU modules is named CPRI
(Common public radio interface) and is still in progress [7, 9].
In Fig. 1, we see high-level C-RAN architecture with
associated components. The virtualized network consists of a
group of virtual nodes and virtual links. As demonstrated by
authors in [5, 7, 9], deploying the virtual networks for the
heterogeneous network architecture promotes flexible control,
low cost, efficient resource usage, and diversified applications.
Network operators may benefit from the advents in the fields
such as cloud computing, virtualization and software defined
networking (SDN) [2, 3, 18].
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Fig. 1: C-RAN architecture for mobile networks.
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With the evolution of the C-RAN, cellular network
operators may experience following benefits:

(1) Reduced cost: Since computing resources are aggregated in
a single room, deployment as well maintenance cost for
separate BBUs can be saved.

(2) Increased energy efficiency: Since power consumption and
load congestion can be reduced by dynamically allocating
processing capability and migrating tasks in the shared pool,
energy efficiency may be improved significantly.

(3) Improved spectrum utilization: C-RAN enables sharing of
channel state information of each base station-mobile station
link, traffic data, and control information of mobile services
among cooperating base stations, resulting in improved
spectrum utilization [5].

(4) Improved resource utilization: As computational and other
resources are shared, overall resource utilization can also be
significantly improved.

(5) More scalability: As RRH site can easily be deployed or
undeployed as per the need, without worrying about
installation of BBUs. Such new sites can be multiplexed with
existing centralized BBU [20].

Despite such great advantages provided by the C-RAN
architecture, there is no explicit support for the mobile
operators to deploy their BBU services over the virtualized
infrastructure, which may lead to the ad-hoc and error-prone
service deployment in the BBU pools. Given the importance
of C-RANs and yet the ad-hoc nature of their deployment,
there is a need of automated application delivery in the context
of cloud-based radio access networks to fully leverage the
cloud computing opportunities in the Internet [14]. OpenADN
is a novel approach to facilitate multi-cloud service
deployment and application delivery by extending the concept
of control and data plane separation proposed by the
“Software-Defined Networking” (SDN) architecture [2, 12].

Cloud management platforms such as OpenStack,
Amazon EC2, Google Cloud, OpenDaylight and many others
automate the single cloud management process. Such cloud
management platforms address the problem of automatic
virtual resource creation, but from a single-cloud perspective.
On contrary, OpenADN manages the application and service
delivery across diversified platforms [1, 3] over distributed
multi-cloud scenarios, which is a prevalent condition for C-
RANs. For scalability, OpenADN is implemented as a
hierarchical model, with “Global Controller” being the
centralized management entity. At each site (cloud or data-
center), “Local Controllers” are deployed to manage each
cloud site locally [1, 2]. Hence, we may take advantage of
these cloud management entities to automate the VM
instantiations across multiple clouds for service deployment
for BBUSs.

OpenADN heavily relies on the concept of the Network
Function Virtualization (NFV) for end-to-end application
deployments. NFV is an enabler for the Service Function
Chaining (SFC) in the recent years, which allows network
services to be deployed at software level contrary to the ad-
hoc hardware implementation [10-13]. In this work, we aim to
enhance OpenADN by adding new interfaces (or APIs) that

will facilitate the communication among OpenADN and other
cloud management platforms instances, so that service
deployment process in the collocated BBUs over clouds is
automated for the cellular network providers. We call this
novel and updated platform as Multi-Cloud Application
Delivery Platform (MCAD). The rest of the paper is organized
as follows. In section IlI, we provide overview of the
OpenADN architecture. In section 111, we discuss the proposed
solution. Section 1V discuss the implementation details and
present the observations. Finally, section V concludes the

paper.
I1. OPENADN ARCHITECTURE

In this section, we have a quick look at the detailed
architecture of the OpenADN platform. OpenADN is a novel
Software Defined Infrastructure (SDI), which aims to service
the current physical infrastructure by automating the
application delivery process across multiple clouds [1, 3, 6]. In
the contemporary networks, infrastructure components, such
as VMs, need to be configured manually, which adds to the
complexities and operational expenditures (OPEX) of service
providers as well as the network operators. This eventually
leads to lesser revenues for operators and high price to the end
users as well as ad-hoc growth of the networks. OpenADN
makes use of the advancements such as Network function
virtualization (NFV) to deploy services across multiple clouds
and then forming the service chains [1, 10, 11]. In addition,
various cloud level management software exists to date, such
as OpenStack, CloudStack, EC2, Eucalyptus, OpenDaylight,
and FloodLight. However, they have been used for the
management of entities within a single cloud. Hence, for the
multi-cloud operations, such as management of the BBU
functionalities over C-RANSs, it is imperative to find a way to
communicate between OpenADN and cloud managing entities
to manage cloud platforms automatically.

In addition, none of the single-cloud management tools
allows operators to set and customize their application
services and let them manage and choose the best cloud
location to deploy the services. However, OpenADN, a novel
architecture allows such multi-cloud deployment with
functionality such as load-balancing feasible [3]. Before we
explain the proposed solution, it is imperative to have a quick
look at the existing implementation of the OpenADN
platform. Fig. 2 displays a detailed block structure of
hierarchical model of OpenADN [1, 6]. As we observe, there
in one logically central entity called “global controller”.
Though, there is only one logical global controller shown in
the diagram, the system may have two or more physical global
controllers for redundancy and fault tolerance.

For each data-center site or for each cloud, there is a data-
center controller called a “local controller”. Set of IPs and
port numbers pertaining to each local controller are
maintained at global controller level to enable end-to-end
communication. Local controller has the custody of that
particular data-center or cloud and its resources. All VMs
belonging to that application within that data-center are



instantiated and managed by the local controller. Depending
on the total VMs available and capacity of each VM, local
controller reports total available resources to global controller.
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Fig. 2: Detailed block diagram of OpenADN (Source: [1])

The network operators may connect to the system using
proxy servers. Demands for the resource are monitored by the
global controller, which performs the load balancing and
sends commands to local controller regarding how many
instances of each BBU service need to be started and on which
particular VM instance. For further details on OpenADN
architecture, the communication mechanism and message
formats, please refer to the works in [1, 3, 6].

In this work, we propose development of APIs for
OpenADN at local controller level, so that the required VM
instances may be launched automatically and made available,
as user demands vary. Whenever the commands are received
from global controller, the required virtual machine instances
can be brought up (or instantiated) automatically at the local
site using local controllers. Once VMs are up and running,
required BBU functionalities can be deployed on these VMs.
In this work, we focus on integration of OpenADN with
OpenStack, calling the novel platform as Multi-Cloud
Application Delivery Platform (MCAD). We believe the work
can be extended for other platforms such as EC2 or Google
Cloud and others. In Section Ill, we describe our proposed
solution for the integration between local controller of
OpnADN and cloud management software OpenStack.

I11. PROPOSED SOLUTION

We now present our proposed Multi-Cloud Application
Delivery Platform (MCAD) for the end-to-end automated
delivery of the BBU services. MCAD is an architecture, which
is a combination of application delivery platform OpenADN,
virtualization software such as OpenStack [4] and a set of
communicating APIs. Fig. 3 shows the proposed MCAD
architecture. We propose to develop an API layer between
OpenADN (local controller module of OpenADN to be
precise) and cloud management platform, such as OpenStack.
The API layer is a separate entity so that it can be extended

easily for other platforms as well. In this work, we concentrate
on the integration between OpenADN and OpenStack. Though
API layer is a separate entity, it is under custody of the
OpenADN platform, as the local controller will be invoking
the API scripts to launch the required VMs on the physical
machines using OpenStack. Once the VMs are launched, “host
script” automatically runs on the VMs. Host script guides VM
to connect to local controller for further operations.
Depending on the number of virtual functions for a given
service, and their instances, load balancing algorithm launches
various instances on the available VMs. The soft-routing table
is maintained by OpenADN to keep track of which virtual
function is launched on which IP and listening on which port
number, so that a smooth end-to-end communication is
achieved. For more details on the various communication
aspects of the OpenADN, please refer to the works in [1, 3, 6]
as the detailed discussion of OpenADN is out of scope of this

article.
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Fig. 3: Approximate schematic representation of MCAD Architecture

#! /bin/bash
# 1-To create a new snapshot of a running VM
nova image-create <instanceid> <name of snapshot>
# It may be <instanceid> or <name of the original VM>
#2- To view the status of the created snapshot
nova image-show <name of snapshot>
nova image-list
# 3- To download the snapshot
glance image-download <Image ID> --file filename
# 4- To create upload the snapshot image to OpenStack if it does
#not exist
glance image-create --name "name of the image" \
--is-public <true/false>\
--disk-format <DISK_FORMAT>\
--container-format <CONTAINER_FORMAT> \
--file <image path>
#Disk format in our case is qcow2 and container format is BARE
#5- login to VMs
ssh -i /home/appfabric/.ssh/id_rsa.pub ubuntu@Privatelp
#Or for GUI:
ssh -1 /home/appfabric/.ssh/id_rsa.pub -Y ubuntu@Privatelp

Algorithm 1: Scripts to create VM snapshots.




APl communicates with APl handling layer of OpenStack
on South side. On the North-side, it is connected to the output
channel of the local controllers of MCAD. We now describe
the development of API layer and scripts that are developed to
build a set of APIs. Sample script developed for this purpose
is specified in the Algorithm 1. Please note that a set of VM
images are already prepared using OpenStack and a pool of
such VMs is available in-hand. That is, for the first time
execution, a script file in Algorithm 1 needs to be invoked to
create snapshots of the available VMs. However, the
snapshots of these VMs may be launched whenever needed at
runtime using simpler invocation commands only. The script
files are invoked from the local controller module of MCAD
after a communication channel is established between the
global controller and the local controller. Algorithm 2 shows a
script to launch the VMs from the available snapshots created
in the earlier steps. Again, inline comments in the script
explain the respective commands in detail. For more details on
the concepts such as Fixed IPs, Floating IPs, Security Groups,
Key-pairs and others, readers are requested to refer to the
OpenStack documentation [4].

#! /bin/bash
# Openstack needs ssh keypairs to make image
#Read corresponding values here.
# To create 2 VMs
for i in range(1,3):
#assigning floating ip to the public network to
#to be connected with the Internet
floating_ip =
nova.floating_ips.create(nova.floating_ip_pools.list()[0].name)
print ("Public Ip address for vm %2d is: %s" %(i,floating_ip.ip))
#assigning the image os
image = nova.images.find(name="ubuntu")
#assigning the flavor
flavor = nova.flavors.find(name="m1.small")
#attach the vm with a network
network = nova.networks.find(label="private")
#creating the vm
server = nova.servers.create(name = "vm%d"%(i),
image = image.id,
flavor = flavor.id,
network = network.id,
key_name = keypair.name)
statusOfVm=server.status
server.add_floating_ip(floating_ip)
#Set the security rules and print the status.

Algorithm 2: Scripts to launch VMs from the snapshots.

Fig. 4 shows the schematic representation of OpenStack
architecture and displays where exactly our APIs execute from
OpenStack perspective. Our APl layer communicates with
API handling layer of OpenStack on South side. On the north-
side, it is connected to the output channel of the local
controllers of MCAD. We have used Ubuntu 14.04 as an
operating system (OS) [7, 8]. Both MCAD and OpenStack are
compatible and work well with the specified flavor of this
operating system. We have preferred Python and BASH
scripting language to write the APIs as these scripting

languages are compatible with most of the existing systems
and are easy to implement as well [5].
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Fig. 4. Approximate schematic representation of the OpenStack
Architecture (Source: [1]).

A set of script files can be written and made available using
the API layer for various cases, such as different invoking
different types of VMs or allocating different resources to the
VMs and others. A particular script file is invoked from local
controller based on the user traffic load so that required
number and type of VMs may be launched. A parameter for
average load per VM is specified in the configuration file for
local controller. This parameter specifies what should be the
maximum load on each VM. Please note that a care has to be
taken to modify the port numbers and IP addresses in these
scripts as per the system under consideration. We have tried to
use as generic variables as possible, however under some
circumstances the values might vary. Also, please note that
these scripts need to be supported by other scripts to read
environmental variables and other credentials such as user-
name and password, which are not included in this work.
Inline comments in these scripts explain the respective
commands in detail. Nova component controls the cloud
computing fabric in OpenStack. Nova interfaces with several
other OpenStack services. Nova communicates with Glance to
supply images of the VMs [4]. In short, with the help of
Glance, Nova provides virtual servers upon demand. To login
into the VMs created, user needs to use Secured Shell (SSH)
with the private IP of that VM. Later on, the script files are
invoked from the local controller module of MCAD as per the
user demands, to launch the VMs. In the next section, we
discuss the implementation aspects of the proposed solution
and discuss our observations.

IV. IMPLEMENTATION AND OBSERVATIONS

In this section, we describe our experimental evaluation.
The VMs may be launched or shut down as per the user
demands and requirements vary. Depending on the number of
users, the number of required VMs is calculated by a simple
mathematical calculation given below. For example, consider
a simple scenario where a set of BBU functionality consists of
three services. Let us assume each service can handle 100 user



requests per second and the network operator needs to handle
200 user requests per second. This means the operator needs
two instances of each VNF, that is in total six (3 x 2) VNFs to
be deployed. Also, let us assume each service instance needs
25% of VM resources and we have three VMs, which are
ready to be launched. If load parameter is set to 80%, then
each VM can accommodate total three instances of the VMs
(since it will make total load on VM equal to 25 x 3= 75%).
Hence, we need only two VMs to be launched. However, if
the load parameter is set to 60%, each VM can accommodate
only two instances of each service, mandating all three VMs
to be launched. Sophisticated data-plane management
software such as OpenDaylight [15] maybe integrated with
MCAD using similar set of APIs to achieve flexible control
over the underlying data-plane.
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A state diagram of the VMs and OpenStack is shown in Fig.
5. The system initializes itself and stays at the initializing state
until all the controllers are ready. OpenStack module will also
be in a started state and then it will move to initializing state.
Once OpensStack shifts to connected state, that is, a successful
connection between local controller module and OpenStack
module is established, the system will be in ready state and it
can receive requests messages.
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Fig. 6: 3-Node topology for testing.

As soon as it receives a request for VM creation from the
local controller, it will move to “Creating VM” state. Virtual
machines will be initialized. Once they are active, OpenStack
module will be notified accordingly. Finally, the services will
be instantiated on appropriate VMs and a soft-routing table
created by MCAD module will enable end-to-end
communications. To test the APIs, we have created a 3-node
topology where each node may be considered as a cloud or a
data-center as shown in Fig. 6. We have used laptops with 8
Gbps RAM and quad-core CPU at 2.7 GHz to represent a
data-center at each node. Each laptop is equipped with
Ubuntu, OpenStack and MCAD installed on it. Generally,
BBU functionalities are a set of inter-dependent services,
where traffic flows among various instances of services to
complete the functionality [19]. We call such interconnection
among various instances of the services as a workflow. We
have considered a workflow with five services (called Nodes)
to represent a complete BBU functionality. Please note that
the number five is just for the convenience and actual BBU
functionality many have different number of services. The
workflow file represents a flow of services to complete a
particular functionality at BBU. The workflow we have
considered for our testing purpose is given in the Fig. 7. We
use XML to represent such workflows. Each node represents a
service and connections among services are shown with output
and input ports.

[01 [0]
Node4

> Output port

. Input port

Fig. 7: Workflow used for testing (Source: [1]).

We have generated dummy HTTP client requests for the
testing purpose. We generate 2000 such requests per second.
Each request needs to be traversed through each service
mentioned in the workflow to emulate a satisfied or fulfilled
user demand. Also, three snapshots of the VMs are created
using the script shown in Algorithm 1, which are ready to be
launched with the help of APIs, whenever required. Each
service performs some dummy tasks consuming 40% of RAM
and CPU of the VMs. Load parameter for the VMs is set to
80%. For five services of the workflow to be execute, all three
VMs need to be executed. We observe that, a successful
communication channel is established between MCAD and
OpenStack using the APIs, with all three VMs launched



successfully. Load balancing is achieved on all three VMs as
expected. The experiment demonstrates successful and smooth
functioning of the APIs for OpenStack achieving end-to-end
automation in deployment of the BBU functionality in the
virtualized pool of the resources using MCAD. As indicated
earlier, the work can be extended to accommodate the APIs
for other cloud management platforms such as EC2, Google
Cloud, Azure and many others. In addition, we believe that the
work done for the control-plane integration can be easily
extended to integrate data-plane management software such as
OpenDaylight with MCAD. Similar set of APIs may be
developed to automate the communication between MCAD
and OpenDaylight to achieve a sophisticated control over the
data-plane, which will provide more flexibility over traffic
flows and interconnectivity among the service instances at the
collocated BBUs.

V. CONCLUSIONS

In this work, we have proposed a solution to achieve
automated end-to-end service delivery for baseband units in C-
RANs using Multi-Cloud Application Delivery Platform
(MCAD) platform, an extension of OpenADN and the
OpenStack cloud management software. We have developed a
set of APIs, which successfully communicate with MCAD and
OpenStack and interchange the commands. The required
virtual machines for the delivery of the services are instantiated
automatically by forwarding the commands from local
controller of MCAD to OpenStack with the help of these APIs.
Various virtual machine configurations can be specified using
the parameters in the APIs. We also demonstrated the usability
of the proposed solution with a three-node setup. We assumed
dummy services for a hypothetical cellular network operator
and demonstrated successful deployment. Same methodology
can be used to extend the interoperability of MCAD with other
cloud management platforms such as EC2, Google Cloud,
OpenDaylight and others for efficient and scalable C-RAN
platform, to fully leverage the advantage of cloud computing.
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