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Abstract — The Internet has evolved immensely since its inception to being a network of academic and 
government institutions to its present magnanimous commercial avatar. It is currently deemed to be 
the single largest resource for information and services. From the times it was managed by central 
authorities, first by DARPA and then by NSF, the present internet has matured to become a 
commercially driven, distributed structure with minimal centralized control. The availability of 
large-scale distributed heterogeneous networks and multiple services makes it important to identify 
all the computing and non-computing entities and the different services that are a part of it. So when it 
comes to considering the design for the next generation internet, the naming problem becomes an 
important issue. In this paper, we try to present a comprehensive, systematic and objective discussion 
on the naming problem. We present a three-dimensional model of naming to outline some of the major 
research contributions in this area. The model includes three planes: management plane, transport 
plane and control plane. We classify all the current naming schemes into these three planes according 
to the difference in focus of the schemes. A detailed analysis and comparison of these schemes is given 
according to the three-plane classification model. We try to provide a wholesome discussion on every 
aspect and dimension of the naming problem and try to make our discussion objective through 
evaluations, comparisons and evolutionary walkthroughs, wherever relevant. The objective of this 
study is to gain better understanding of past naming systems to allow designing  future naming and 
addressing schemes for the Next Generation Internet. 
 
Index Terms—Identity, Name, Naming, Addressing, Next Generation Internet, Next Generation 
Network, Identity location split 
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1. INTRODUCTION 

WITH the impressive development of the modern Internet over the last few decades, the connectivity, 
reachability and accessibility of the internet has seen an exponential growth. It is the single largest resource           
for information and communication in the present world. Along with the evolution of the internet, the number 
of network-able devices has seen manifold increase, both in number and diversity. Individuals can now 
connect to the internet through a diverse plethora of devices, e.g., desktop personal computers with Ethernet 
adapters, laptops enabled with wireless function, mobile PDA or WAP embedded mobile phones, etc. 
Numerous new and exciting services are being offered over the Internet and are testing its capabilities to the 
limit. All these computing and non-computing entities, resources and services, and their users need some 
mechanism for identification and address. Informally, this process of assigning names or identities to objects 
is called naming, and the mapping of names to a specific address and route, and arriving at the object with 
specific resources is called name mapping or name resolution.  
 
A good naming scheme should be able to  provide human-friendly names for entities, easy and extensible 
name syntax, structural and systematic name management , scalable and secure system architecture, name 
consistency, support for mobility,  and easiness of name lookup and service discovery. These essential 
aspects form a series of very basic and crucial evaluation criteria, which are very important factors in 
designing a naming scheme, and they will be addressed in this survey in greater details. 
 
Since 1980s and 1990s, before the deployment of the DNS (Domain Name System) [46]  as the de facto 
naming standard on the Internet, a lot of research projects had already been undertaken on the naming 
problems for different kinds of network architectures  running on different protocols, such as Grapevine [10], 
Clearinghouse[51], and V-System [13] [14]. These primitive schemes tried to solve specific problems 
relevant at that time, and inevitably could not meet all the requirements of a good naming scheme, especially 
in today’s context. URI [8][9][19][45] and DNS seemed to be the only naming scheme that became popular 
and were widely adopted and used. However, with new services and new requirements being introduced, the 
current URI and DNS dominant Internet is faced with some serious challenges as to how the static naming 
scheme could name dynamic objects and keep the names consistent, how to address the mobility and 
multi-homing issues, how to solve the security problem, how to support service discovery, and how to 
provide anycast and multicast functionalities. 
   
 In this survey, we try to put forth an objective discussion of most of the naming schemes of the past decade, 
analyze them and put them into a three-dimensional naming reference model (shown in figure 1) according to 
the naming issue they address. The model will be explained late in section 3. We also compare different 
schemes according to a series of evaluation criteria. By doing this, we hope to better understand the essence 
of the naming problem, and gain a more precise view on what the future naming schemes should be like. 
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                                                             Figure 1: Naming reference model 
 
The remainder of this survey is organized as follows. Section 2 is a brief explanation of some of the 
terminologies related to naming and addressing that we use in this paper. In section 3, we explain the 
three-dimensional naming reference model, the respective function of the three planes, and why we use this 
reference model to study various naming systems. We then analyze the schemes belonging to these planes 
accordingly in part 4, 5, 6, and 7. The comparison and the evaluation criteria also are given in these four 
sections. After we discuss some non-typical naming schemes in section 8, we then move on to discuss the 
future directions of naming schemes in section 9 and finally, we conclude the survey in section 10. 
 

2. TERMINOLOGY 
 
Name: A syntactic entity that denotes an object [11]. 
Namespace: The collection of all valid names. 
There is also another alternative definition in RFC 2611 [18] which give the meaning as the collection of 
unique identifier that have already assigned. Comparatively, our definition is more practical and general. 
Address: An intermediate identifier between a name and a route [25] to the destination on which the 
resource or the service resides. 
Address space: The collection of all the valid addresses. 

   Naming reference model: The three-dimensional reference model we propose to illustrate the key research 
issues on the field of naming, which includes the “Management Plane”, “Transport Plane” and “Control 
Plane”. 
Not all the three plane function are addressed and provided by every naming scheme. Some only provide part 
of a specific plane function. 
Management plane of naming: The plane that is in charge of the rules of the alphabet, syntax/semantics, 
namespace, name assignment, and name organization.  
It decides the syntactic and semantic rules of the naming of different objects. This plane focuses on the 
management function of the pre-defined rules of naming. 
Transport plane of naming: The plane that is in charge of the identity-location decoupling among different 
layers, name resolution, name binding, routing, mobility and multi-homing, and security policies. Transport 
plane functions focus on name mapping and transporting data to the destination designated by name.  
Control plane of naming: The plane that is in charge of the registration of clients, name lookup, service 
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discovery, name server replication, and name proxy. Control plane functions focus on structural control 
keeping the naming services available and effective. 
Name resolution: The mapping from a name to an address, or more generally, the mapping from the 
namespace to address space. 
Name organization: The structure of the name servers and the namespace partition policies. It could be 
centralized, hierarchical, or fully distributed. 
Name extensibility: The ability of naming systems to support extension of names, i.e., whether the name is 
expandable. For example, most of the descriptive names are expandable to accommodate new attribution of 
services. 
Name scalability: The ability of naming systems to support scalable structure of name servers. Good 
naming scheme should be scalable and suitable to be deployed in large-scale heterogeneous networks. 
Name consistency: The ability of naming systems to keep the names consistent across the whole system 
while allowing replication, caching,, and support for dynamic names. 
 

3. REFERENCE MODEL OF NAMING SYSTEMS 
 
Generally speaking, a naming scheme may consist of different aspects such as scalability, mobility of 
end-hosts and hence changes in name mappings, mobility of services, security, etc. Some of these aspects 
may be related while others are independent of each other. Moreover, different naming schemes always try to 
solve specific problems concerned with specific aspects under specific conditions. For example, Grapevine 
[10] was designed in1980s to build a primitive electronic mailing system for a relatively small network. 
Currently there is no single naming scheme that addresses each of these aspects fully and comprehensively. 
Furthermore, the development of technology and new research progress in naming has introduced new 
functions and structures.  
 
We propose a naming reference model to provide a comprehensive and wholesome discussion on every 
aspect of naming and addressing systems that we deem relevant. Our study captures some of the most popular 
naming and addressing schemes and classifies them into logically independent planes of the reference model.  
By doing so, we make an effort to delineate the problem into orthogonal planes, such that they may be more 
logically meaningful and individually addressable. 
 
Ahmed [2] gives a survey on the service naming problem on large-scale and multi-domain networks. Some 
schemes related with service naming are introduced and compared according to a series of criteria defined by 
the author. However, the author did not introduce any clear model for the basis of the discussion, and simply 
used a set of flat criteria for the schemes that may belong to different functional planes. This makes the 
survey incomplete in terms of coverage as well as logical classification.  
 
By introducing the naming reference model, we try to cover many more  aspects of the problem as relevant in 
today’s Internet scenario.  
As shown in figure 1, our naming reference model is a three-dimensional model. It includes three planes: 
management plane, transport plane and control plane. The three dimensional model does not however imply 
that all the attributes in each plane is covered by the current naming schemes, but rather implies a directive as 
to what a good naming scheme should essentially implement. In the following parts, we will discuss the 
function of these three planes in greater detail. 
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3.1 Management Plane 
 
This plane are relates to the format, grammar, and management of name assignment and name organization. 
For any naming scheme, these aspects need to be defined and designed  before the scheme can be 
implemented.  
 

 

 
Figure 2: Functions of management plane 

 
As illustrated in figure 2, the management plane is responsible for the following functions: 

• Alphabet: The alphabet used to constitute a name can include digits, letters, ASCII codes or Unicode. 
It can also be a combination of parts or all of the above depending on the design of the protocols. 

• Syntax/semantics: The syntax/semantics of a naming scheme concerns the organization of name 
components to form a name and the meaning of these components. The semantic aspects relate to 
whether the scheme is human-friendly and easy to understand. According to syntax/semantics, the 
structure of names can be characterized into three ways: flat, partitioned, and descriptive.  

  
A Flat name has no internal structure and generally consists of a non-human readable string to 
constitute a unique identity. For example, UUID [40] uses a string of 128 bits to denote a name. 
 
Partitioned/Hierarchical names use a “.” or “:” to divide different parts of a name. The sequence of 
the parts between the divider may represent the domain and sub-domain order (as Clearinghouse [51] 
and URL [9]). These partitioned and hierarchical names have the advantages such that the size of 
individual databases in a sub-domain name server is reduced and partitioned namespace are and easy 
to administrate. However, such partitioning can also result in lower performance than a flat 
namespace if the depth of the hierarchy is large thereby increasing the cost of searching and mapping 
a name. That explains why Clearinghouse and DNS restrict the depth of the hierarchy. 
 
Descriptive names use a series of “attribute-value pair” to name an object. These attribute-value pairs 
describe the properties of the object to be named. Descriptive names are especially useful to name a 
service. For example, when a user wants to get a specific service from the Internet, but doesn’t know 
where this service is located, he/she could send out a query with the set of properties that he/she 
deems relevant to the service. The name servers could resolve the user query by looking  descriptive 
names tables and returning all the services with the requested properties. Several naming schemes, 
such as Profile Naming Service [55], INS [1], and Solar [12], use descriptive names. Intuitively, the 
partitioned naming scheme (such as URL [9]) could also be seen as a form of descriptive name with 
strict structural constraints. Table 1 gives a brief comparison of the structure of the names. The 
advantage and disadvantage of each kind of structure are also illustrated and compared. 
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Table 1: Comparison of the organization of name components 

 
 

 
• Namespace: The design and composition of the namespace are closely related to the syntax of the 

naming scheme and the organization of the naming systems. For example, URL uses a partitioned 
hierarchical name and the namespace is split into different domains and sub-domains which can be 
managed separately. The namespace could be finite or infinite depending on the design. For example, 
UUID scheme uses 128 bit strings as name, therefore, results in a finite namespace of size 2128. Most 
of the other naming schemes have infinite namespace. 

• Name Assignment and Organization: A name could be assigned and organized in a centralized, 
hierarchical or fully distributed manner, and the namespace could be controlled by a centralized 
organization (for example, the social security numbers of people in the United States are managed by 
the Social Security Administration) or split between hierarchical domains (for example, URL [9], 
INS [1], Solar [12]), or even in a fully distributed way (for example, UUID [40]). Table 2 gives a brief 
comparison of the three different mechanisms of assigning and organizing names. The advantages 
and disadvantages of each mechanism are also given. The comparison clearly shows that when 
considering scalability, performance and fitness for large scale network architectures, hierarchical 
and fully distributed mechanisms are best.  

 
 
 
 

Table 2: Comparison  of name assignment and organization mechanisms 
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3.2 Transport Plane 
 
The transport plane deals with the architectural issues in name resolution framework. Every naming system 
requires a framework wherein the names are resolved to concrete objects. The key design issues in such an 
architectural framework are scalability, security, support for mobility and heterogeneity, and administrative 
and infrastructural overheads. 

 
The current Internet depends on a static domain name (DNS) to identify an object and map it into IP address.  
IP addresses are semantically overloaded with the dual role of being a locator as well as an identifier [63]. 
Caching and replication mechanisms make it difficult for DNS to support emerging mobility and 
multi-homing requirement. Mobile IP [31][53][54] tries to decouple the name and the locator with a HoA  
(Home Address) and CoA (Care-of Address), in which, HoA acts  as an unique identity and CoA acts as a 
locator thatchanges as the mobile host changes its point of network attachment.  HIP [3][36][48][64] uses 
Host Identity and Host Identity Tag as the identity. Here, Host Identity is a public key and Host Identity Tag 
is a hash of the public key. HIP detaches the naming function from the IP address and supports mobility and 
security. HIP is one of the most promising recent advancements in this area and the HIP working group at 
IETF is presently working on various HIP extensions in order to cover all the relevant issues.  
 
In discussing the transport plane, we make an effort to study various naming scheme architectures which try 
to address the problems of IP semantic overloading, naming and addressing across heterogeneous contexts, 
and scalable addressing of flat namespaces. In section 4, we analyze and compare several schemes on this 
plane, such as HIP, FARA [16], DoA [71][70], Layered Naming Architecture [4], I3 [68], Hi3 [24][49], 4+4 
[76], and Plutarch [17] among others. 
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3.3 Control Plane 
 
Control plane functions are concerned with the efficiency, reliability and security issues of maintaining the 
architectural structure the naming system. Most of the naming schemes have some architectural structure 
with the exception of UUID, which uses a 128 bits flat name and does not specify any name resolution 
architecture. Since for most of the large-scale, heterogeneous networks, it is necessary to construct and 
maintain a unified and structural name organization. Some naming schemes adopt a hierarchical structure 
while others are fully-distributed. Both of these two structured name organizations have many advantages. 
For example, namespaces are divided into independent small domains and easy to maintain and extend; 
different parts of the system are deployed independently and donot influence each other, and will not cause 
any single point of failure problem. 
 
However, compared with flat names without any structure such as UUID, hierarchical or fully-distributed 
naming schemes could bring extra costs, e.g., the overhead of maintaining the structure of the domains and 
the management cost of internal and external communications. So in the control plane function of naming 
system reference model, our discussion focus on how to maintain the efficient, reliable and secure 
architecture of naming systems. Related to these problems, there are series of issues such as name resolution, 
service discovery, name caching, name replication, and name proxy. For example, naming system such as 
URI, in which caching and name lookup function are provided, and naming system such as INS and Solar, in 
which service discovery mechanism are provided, in each domain, there are one or more name servers 
performing the specific functions, so these servers must handle all the control functions and routine 
communications between the clients and the servers. At the same time, the servers should keep track of the 
names changes of the objects and update these information in their database and probably multicast it to the 
neighbors to keep the information correct and consistent among the whole networks as soon as possible [41]. 
Moreover, to keep the naming system reliable and available, there may be some replications between these 
servers. And some name proxies servers may be provided to address the NAT problems in naming systems 
[70][71]. 
 
So from an architectural view, for a naming scheme designed for large-scale and heterogeneous networks, the 
control plane function is necessary to keep the naming service available, reliable, efficient and secure. In the 
following section, we will address these function and issues in detail. 
 
To summarize, in this section, we discussed the naming reference model and the three planes function 
separately. We also address the reason why we propose this model and its significance of serving as a guide 
for our future research. Through this reference model, we also could dissect and classify the current 
considerable researches related on naming. In the next part, we will discuss the current available schemes 
focused on the functions of three planes respectively. For every plane, to introduce the schemes, we firstly 
give brief introduction and then try to give a set of evaluation criteria, by which we could compare them and 
get a clearer understanding of different schemes. 

4.           BRIEF INTRODUCTION AND ANALYSIS OF MANAGEMENT PLANE NAMING SCHEMES 
 
Since 1980s, dozens of naming schemes that focused on the management plane functions were proposed 
based on the technical requirements and constraints of that time. Different naming schemes were designed 
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for meeting different application needs. Some focus on specific applications for small-scale networks (for 
example, Grapevine [10] and Clearinghouse [51]), and some address the IPC (for example, XRL [73]), the 
file system (NFS [67] and CIFS [66]) while others were proposed for use in large-scale Web Services (HFN 
[6]) and generalized resource naming in the internet (for example, URI). Some new proposals were made for 
service naming, mobility, multi-cast and any-cast problems in large scale networks (for example, INS and 
Solar). In this section, we will briefly discuss some of the naming systems which are relevant to the research 
on this area. Basically, according to our three-dimensional naming reference model, most of these schemes 
focus on the function on the management plane, that is to say, the syntax/semantics, name assignment and 
management, and name system organization. Based on this, in section V, we propose some evaluation criteria 
upon which we shall compare the various schemes in order to gain relative comparative understanding of the 
schemes together.  
 

4.1 Grapevine 
 
Grapevine [10] was one of the first large-scale distributed naming systems, proposed in 1982 by Xerox.  
It was designed to be a computer mail delivery service for the  Internet. It was a prototype of the present email 
system. It also offered authentication and access control services for the clients. 
 
Grapevine maintains a “registration data base” on name servers for mapping names (users, machines, or 
services) to the information about the name. Every entry in the database is called an RName. The namespace 
organization of RName is a two-level hierarchy. The form is like “F.R”, where R is the registry name and F is 
the object name within the registry. Registries represent organizational, geographical, or other potential 
administrative partitions. Registries are the unit of replication and distribution in Grapevine.  
 
There are two types of Grapevine servers: registration server and the message server. They are two different 
logical entities but may reside on the same Grapevine server.  
 

 
Figure 3: A Grapevine example 
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As an example, figure 3 gives the mail delivery procedure of Grapevine. Suppose the user named “P.Q” want 
to send an electronic mail to user named “X.Y”. When the user has prepared the message using a certain 
client program, the client program will call the mail delivery function GrapevineUser to contact some 
registration server (in this example, it is registration server “A”). GrapevineUser also uses Grapevine 
location function to locate any message server (in this example, it is message server “B”). Server “B” will 
also use resource location function to determine the recipient’s best inbox site (it is message server “C” in 
this example), server “C” will buffer the mail message locally waiting for X.Y to retrieve. The registration 
servers, in which the registry names reside, play an important role during the process of name resolution and 
locating the message service. 
 
Grapevine also provides replication functionality. It provides a pseudo registry, GV (Grapevine) that 
contains information on all other registries. GV registry is replicated in every registration server. The GV 
registry controls the distribution and replication of the registration database, and allows clients to locate 
appropriate registration servers for particular RNames. 
 

4.2 Clearinghouse 
 
Clearinghouse (CH) [51] was proposed in 1983, also by Xerox. It evolved from the early version of 
Grapevine [10]. It is used mainly to name mailboxes, users and servers. It addresses the problem of naming 
and locating objects in a distributed environment by providing a decentralized server named “Clearinghouse” 
for supporting the naming of these distributed objects. The namespace of the Clearinghouse is managed by a 
collection of Clearinghouse servers. Each server manages a portion of the global namespace, but the 
namespace is not strictly partitioned between servers. Clearinghouse also provides replication between 
servers. Clearinghouse provides a three-level hierarchical namespace, and Clearinghouse names are of the 
form “L:D:O”, where L is the local name, D is the domain, and O is the organization. Clearinghouse maps 
each name into a set of descriptive properties of the form like <PropertyName, PropertyType, 
PropertyValue>, the PropertyType could be item or group. As shown in the example in figure 3, each 
PropertyName must be globally registered through a naming authority. Since the Clearinghouse bind the 
name with a set of properties, Clearinghouse can store arbitrary information about any named object. 
 

4.3 V-System 
 
V-System [13][14] was an experimental project of Stanford University in 1989. It is a distributed operation 
system designed for a cluster of computer workstations that are connected by a high-speed local-area 
network. V-System is not the name of the naming scheme, but within it, it uses some naming mechanism to 
name the files and programs, and these new mechanisms are of importance for the development of naming 
systems. So in this paper, we refer to “V-System” as the name of the naming scheme. 
 
The naming scheme used in V-System is a three-level naming architecture that consists of global, 
administrational, and managerial levels. It affords a decentralized approach to the lower levels, in which 
naming is handled directly by the managers of the named objects that implements the object, enabling the 
name mapping to be performed as part of the operation that refers to the  object by name. So there is no need 
to handle a separate lookup operation as in DNS. This mechanism of integrating naming with object 
management increases the efficiency of the name mapping and the reliability of the system. Moreover, the 
naming system provides client-based caching and multicast mechanism to optimize the performance and 
fault tolerance.  
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Figure 4 shows a concrete example of the integration of naming with object management, and three-level 
structure of V-System. In this example, “%edu” is the directory of educational institutions, whose entries 
include “%edu/wustl”, for the organization, Washington University, and “%edu/uiuc” for University of 
Illinois. “%edu/wustl” is the highest –level administrational directory for Washington University, and 
“%edu/wustl/cts” is the root for a subordinate administration, called Computer Technology Service group. 
Since the managerial directory is implemented by the object manager that implements the objects named in 
the directory. The sub-trees rooted at the directory “%edu/wustl/cts/bin” and “%edu/wustl/cts/lib” are both 
implemented by CTS file server1, which thus covers all the names with prefixes “%edu/wustl/cts/bin” and 
prefix “%edu/wustl/cts/lib”, and accordingly, file server 1 stores all the files and directories under these two 
sub-trees. So is the situation in server 2. 

 
Figure 4: An example of V-System 

 

4.4 URI 
 
URI (Uniform Resource Identifier) [8] is standardized by IETF and is a naming scheme that is running on the 
current Internet as a de facto standard. It could be seen as the most successful naming scheme that is 
well-know and widely accepted by the industry. URI consists of two parts: URL (Uniform Resource Locators) 
[9] and URN (Uniform Resource Names) [19][45]. 
 
URL defines a compact string representation for a resource accessible via the Internet. URLs are used to 
“locate” resources by providing an abstract identification of the resource location. Having located a resource, 
a system may perform a variety of operations on the resource, as might be characterized by such words as 
“access”, “update”, “replace” and “find attributes”. In general, only the “access” method needs to be 
specified for any URL scheme. The URL general syntax is as follows: 
<scheme>: <scheme-specific-part>  
For the “scheme” part, URL defines a series of schemes such as “ftp”, “http”, “gopher”, “mailto”, “news”, 
“nntp”, “telnet”, “wais”, “file” and “prospero”. As a more common and concrete example of a URL is as 
follows: 
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http://cse.seas.wustl.edu/research 
In general, when a URL is given, the location of a specific object is decided, and the URL is always mapped 
by DNS (Domain Name System) into an IP address of the resource location.  
URNs try to provide location-independent and persistent resource identifiers for entities on the Internet. 
Different from the URL trying to “locate” the resource, URNs are intended to be designed to make it easy to 
map other namespaces into URN-space. 
URNs are distinguished from URLs by the initial “urn:” followed by a Namespace identifier (NID), a colon, 
and a namespace-specific string. The general syntax is as follows: 
“urn:” <NID> “:” <NSS> 
NID is the namespace identifier, and <NSS> is the Namespace Specific String. By now, there are twenty 
formal registered NIDs such as: “ietf”, “pin”, “issn”, “isbn”, etc. A more concrete example of URN is as 
follows: 
urn: isbn: 0-296-37351-2 
By defining syntax like this, it is easy to map other namespace such as ietf, isbn, issn, even UUID namespace 
into URN space. 

4.5 XRL 
 

XRL (XORP Resource Locators) [43] is used to mediate the IPC (Inter-Process Communication) within 
XORP (eXtensible Open Routing Platform). XORP is an open source route platform for testing new routing 
software and new routing protocols. To provide robustness and extensibility for routers which run under 
different platforms using different operation system, an inter-process communication mechanism is needed. 
XRL realize this mechanism and is able to provide a consistent and transparent interface irrespective of the 
underlying transport mechanism used, for instance, SNMP or HTTP. XRLs are responsible for describing an 
inter-process calls and their arguments. It comprises the protocol family to be used for transport, the 
arguments for the protocol family, the interface of the target being called and its version, the method, and an 
argument list. 
 
XRLs’ name structure is very similar with URLs. Instead of representing a hierarchical resource location, 
XRLs’ syntax describes a human-readable form comprised of inter-process procedure call protocol and its 
parameters. Two formats of the same XRL are depicted in figure 5:  Unresolved form and Resolved form. In 
the unresolved form the protocol family is set to “finder” (as shown in figure 5(a)), and the protocol 
parameters set to the target name that the XRL call is intended for. Initially, a process passes the unresolved 
XRL to the “finder”, which returns the resolved form (as shown in figure 5(b)) with appropriate protocol 
family and protocol family arguments. After the resolution, the resolved forms of XRLs are typically 
maintained in a client side cache. 
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Figure 5: Example of two name formats in XRL 

 
The “finder” is actually a central process which performs the name resolution in XRL and  keeps track of all 
the registered target names and the communication protocols they support. The “finder” replaces the target 
name with a network address and “finder” with appropriate protocol, and sends it back the client. The client 
uses this resolved XRL to access the desired resource. 
 

4.6 UUID 
 
UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier) [40] are 128-bit 
identifiers and require no centralized authority for the administration and registration processes. So the 
generation of ID on demand can be automated and used for many purposes.  
 
UUIDs are of a fixed size and  reasonably small compared to other alternatives, and hence easy and less 
costly  to be allocated, sorted, hashed, stored, and programmed.  
 
UUIDs are generated locally and uniquely by a combination of components. UUID contains a reference to 
the network address of the local host, a timestamp, and a randomly generated component. So the uniqueness 
of these identifiers is guaranteed. Because of this uniqueness and persistence, UUIDs make excellent 
Uniform Resource Names with low cost. An example of string representation of a UUID is as follows: 
Uuid: f81d4fae-7dec-11d0-a76-00a0c91e6bf6 
 
A UUID is unique across both space and time. Since it has a  fixed size and contains a time field, it is  possible 
for the values to rollover (estimated to be around A.D. 3400). A UUID can be used for multiple purposes, 
from tagging objects with extremely short lifetime, to reliably identifying very persistent objects across a 
network. 

 
UUID does not specify name resolution architecture. Applications that use UUID for naming must provide 
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their own name resolution mechanism. e.g., in “Layered naming architecture”, ULD->SID->EID mapping 
structure, the SID use UUID. 
 

4.7 INS 
 
INS (Intentional Naming System) [1] was introduced in 1999 as a research project at the MIT Laboratory for 
computer science. Basically, it is a resource discovery and service location system for dynamic and mobile 
networks, which use a simple language based on attributes and values for its names. And the users of the 
application could use the descriptive language consisting of “attributes and value pair” to describe what kind 
of service they want, i.e., their intent, but not precisely where to find the resource, i.e. the precise IP address 
of the destination host. Different from conventional routing strategy based on IP address, the routing function 
in INS is decoupled from IP address by implementing a late binding mechanism that integrates the resolution 
from names to address and the message routing. The late binding mechanism makes it possible to support 
mobility when endpoint keeps moving and the name-to-address mappings keep changing. The name 
resolution function is fulfilled by an overlay application level of INR (Intentional Name Resolver), which is 
a self-organized network formed to perform the name mapping, service discovering, as well as the message 
routing. 
 
As for the syntax of INS name, INS integrates resource /service name and description into tree-like 
hierarchical descriptive names of attributes and values, called Intentional Names or name-specifiers. As a 
name example, in figure 6, it defines a name specifier for a public scanner, and all the properties of the 
scanner are organized into a tree (figure 6 (a)). It could also be represented into a wire format (figure 6 (b)). 
 
INS names are human-friendly and have fewer structural restriction than other naming scheme such as URLs 
and XRLs. INS names also have no restriction on the number of levels or the numbers of the children of a 
node, and hence the name is extensible. 
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Figure 6: Example of the two representation of an INS name 

 

4.8 Solar 
 
Solar [12] was an experimental project of Dartmouth College in 2003. It allows resources to advertise their 
names according to their context and allows applications to query these context-based names. Similar to INS, 
Solar also uses descriptive names whose attributes and value could be changed as needed. One of the typical 
usages of these attributes is for the location of mobile node. A major difference between INS and Solar is that 
Solar supports dynamic names (names changing all the time) while INS does not. An example of such 
dynamicity could be: Jack has a mobile laptop, when he work with it in office in Bryan Hall room 405, it can 
be named:  
[Device=“Laptop”, Name= “Jack-PC”, Owner=“Jack”, Room= “405”, Building = “Bryan Hall”].  
 
When Jack moves to room 217 of building Cupple II, the name will be changed to: 
[Device=“Laptop”, Name= “Jack-PC”, Owner=“Jack”, Room= “405”, Building = “Bryan Hall”]. 
 
From the architectural point of view, Solar uses an extended version of INS as resolution mechanism. It 
provides dynamic naming by introducing a “solar layer” over INS architecture. Mobile services connect to a 
solar “Planet” (actually a proxy server between Solar client or server, and INS networks), who resolves a 
dynamic name into a static name, and the static name is resolved and disseminated by INS networks. The 
architecture could be illustrated in figure 7. As we could see from the figure, the proxy acts as an intermediate. 
When name changes (supposing Jack moving to another room in another building), the dynamic name will be 
processed by proxy server and resolved into a static name before it goes to the core INS network for further 
operation. After that, new name information of the mobile node will be notified to the client by some proxy 
near the client. 
 



  20

 
 

Figure 7: Architecture of Solar 
 
To summarize, in this section, we have given a brief introduction for eight different naming schemes 
focusing on the functions of the management plane. The basic characteristics of the systems are given before 
we could compare and evaluate them. In the following section, a series of key evaluation criteria are 
proposed and we will analyze every scheme according to these criterias respectively. 
 

5.           EVALUATION AND COMPARISON OF MANAGEMENT PLANE NAMING SCHEMES  
 
To provide an in-depth analysis and horizontal evaluation of the various naming approaches, so that we could 
use them to guide us for the design of future naming schemes of the next generation Internet [30], we define 
a set of evaluation criteria based on the management plane functions that could characterize the essence of 
each of these different naming schemes.. These criterias have also been addressed by the previous work 
separately and unsystematically, however we will collect all the properties and discuss them together. Ahmed 
[2] has tried to give a set of criteria for some service naming in multi-domain networks. However, it concerns 
only naming of services, but not general naming problems that include naming of people, services, and other 
common objects. Secondly, because it does not use a systematic naming reference model, all the criteria and 
related factors are discussed indistinctly. To avoid this ambiguity, we use a three-dimensional naming 
reference model so that the different function and properties are differentiated, and they could be discussed 
more clearly. For this section, we will give a series of evaluation criteria to appraise the naming schemes 
related with management plane function in naming reference model. A brief comparison of these schemes 
according to these criterias will be given as well.  
 

5.1     Evaluation criteria 
 
5.1.1 Alphabet 
 
The alphabet means the constituent of a name. Depending on the design, it could be digits, letters, ASCII 
codes, Unicode, or the combination of all above. Since Grapevine and Clearinghouse are generally used as 
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electronic mail delivery service, the alphabet used is non-null character strings in partitioned forms separated 
by a dot. The name defined by V-System is like “%edu/wustl/cse/fileserver/bin/listdir”, where the character 
“%” designates the root and the “/” character separates the name components. As in section IV where we give 
examples of URL and URN names, we could see that the alphabet of URL and URN include both ASCII and 
non-ASCII codes, in which the octets could be encoded by a triplet of character consisting of the character 
“%” followed by two hexadecimal digits [9]. The XRL’s alphabet is similar with URL, and it is composed of 
ASCII and non-ASCII codes. UUID is 128-bit identifier, so the alphabet includes digits of “0” and “1”, 
which could be denoted by hexadecimal digits with “-” for representation. The name identifiers of 
attribute-value pair in INS and Solar are free-form strings [1], which are consisted of ASCII codes.  
 
5.1.2 Namespace 
 
According to the definition, namespace is the collection of all valid names. It is decided by the alphabet and 
the combination rules of the alphabet. The alphabet could be digits, letters, ASCII codes or Unicode 
depending on the design of the protocols. The combinatorial rules decide whether the namespace would be 
finite or infinite. For example, the address space of IPv4 [20] is limited and face the danger or depletion. 
Theoretically, the IPv6 [21] address space is also limited but it is much larger than the current requirement. 
For telephone service, the digits used for a telephone number are also increasing.  
 
Similarly, for the namespace design, it is also necessary to consider the namespace problem in advance 
before it could meet the depletion issue as in IPv4. It is desirable to adopt a naming scheme that would have 
a namespace large enough to support a future unexpected explosion of requirement for the namespace,. Also, 
the uniqueness of the names for the current and future entities must be ensured. An example of limited 
namespace will be UUID in which it uses 128-bits as its unique name and forms a limited namespace of size 
of 2128. So the UUID is not suitable to perform as a global and uniform naming infrastructure for the future 
Internet, but it may complement the global naming schemes.  
 
 
5.1.3 Name Syntax and Semantics 
 
The syntax and semantics of a naming scheme concerns the organization of name components to form a name, 
and the meaning of every component. The structure of name components can be characterized in three ways: 
flat, partitioned, and descriptive.  
 
A flat name has no internal structure, it is not easily readable and comprehensible by human-beings, but it is 
easier to be processed by machines such as computers, and has no extra complicated structures. The 
partitioned/hierarchical names denote the split of the namespace to independent sub-domains, which could 
be administrated independently and efficiently. However, if the hierarchy is too shallow, the scale of the 
naming system could be limited, on the contrary, if the hierarchy is too deep, it could lead to lower 
performance. The descriptive names use “attribute-value pair” to denote an object and it is much more 
flexible and suitable to name services than name entities such as machines, people etc. 
 
Grapevine— Grapevine uses two-level hierarchical names called RName, which is in form like “F.R”. R is 
the registry name and F is the object name within the registry. Registries represent organizational, 
geographic, or other potential administrative partitions.  
Clearinghouse— Clearinghouse has a three-level hierarchical namespace in form of “L:D:O”, in which L is 
the local name, D is the domain, and O is the organization. The organization and domain are constituted by 
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Clearinghouse servers, which resolve the name required by the Clearinghouse clients. 
V-System— The namespace of V-System is also a three-level hierarchical structure. The architecture 
consists of global, administrational, and managerial levels. 
URI— As the description in the former section, URI includes URL and URN. URL provides a mechanism to 
locate a resource by a given location, while URN specifies a resource by a globally unique name and is 
persistent even when the resource stops to exist or become unavailable and inaccessible. URL uses DNS to 
denote the destination entity in which the resource resides, and the DNS name is organized as a hierarchical 
structure which does not specify a fixed depth of hierarchy. The hierarchy also split the namespace among the 
domains which are easier to manage separately. On the contrary, URN proposes to label a resource with a 
persistent identifier, and the identifier is formed from a set of pre-defined namespaces, each of which may 
have their own name assignment procedure, syntax, and name structure.  
XRL— The syntax of XRL is similar with URL, but XRL does not specify hierarchical resource location as 
URL, and its “protocol parameters” are resolved by the central process “finder”. 
UUID— UUID is a 128-bit flat identifier. It has no internal structure, and thus there is no centralized 
authority to manage the namespace. The identifiers are generated distributively and there is a specific 
algorithm to ensure that the name generated is unique. 
INS— The name INS uses is called an Intentional Name or name-specifiers. Intentional Names are 
constituted of descriptive names of attributes and values organized into a tree-like format. 
SOLAR— Solar works as an extended version of INS. It uses the name resolution function of INS, and adds 
a proxy layer as an intermediate between client and INS servers, which could support dynamic names. Since 
Solar use INS, the names of Solar are also descriptive names. 
 
5.1.4 Human-understandability 
 
This evaluation criteria is to evaluate if the name syntax is organized well with human habit, and the semantic 
of the name is easily understandable by common people, and easy to be remembered and transcribed. 
Human-understandability is not only decided by the alphabet used in the naming scheme, but also the 
syntax/semantics of the names. To determine whether a specific scheme is human-understandable or not is a 
subjective measure and it can not be quantified easily. But the designer of some naming schemes takes this 
problem into consideration and tries to make name formats or structures, easy to understand. For these 
schemes, we deem it to be human-understandable. 
 
Grapevine— The two-level hierarchical RName “F.R” of Grapevine somehow reflects the organizational, 
geographic or administrative partition of the naming system. The name is easy to understand. 
Clearinghouse— The three-level hierarchical name of Clearinghouse reflects the structure of the namespace 
and the organization of the system. The hierarchical name also could be mapped into a set of descriptive 
properties in a form that is easy to understand. 
V-System— The name in V-System architecture consists of global, administrational, and managerial levels. 
Name is coupled with the managers of the named objects. The tree-like name of V-System is easily 
understandable by common people. 
URI— Generally speaking, URI is not required to be readable by human although it is required to be 
transcribeable by human, i.e., it should allow users to copy the URI on paper or by computer. For URL, the 
host part denoted by a DNS name is generally a partitioned and hierarchical name which is always easy to 
read and understand although there are some false assumptions on DNS [61]. The other parts of URL are 
normally made up of human-understandable ASCII codes. But according to the URL syntax specification [9], 
non –ASCII codes are also permitted to be included in URLs. For URN, the NID (Namespace Identifier) is 
predefined using ASCII codes, which is human-friendly. However, the NSS (Namespace Specific String) 
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part is not necessarily denoted by ASCII codes. 
XRL— For the name of XRL, as shown in figure 5(a), before the name is resolved by the “finder”, it is like 
URL and readable. In the resolved form of XRL, as figure 5(b) shown, the “protocol parameters” are resolved 
into a not very human-friendly name of IP address and TCP port number. However, the resolved form is to be 
processed by a computer application and it will be transparent to users. 
UUID— The 128-bit flat identifier of UUID is not readable by common people, even if it is represented in 
hexadecimal strings 
INS— The descriptive name with “attribute-value pair” used in INS fits quite well with the human habit of 
describing certain things with certain properties. So generally speaking, INS name is human-friendly. 
SOLAR—Solar is also human-friendly. It also uses descriptive “attribute-value pair” to denote a name, just 
like INS. 
 
5.1.5 Name Extensibility 
 
Name extensibility is to evaluate if the structure of components of a name is fixed or extensible -  that could 
support future upgrade. Generally speaking, flat names are mostly fixed  The extensibility of partitioned 
names depends on the design. Descriptive names, however, are most extensible.. 
 
Grapevine— The two-hierarchy names of Grapevine are fixed. So Grapevine is not extensible. 
Clearinghouse— The Clearinghouse names have three-hierarchies, so it is also not extensible. 
V-System— Names used in V-System are also a three-level naming architecture which is formed by global, 
administrational, and managerial level. Because of the usage of “%” to designate the root and the “/” 
character to separate the name components, the names could be extended if new low level servers join and 
new objects to be named are added.  
URI— For URL, the hierarchical DNS structure is extensible with the expansion of requirement of certain 
sub-domain. The namespace of the URL is also extensible by adding new schemes representing new type of 
resource. For example, the most popular schemes used in URL are http, ftp, telnet etc. New schemes could be 
added into this list. For URN, one of the design goals of URN is to make it easy to map other namespaces into 
URN-space, so it is ready to be extended. 
XRL— XRL is designed for Inter-Process Communication for XORP, and all the components in the XRL 
name are predefined and fixed. Moreover, the structure of the components in the name is also fixed and 
difficult to be extended.  
UUID— UUID name is 128-bits long and does not support longer bits to cater future expansion needs for 
larger namespace. 
If the length is to be enlarged, the UUID generating algorithm is also required to adjust somehow, especially, 
the old 128-bits UUID should be compatible with the current enlarged one. 
INS— The descriptive “attribute-value pair” does not put any restrictions on the number of types of 
attributes, the level of the name-specifier tree. Intuitively, the name-specifier tree could be expanded as the 
user wants. For INS which is originally intended to name services, the expandable descriptive name is very 
suitable. 
SOLAR— Similar with INS, name in Solar consists of a series of “attribute-value pair”, which is extensible 
according to the user’s requirement. 
 
5.1.6 Name Assigning and Organization 
 
This evaluation criteria of naming scheme refers to the way of assigning, managing and organizing the names. 
The name could be assigned and organized by a centralized, hierarchical, and a distributed way depending 
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on the design and implementation of the naming scheme. Centralized name organization is easy to be 
administrated and collision of names could be avoided effectively but the central server could be easily 
overloaded and become a single point of failure pointing the system with the expansion of the system in 
large-scale Internet. Hierarchical domains split namespace into independent tree-like sub-domains which 
avoid namespace collision efficiently. Fully distributed name organization also benefit from the namespace 
split. Moreover, these separated namespaces are completely independent and managed in a fully distributed 
fashion, unlike the system of hierarchical name organization. 
 
Grapevine— The Grapevine name is assigned in a distributed fashion. More specifically, the name system is 
organized into a two-level hierarchy, in which all clients named “F.R” are served by the registration server R.  
Clearinghouse— The name organization of Clearinghouse is also a three-level hierarchy with local clients, 
domain servers, and organization servers. 
V-System—Names of V-System consist of a three-level hierarchy. But, the name of V-System is tightly 
coupled with the object manager which is in charge of the object. 
URI— Currently, the domain name part of the URL is organized as a multi-hierarchy scheme. The name is 
assigned and managed hierarchically by the sub-domains. URN incorporates different namespaces by the 
NID (Namespace Identifier). The URN name could also be assigned hierarchically, and each domain with 
specific NID could choose its own namespace and name structure. 
XRL— The names in XRL are predefined and resolved by the process “finder”. Since XRL is designed to 
mediate the IPC within XORP, the names in XRL are not assigned and managed with a structure like other 
distributed systems. Generally, the name assigning and organization could be considered centralized, since 
all the module names, interface names, interface version and method names that form a XRL name are 
handled by a centralized process named “finder” 
UUID— UUID is assigned a fully distributed structure wherein a distributed name assignment algorithm is 
in charge of generating unique names without introducing any infrastructure. 
INS— Because INS uses descriptive names, it allows the users or services to select their own name 
according to their attributes. Users or servers could give any values to these attributes. So the descriptive 
name must be generated in a fully-distributed fashion. However, because of this, it is difficult to ensure the 
uniqueness of the names generated by fully distributed objects.  
SOLAR— Just like INS, Solar names could be generated distributed by users and services according to their 
attributes and values.  
 
5.1.7 System Scalability 
 
Different from name extensibility, system scalability is the criterion to evaluate the scalability of the naming 
system. While name extensibility is concerned with the syntactic structure of the components of the name, 
system scalability is concerned with the structure of the servers of the naming system, whether it could be 
expanded easily to support larger scale networks or larger scale applications. 
Grapevine— Grapevine is designed specifically for electronic mail delivery service. Its two level 
hierarchical name structure also reflect its two level network structure: the clients and the Grapevine servers. 
The server level includes registration server and message server. Grapevine does not support other 
applications, and cannot scale to fit for large-scale networks because of the structure of the registries and the 
replication strategy of the registries. 
Clearinghouse— The structures of the Clearinghouse servers have 2 levels – domain server level and 
organizational server level. The structure is larger than Grapevine and could support larger scale applications. 
However, its fixed three-level organization makes it not scalable, just like Grapevine. 
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V-System— The tree-like structure of V-System makes it scalable when new global, administrational or 
managerial namespace added. 
URI— The DNS has a multiple hierarchical structure. When a new namespace is added and new 
management domain entities are introduced, the DNS structure could be scalable to support the new features 
and new domain entities. 
XRL— XRL is used for Inter-Process Communication, which includes no architecture for name resolution, 
and all the resolution functions are performed by the central process “finder”. So XRL is not scalable. 
UUID— UUID uses flat names and has no resolution architecture, so it does not support architectural 
scalability. 
INS— In INS, the name-tree is replicated in each INR so that the name resolution could be performed locally 
and efficiently. However, to keep the name-trees among these INR consistent will cost a lot of traffic and 
band width, especially for large-scale dynamic networks. Because of this, INS does not scale well in 
large-scale networks and large-scale applications. An improvement measure named INS/Twine has been 
proposed as an extension to INS in 2002 by MIT Laboratory. Name-specifier in INS has been split into 
strands, generating a numeric key for the strands, and use protocol Chord  to distribute the keys among INRs. 
SOLAR— Solar uses a proxy between a client and an INR to resolve a dynamic name into a static name and 
then transmit the static name to INS network to perform further resolution. When mobile entities move 
between proxies and the dynamic name changes in the proxy, all the proxies that the name was previously 
registered with will be notified via intentional multicast. The multicast cost considerable network bandwidth. 
Moreover, because Solar use INS as its core resolution network, the INR is also replicated. The proxy servers 
also need a lot of replication if services move between proxy servers too often. These factors limit the 
scalability of SOLAR.  
 
5.1.8 Standardization 
 
For all the eight schemes we discussed above. The UUID is standardized by IETF in RFC 4122 [40], and the 
URI is standardized by IETF in a series of RFCs [8][9][19][45]. All the other schemes are experimental 
project by corporations, universities and research institutes. 

 

5.2 Comparison 
 
After the detailed analysis and comparison of these schemes for management plane function, we give a 
summary of the evaluation for every scheme in table 3. The horizontal row of the table includes all the 
schemes we discussed above, the vertical column are the evaluation criteria we set for them. 

 
Table 3: Comparison of the schemes for management plane 
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As a summary of this section, we give eight important evaluation criteria to appraise the eight management 
plane naming schemes in great detail. By comparing them carefully, we get a better understanding of the 
function related with management plane, which could also be useful and meaningful as a guide for our design 
of future naming system for Next Generation Internet, specifically, Internet 3.0 [30]. In the following section, 
we will further discuss the transport plane naming schemes and also address a set of different evaluation 
criteria for them. 

6.           INTRODUCTION AND ANALYSIS OF TRANSPORT PLANE SCHEMES:  
 
Over the last decade, there have been quite a few significant changes in the networking scenario relative to 
the era when the current internet was designed. The current internet was designed as an internetworking 
platform between friendly academic and government institutions with limited number of users and fixed 
workstations. It was centrally controlled, first by DARPA and then by NSF. The needs from the network 
were quite humble and involved mostly academic exchanges. Eventually, the internet was opened for public 
use. Central control was relieved. The internet was going through a phase of commercialization and self 
sustenance. The popularity of this new found media of communication was fast increasing. The internet was 
growing and growing faster than its founding fathers could ever imagine. Soon the 32 bit IP address space, 
which was deemed more than enough, seemed too small. The environment was no longer friendly 
academicians talking research. It was an environment which provided access to anybody and everybody who 
could connect to it. Academic exchanges were supplemented with commercial transactions. Another 
significant change that came about at the same time was the advent of the era of wireless networks. The last 
mile of access networks started supporting wireless connectivity. Fixed work stations evolved into mobile 
end-hosts. 
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The Internet design had to evolve to incorporate the changes in the networking environment, but it was way 
too huge already to bring about any significant change cheaply. Hence, researchers looked for ad-hoc 
solutions to immediate problems. But the disparate solutions were neither holistic nor complete. They verged 
upon disobeying the initial design principles of the internet. One such scenario was the introduction of the 
Network Address Translation (NAT) scheme to subvert the rate of depleting IP addresses. NAT successfully 
curbed the rate of depleting IP addresses but broke the end-to-end semantic design principle of the internet. It 
introduced heterogeneous private address contexts within the internet causing problems in IP addressing and 
routing, since IP was designed for a homogeneous network scenario. 
 
Some of the design invariants of the internet which provided consistency in the past, seemed to be constraints 
to free evolution in the present. Significant among them was the semantic overloading of IP addresses as 
locaters and identifiers [63]. The semantic overloading of IP addresses was a major hindrance to solutions for 
mobility. IP addresses were identifiers to which transport protocols were bound and also locaters, acting as 
indexes in routing tables. Hence Location – Identity split was an immediate requirement of the present 
internet. 
 
A paradigm of peer to peer exchanges evolved out of the traditional client server model. Peer to peer system 
design required scalable methods for content addressing, discovery and retrieval in the absence of well 
known global servers. This saw the rise of Distributed Hash Tables ( DHT) for scalably managing addressing 
and routing of flat address spaces. 
In our study of the Transport Plane of naming, we will address the various architectural frameworks which 
were proposed to deal with the problems of : 
 
 

1. Naming and addressing across heterogeneous address contexts 
2. Identity/ Location Separation  
3. Flat Address Space Architectures 

 

6.1 Naming and addressing across heterogeneous address contexts  
 
One of the design principles of the internet was to ensure end to end semantics with every host being equal in 
terms of naming and reachability. The initial IP design ensured the said principles by assigning globally 
unique address to each host on the internet. The TCP/IP based internet became popular, and supposedly a bit 
more popular than it was ready to handle. The unique address space in IP was 32 bits long and embedded with 
hierarchy to handle the scalability issues of the routers, routing these addresses. The embedded hierarchy 
helped the cause of scalability but led to the inefficient use and thus wastage of a large part of the address 
space. On the other hand, the number of hosts connected to the internet was rapidly growing. Soon, it was 
realized that the depletion of the 32 bit IP space was inevitable [44]. Now the problem was that the internet 
was already too huge to be able to accommodate any major changes to the way it functioned. The proposal of 
using IPv6 , a 128 bit address space, was researched and standardized with much effort but unfortunately 
IPv6 ran into interoperability issues with the present IPv4 addressing and naming and hence was never 
deployed on a wide scale. An alternative solution was presented at about the same time as IPv6 in the form of 
NAT- Network Address Translation .NAT was based on the idea of  having private address networks 
connected to the public internet through a relatively few global addresses, the mapping between private and 
public addresses handled by an intermediary NAT box. The NAT box generally used port numbers to 
maintain a one-many relation between public – private addresses. NAT was an instant hit and became 
profusely popular. The reason for the popularity of NAT can be attributed to the relative ease of its 
deployment and to the obvious commercial and technical benefits to the providers. But then NAT was not 
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without its own share of perils. It successfully curbed the rate of IPv4 address depletion   but at the same time 
it destroyed the end-to-end semantics of the original internet design. It affected any architecture or scheme 
which was based on an end-to-end assumption. It introduced regions of heterogeneity to the homogeneous 
internet cloud. Private network hosts could easily reach out to the public network but the vice versa was not 
true. Fortunately, most web services are based on the client – server architecture and most servers are placed 
in the public networks. Classical web applications thus remain unaffected.  
Naming, addressing and routing across heterogeneous contexts has always been an interesting issue that has 
been much researched. But the widespread popularity of TCP/IP networks and thus a kind of homogenization 
of the Internet has to some extent curbed such research endeavors. The NAT problem poses an almost similar 
situation with the public and private address regions being the separate contexts. We deemed it important to 
address the situation as it is immediately relevant to the present form of the internet. In this section we shall 
be discussing IPNL [52], 4+4 [76], Plutarch [17] and Triad [15] in an attempt to discuss the various solutions 
proposed to the NAT problem. Instead of going into the exact details of each scheme, we shall try to have an 
objective look at each scheme pertaining to a near common situation. Our aim is to project the different 
flavors of the various solutions. 
 
6.1.1  Approach 1:  4+4  
  
The 4+4 approach is supposedly the simplest approach towards re-installing the end-to-end semantics  across 
private network contexts.4+4 proposes the concatenation of a private IP of the end-host and the public IP of 
the NAT router to refer  each host uniquely in the private network context. 
 
4+4 is basically an encapsulation mechanism where each router is presented     with the address that it can 
interpret. Routers in the global IP domain are presented with the public IP of the NAT box, while the NAT 
box routers are presented with the private IP of the host that it administers. 
  
 
 

 
      

Figure 8: Approach 1:  4+4 
 



  29

As in Figure 8 , The simplest network topology representing today’s internet can be viewed as a huge number 
of private networks (called private realms in 4+4) connected to a public realm through NAT boxes (Realm 
gateways in 4+4).Each realm may have internal realm routers which are for routing intra-realm packets. 
Packets to other private realms or the public realm are routed through the realm gateways. 
 
The main issues in designing such a system are: 

• Initial Address Discovery 
• Routing : Presenting each routing entity with addresses which lie within their paradigm 
• Deployment in the present internet 
 

4+4 suggests an extension of the DNS naming system to provide unique names to each host in the internet. 
The DNS stores 2 names per end host – a level 1 name, mapping to the IP of the hosts realm gateway and a 
level2 name, mapping to the end host IP. Thus initial address discovery involves DNS lookup based on the 
FQDN of the host, twice. 
 
The main design rationale behind routing in 4+4 is to present each intermediate router with the address that it 
understands. As shown in Figure 8, the endeavor is to send packet from X to Y, assuming both X and Y are 
4+4 aware. First, X needs to query the DNS for Y. The DNS reply is then checked to see whether the level1 
address part of Y matches any of its own level 1 address .If a match is found, both these are in the same 
address realm and hence X just sends an IPv4 packet toward Y through the internal routers. If the level 1 
addresses do not match, then the destination address is selected as B.Y and the source address is A.X. The 
source node node creates a 4+4 header with X and B in the outer source/destination fields and A and Y in the 
inner source/destination fields thus the routing is from X ! B. The packet is sent. The realm router of A 
intercepts this packet and swaps X with A as source address. The Public network thus routes the packet from 
A!B. At B, the realm router of R2, The destination addresses are swapped to Y in the outer field and Br in 
the inner field , thus routing is directed by A! Y. Thus a simple trick of address swapping between the inner 
and outer fields helps to maintain the compatibility in routing with the existing networks.  
 
The next issue deals with deployment in the current internet. 4+4 retains backward compatibility with 
existing networks by presenting itself as an IP-in-IP mechanism to 4+4 incompatible hosts while introducing 
a new 4+4 header for 4+4 compliant hosts. 
 
So to summarize, 4+4 provides a IP tunneling mechanism to get past the problem of addressing and routing to 
private address contexts, but since its routing mechanism involves swapping of source and destination 
addresses enroute, it is bound to add an overhead for router processing. Also end to end security mechanisms 
may suffer as a result of address swapping. Also 4+4 does not explicitly discuss the overheads of providing a 
FQDN to each host in the internet and also having to support 2 entries per hostname.    
    
6.1.2  Approach 2:  IPNL  
 
Internet Protocol Next Layer proposes a new layer above the IP layer to address naming and routing across 
private and public contexts. IPNL and 4+4 are essentially similar in the way they make private hosts 
addressable but IPNL is a bit more complicated architecture when compared with the simplicity of 4+4. 
However, we believe, IPNL helps to capture the essence of the problem in greater detail.  
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Figure 9: Approach 2: IPNL 
  
As in Figure 9, IPNL considers the Internet topology to be largely comprised of   Public or Middle Realms 
and Private Realms. Private realms correspond to the private address context while the public or middle 
realm corresponds to the public internet. The private realms are free to choose their own mechanisms for 
naming and routing for all intra-realm packets. An internal router called the internal nl-router connects two 
private realms and a frontdoor nl-router connects a private realm to the public realm. A frontdoor nl-router 
may have more than one private realm behind it, supported on separate interfaces. The various sites in the 
figure merely emphasize the administrative domains. This topology is based on numbering with IP addresses. 
Another view of the same topology is in terms of DNS names, wherein each realm is a DNS zone. Every 
realm may have more than one zone, but each zone is supposed to service just one realm. 
 
The key idea is to introduce two separate address spaces i) Fully Qualified Domain name (FQDN) for each 
internet host which is kind of static identity for the hosts and ii) IPNL addresses which is more dynamic in 
nature formed by the concatenation of [MRIP !Middle Realm Global IP ] + [ RN! 2 Byte Realm number ]  
+ [ EHIP ! End Host IP ]. The FQDN name of the host is supposed to be of variable length but static and 
unique for each internet host. Hence it is used for initial lookup and path discovery. The path discovery 
mechanism involves learning of the various unknown pieces of the IPNL address such as the source and 
destination MRIP, source and destination RN and the destination EHIP. After path discovery, subsequent 
packets are supposed to carry just the IPNL addresses which are of fixed size and hence a better choice for 
protocol header parameter. 
 
Now, we consider the various concerns in this IPNL proposal: 
 

• Each host is to acquire a FQDN, requiring scale up of the DNS model. 
• An FQDN based routing mechanism has to be implemented, hence DNS has added functionality of 

routing. 
• Separate Policies needs to be fixed for inter-site and intra-site packet forwarding. 
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• Site isolation 
1. Isolation with regards to numbering independent of the frontdoor nl-router. 
2. Isolation with regards to strict non-usability of EHIP outside a realm context  
 

Each of these issues have been dealt with in the IPNL proposal. The scale up of the DNS model is suggested 
to be implemented through a distributed mechanism wherein every nl-router is supposed to know about every 
host in each realm it is connected to. This assumes that realms are not very big entities containing only a few 
end hosts. 
 
Routing using FQDN requires that forwarding entries based on FQDN be maintained by routers. This is 
achieved by having the middle realm DNS maintain ‘A’ records for mapping DNS names to front door 
nl-routers and using the public IP routing mechanism to route to the front door nl – router of the host. Local 
DNS information is used for routing packets from the front door nl-router to the proper realm and thence to 
the proper host. 
 
Separate local and global headers ensure that there is a fixed policy for inter-site and intra- site packet 
forwarding. Locally addressed packets need not have any MRIP since they need not be globally unique. The 
knowledge that a packet is for a local host is learnt during the initial stage through FQDN based routing. 
 
Site isolation is an important consideration since it has a lot of administrative advantages. Site isolation eases 
the administrative task of renumbering. The idea is that, the more loosely coupled addresses are to their 
logical hierarchies, the less disruption is caused during site renumbering. As an example, if all hosts within a 
realm take addresses from a block assigned to the front door nl-router, each time the nl-router needs to 
change its association with its higher levels, each host behind the router needs to be renumbered. IPNL 
avoids such a situation by assigning independent addressing of hosts relative to their nl-routers. Also, since 
each realm is uniquely identified by their DNS zones, it is possible to have a separate interpretation of Realm 
numbers between the hosts and the front door nl-routers. This helps in decentralizing the activity of providing 
realm numbers when there are more than one realm behind the same front door. 
 
To summarize, IPNL introduces a new layer between IP and TCP, taking the responsibility of end-to end 
routing on itself while reducing IP to the task of a point to point routing mechanism similar to the link layer. 
 
6.1.3 Approach 3:  TRIAD  
 
TRIAD seems to be a combination of the ideas of 4+4 and IPNL. The topology as shown in figure 10, is 
similar to the earlier schemes. TRIAD too advocates use of DNS names as global identifiers to uniquely 
identify each end host from any context. In TRIAD, intra realm routing is furnished conventional IP routers 
using present routing methodologies while inter-realm routing  is name based as in the initial stage of IPNL 
and done between realm routers.              
 
The relay agent of a realm is responsible for maintaining a directory service for name lookups within its own 
realm and also determining the next hop for names referring to other realms. For initial route discovery 
TRIAD uses its Directory service to forward the initial packet towards the destination , with each relay agent 
in the path performing a lookup within its directory to select the egress port for the packet and appending the 
same in the forward token header field of the Wide Area Relay-Addressing Protocol (WRAP)  header. 
WRAP is an IP Encapsulation Protocol for the relaying of packets across various RA’s. WRAP headers carry 
2 Internet Relay Tokens(IRT), the forward token and the reverse token, which in the simplest scenario is a list 
of IP addresses of the intermediate path RA’s egress ports. Such a listing of IP addresses in the IRT is called 
transparent relaying. In opaque relaying however, the intermediate RA’s write a random number in the IRT’s 
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and maintain state for mapping the random number into egress port addresses. The end-to-end semantics is 
maintained by having a pseudo transport layer (TRIAD-TCP) which is a minor extension of TCP and is setup 
as a negotiated option between source and destination be bound to names rather than addresses at both ends.   
 
 

 
 

 
Figure 10: Approach 3: TRIAD 

 
            
TRIAD defines a network topology similar to the current internet topology with NAT based private networks 
interconnected using BGP based routers. TRIAD calls these private networks as realms and the BGP routers 
are called Relay Agents. A source ‘s’ uniquely known by its DNS name, suppose s.wustl.edu wanting to 
communicate with the destination , suppose d.ietf.org, sends out a name lookup request to its RA. The 
TRIAD Directory service, integrated into each RA, provides lookups for the next hop determination toward 
the destination. The RA’s use this information to route the initial packet from ‘relay.wustl.edu’ to 
‘relay.ietf.org’ and appending to the forward IRT field in the WRAP header. On receiving the query packet , 
‘relay.ietf.org’ sets up a local mapping state between its public IP interface and the destination host interface 
and returns the packet to the source appending an identifier “f’” representing the local state to the forward 
IRT. “relay.wustl.edu” then returns an identifier “f “ to the source and creates a mapping state for f!f’. After 
this initial communication, IP based tunneling is used with inner WRAP header and outer IP Header for 
delivering packets to the destination. The Outer IP header is used for Hop-by-Hop routing of packets between 
RA’s while end-to-end routing is maintained by the WRAP header. At each Hop, the RA, removes an entry 
from the forward token, appends an entry to the reverse token  and places its egress port IP address to the 
source field  and the destination RA’ IP in the destination field in the outer IP header. The reverse token is 
initialized with an identifier “r’ “ , representing the mapping state between the public IP of  “ relay.wustl.edu” 
and the source. At reaching  “ relay.ietf.org” the forward token only has “ f’ “ and the reverse token has the 
full reverse path in it”. “relay.ietf.org” replaces “r’ “ in the reverse token with a local state identifier “ r “ and 
forwards the packet to f’. When the destination need to communicate with the source, it sends the packet with 
forward IP = r and destination IP = “IP of relay.ietf.org”. the relay router “relay.ietf.org” is now responsible 
for filling in the forward token of the packet with the “reverse token” of the received packet from the source.                
To summarize, TRIAD has a similar architecture as 4+4 and IPNL, however TRIAD provides details of its 
directory service integrated to its relay agents. The directory service does a DNS like name ! address 
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mapping for names within the realm and for lookups for inter realm names it also maintains routing 
information.  
 
6.1.4 Approach 4:  Plutarch   
 
Our final approach, Plutarch, differs from the rest of the schemes in that it attempts to solve the generalized 
problem of naming and addressing across varied contexts, of which the NAT problem is just an instance. 
Plutarch, basically proposes some basic principles over which naming and addressing heterogeneity can be 
made explicit and made to co-exist with other heterogeneous contexts. Two congruent contexts i.e., two 
GPRS networks should be able to communicate across a public IP network even though the public IP 
network is completely opaque to the semantics of the GPRS network. This is the network Plurality that 
Plutarch advocates. 
 
As in figure 11, Context A (GPRS Network) and Context B (Sensor Network) might want to communicate 
through Context C(Public Internet) which is completely  heterogeneous to A and B. However at the border 
between two contexts, there are interstitial functions which are responsible for resolving the differences 
between the two contexts and allow them to communicate. 
 

 
Figure 11: Approach 4: Plutarch 

 
Within each context, the space is completely homogeneous with respect to addressing, packet format, 
transport protocol and naming services. In Plutarch there is no concept of global names. Instead names are 
unique within a context. Each end host is globally known through its context and its address within that 
context. This idea is quite similar to the notion of public and private addresses in the NAT based architecture 
discussed earlier. The route discovery mechanism, employs broadcast gossip type advertisements and returns 
a chain of plausible contexts between the source and destination. This scheme is very similar to a chain of IP 
address between two relay agents in the forwarding token of TRIAD. 
 
Plutarch, is thus a generalized framework with almost similar ideas as the other three schemes which pertain 
more to the specific problem of NAT based contexts.   
 
 
 
Summary  
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IPNL, 4+4, TRIAD and Plutarch all address the same common concern of naming and routing across 
heterogeneous contexts in the internet. All 4 schemes provide 4 separate approaches for the same. None of 
the approaches seem to be markedly different from any other. In fact there is more common denomination 
among them than differences. All advocate within context homogeneity in addressing and routing. IPNL,4+4 
and Triad propose DNS names to be the unique identifier of all hosts and propose some variant of name based 
routing. All the schemes rely on the information and methodologies used at the border routers to map the 
differences between the varied contexts. However, we feel that deployment of each of these schemes require 
substantial amount of changes either at the end-host protocol layers or/and the intermediate router. It is really 
difficult to put forward any authoritative comment as to the feasibility of such changes. The present internet 
can easily claim to be the best test bed for any scalability tests. Such is its vastness that even the most minor 
changes require mammoth effort, especially if it involves changes at the end hosts. In all the schemes that we 
have discussed here, none of these schemes tend to work without infusing some small changes at each layer 
of the internet topology. But then, for the internet to evolve, a solution needs to be found to homogenize the 
network and re install its end-to-end semantics. Not only for NAT introduced heterogeneity, but also for 
heterogeneity being introduced by newer and newer kinds/types of networks, we feel that this area of 
research is extremely relevant for the future evolution of the internet. 
 

6.2 The Identity/Location Split 
 
In this section we will be presenting an objective study of some of the most quoted naming schemes proposed 
over the past few years which we think take a positive step towards solving the present weakness(semantic 
overloading of IP addresses) of the internet. We shall be evaluating these schemes by putting these schemes 
to test against a standard questionnaire, which shall help us better understand the relevance of each work 
towards solving the present problem. The questions that we shall be asking are as follows: 
 

• Is a new Global Namespace being introduced ?  
• What are the security considerations if any ? 
• How is mobility handled? 
• Does it depend on IP at some level? Which? 
• How is Scalability resolved ? 
• What are the various Name Bindings? 

 
 
The name systems that shall feature in our study are FARA [16], Delegation Oriented Architecture [70][71], 
Layered Naming Architecture [4], I3 [68], Intentional Naming System [1], HIP [47][50][32][36] [48][64] and 
LISP [23] 
 
In the next section we shall be presenting a brief overview of each of these naming systems and then in the 
subsequent sections we shall try to present an objective evaluation of each scheme under some common 
parameters. 
 
We shall be presenting a general summarized discussion about each naming scheme which shall better 
prepare us to undertake an objective evaluation in the later sections. 
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6.2.1  FARA   
 
FARA, Forwarding directive, Association and Rendezvous Architecture presents an abstract meta 
architecture of a naming scheme based upon the decoupling of  end system identity from IP addresses thus 
resolving the problem of IP overloading. It is a top down approach with the aim to look objectively and 
broadly at the best design possible and then culminate at a more concrete and practical implementation of the 
same.   The basic components of FARA are i) entities – generalization of the end point of a communication 
and the smallest unit that can be mobile, ii) Association – persistent communication state within 
communicating entities iii) Communication Substrate – a generalized connectionless packet delivery 
network communication subsystem responsible for addressing and routing packets for FARA associations 
using a header having a Forwarding directive [FD] to reach the destination 
  

6.2.1.1  FARA Architecture  
 
Two entities A and B in FARA wishing to communicate shall have to setup an association state between 
them, referenced by an Association Id(Aid), by means of some kind of handshaking. Aid’s are unique within 
the communicating entities. Initially however A needs to have the Forward Directive to reach B which can be 
obtained from the FARA directory service (fDS) . fDS is a high level discovery mechanism which may 
resemble DNS like lookup mechanism. Since Entity names in FARA need not be globally unique, the 
directory lookup may map to more than one (FD,RI string pair) and a rendezvous process might have to do 
the final disambiguation. The RI string is a Rendezvous Information string and used during the initial part of 
the communication   for setting up a unique AId between the two parties. The sender may generate the 
complete destination FD from the RI string or it may forward the packet to a proxy which may rewrite the 
FD, RI string pair and forwards to the destination. After the initial handshaking is over and an AId has been 
setup, the client and server communicate normally with the Forwarding Directive routing packets and the 
AId delivering the packets to the correct endpoint entity. 

6.2.1.1 Objective Summary of FARA  
 
Namespaces 
The various names/Identities involved in the FARA architecture are i) Aid, ii) Entity name, iii) End System 
address. Among these the Aid’s are supposed to be unique within the entity and has no global namespace. An 
Entity too does not require to have a global namespace. To communicate with a specific entity it must be 
possible to determine its location by some method such as user friendly character string lookup etc. FARA 
does not require end system addresses to be picked up from a single global address space. In an instantiation 
of FARA called MFARA, an idea of an “addressing realm” is introduced. Addresses within a certain realm 
are unique.  
 
Security 
FARA decouples FD’s from Associations, thus removing the limited assurance provided by overloaded IP 
addresses which gives some assurance to the source of the packet. FARA leaves it to the implementer to 
decide upon the level of security and technique to be used for end to end source verification.   
 
 
 
Mobility 
FARA mandates the implementation of an FD management system in each instantiation, which is responsible 
for managing and updating FD’s as entities change their logical point of attachment. During mobility, though 
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the FD may change the AId remains the same. In MFARA instantiation a new M-agent is introduced which is 
the static rendezvous point associated with each mobile entity  to keep track of the changed FD of the mobile 
Entity based on information from the Mobile Entity. 
 
IP dependence 
FARA proposes a new high level meta architecture. The IP may be used as a part in the FD of a certain FARA 
instantiation. 
 
Scalability 
The Scalability issues within the FARA meta Architecture depends completely on particular instantiations of 
the architecture. 
 
Name Bindings 
The fDS map the Entity names with a forwarding directive. The binding need not be an injective mapping and 
it depends on a rendezvous service to provide an unambiguous binding. During mobility the mapping 
between the entity and FD may change and may require a rebinding using some FD Management service. 
The binding between the Aid and the communication session never changes within the session. 
 
 
6.2.2 Delegation Oriented Architecture (DOA) 
 
DOA was proposed with the purpose of establishing middleboxes as first class citizens of the internet. 
Internet middleboxes such as NAT, firewalls etc are deemed harmful since they break two basic principles of 
the internet design, namely, i) Each communicating entity shall have an unique network layer identifier (IP) 
and ii) Entities shall not look at packets not addressed to them. Middleboxes such as NAT’s do hide large 
private networks behind few gloabal IP addresses and firewalls often screen content of every packet going 
through them into their network. DOA allows hosts to explicitly authorize or delegate part of their jobs to 
middleboxes. It introduces a Location/Identity split which is extremely relevant to our undertaking. 
  

6.2.2.1 DOA Architecture 
 
DOA introduces a new name identifier called the EID (Entity Identifier) which provides an identity to 
communicating host, separate from its IP address which is reduced to being just a locater. An entity wishing 
to delegate some of its tasks may post an ERecord in the EID resolution infrastructure mapping its EID to the 
delegated hosts IP address. Thus any client A trying to send a packet to Server S with EID Si, first looks for 
the servers EID in the Infrastructure. The Infrastructure returns the client with an ERecord.corresponding to 
the EID Si. The client then looks up the IP address from the ERecord and sends the packet. The packet goes to 
the delegated hosts IP and after the delegated host has done the required processing of the packet sends it over 
to the server for which the packet was originally meant for. The ERecord may map an EID to a list of EID’s, 
reflecting the servers wish to have the packet go through number of delegated hosts before it reaches the 
server. 
 

6.2.2.2 Objective Summary of DOA 
 
Namespaces 
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DOA introduces the concept of a separate global identity for each host called EID which separates the upper 
layers of the TCP/IP protocol from IP. EID’s are non human readable cryptographic names in a flat global 
address space. 
 
Security 
EID’s are the hash of a public key and every ERecord is signed with the corresponding private key. Hence 
ERecords are verifiable to the source and also only the owner can modify a ERecord. However source EID 
spoofing is still possible, but then upper layers can verify a source EID by getting the actual ERecord 
corresponding to the spoofed EID from the infrastructure and thus the server replies to the original IP 
address. 
 
Mobility 
DOA does not separately discuss mobility because it is not the purpose of DOA. However, with a location 
Identity split and with the EID resolution infrastructure in place, DOA could easily support mobility with 
added functionality of rapid mapping updates and a signaling mechanism. 
 
IP Dependence 
IP is used still used, but only as a locater and not as an end point identifier. 
 
Scalability 
The EID resolution infrastructure deals with flat names and hence providing scalability is a challenge. The 
scalability issue is resolved through the use of distributed hash tables. 
 
Name Bindings  
In DOA the name bindings are from DNS!EID !EID* !IP. Initially a DNS lookup is necessary  to search 
for the EID of the server.Once the EID is known , The second level of binding takes place at the EID 
resolution Infrastructure and an EID can be bound to either one or more EID’s or an IP address. 
 
6.2.3   Internet Indirection Infrastructure (I3) 
 
The basic motivation of I3 was to provide anycast, multicast and mobility over the existing IP infrastructure 
by adding an overlay based indirection infrastructure providing rendezvous based communication 
abstraction. I3 associates with each host and Identifier (id) and injects an id!addr (IP+port)  mapping into 
the overlay infrastructure called the “trigger”.It is one of the first attempts towads Identity/Location split. 
 

6.2.3.1   I3 Architecture  
 
The basis of I3 is the id !addr mapping in the overlay infrastructure. Any  host wishing to communicate with 
another host sends (data,id) to the infrastructure which routes the packet based on the id!addr mapping that 
it has.This simple architecture has the potential of supporting wide variety of services such as mobility, 
multicast , anycast etc.By changing the trigger mapping any mobile host can update the infrastructure of it 
present location. By allowing multiple hosts to register to a single id, I3 supports multicast. A group of hosts 
can form an anycast froup by sharing a common prefix.Any host trying to get to a particular member of the 
anycast group is routed using the longest prefix match. 
  

6.2.3.2 Objective Summary of I3 
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Namespace 
I3 introduces a new globally unique flat namespace for the trigger identifiers.    
 
Security 
I3 proposes the use of public and private triggers as a means to ensure security for every ongoing 
communication. The public triggers are those that are well known and published in public. These are used for 
an initial communication with a host. Both the hosts may setup a private trigger for a particular session after 
the initial communication through the public trigger, thus protecting against eavesdropping in case a 
malicious host inserts a trigger with the hosts id and its own address. Another form of attack can be DoS 
attack on a host by inserting a hierarchy of triggers and all triggers at the last point pointing towards the host, 
or on the infrastructure by setting up trigger loops by connecting trigger leaves of a trigger hierarchy to the 
root trigger of thet hirarchy. These attacks are avoided by the infrastructure checking for loops and also 
verifying the host setting up a trigger by sending a challenge to the address setup against the trigger, thus 
verifying whether the trigger was setup by its rightful owner. 
 
Mobility 
I3 supports mobility by allowing hosts who change their point of attachment to change their id mapping in the 
infrastructure. 
 
IP dependence 
IP acts only as the locater. The infrastructure uses IP to route the packets once it has mapped the id to the 
corresponding {IP, port} pair. 
 
Scalability 
The trigger database is stored as a Distributed Hash Table thus providing scalability to a flat namespace. 
 
Name Bindings 
In I3, the Infrastructure binds trigger identifiers to IP addresses. Thus, transport endpoints know only the Id’s 
which are routed using the corresponding IP by the indirection infrastructure.  
 
6.2.4 Layered Naming Architecture (LNA) 

 
DNS and IP addresses all name hosts in the internet. All Services and data are named relative to the host in 
which they reside. LNA is an attempt to give data and services an independent existence in the internet by 
decoupling them from their host names. Accordingly LNA introduces two new name spaces namely SID 
(Service Identifiers) – providing Service Name, and EID (End point Identifiers) –Transport layer endpoint. It 
also introduces the concept of ULD (User Level Descriptors) to aid in searching for Services according to 
User needs. 
 
 
 

6.2.4.1 LNA Architecture 
 
In LNA, name resolution has to take place at various layers of the TCP/IP stack. Initially, Applications map 
ULD’s to SID using a lookup or search service. The applications session layer protocol is then responsible 
for mapping the SID to EID using a SID resolution service. Finally Transport layer protocol binds the EID to 
an IP address for routing the packets to the specified host. An application “A” running on host “H”, gets to 
know the SID through some search mechanism using ULD. Now to access Service “S”, A hands S to the 
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service resolution layer. A  Distributed Hash Table based Service Resolution Layer, resolves the SID to one 
or more (EID, transport, port) triplet. A then seeks the services at the specified EID, using the specified 
transport protocol and port number. The transport protocols are now assumed to be bound to EID’s rather 
than IP’s. The transport protocol passes down the packet to the EID resolution layer which resolves the EID 
to one or more IP’s. The EID’s are carried in every packet to aid for any delegations on the path.  

6.2.4.2 Objective Summary of LNA 
 
Namespace 
LNA introduces two new global namespaces, Service Identifier (SID) and Endpoint Identifier (EID)Both 
SID and EID are flat namespaces and globally unique. 
 
Security 
The issue of Security is not discussed explicitly but LNA does acknowledge borrowing ideas from HIP which 
leads us to think that the identifiers could probably be Cryptographic and provide some sort of authentication 
security. 
 
Mobility  
The whole spirit of LNA is to support mobility of data and services. Whenever a host is mobile, it may just 
change the EID! IP mapping in the EID mapping infrastructure. Also, during communication, If the IP of a 
host changes then the transport layer of the peer layer can re-initiate a lookup and rebind. 
 
IP dependence  
IP is used as the locater and binds only to the IP layer. The transport protocol binds to EID and delivers 
packets to destined for destination EID and hands over the packet to the EID resolution layer, which in turn is 
responsible for resolving EID to IP and thus routing the packet to the correct destination. 
 
Scalability 
Both EID and SID are flat names which creates quite a challenge to the scalability issue. 
 
Name Bindings 
The various name bindings are as follows i) ULD!Service Identifiers at Application level, ii) SID!EID at 
SID resolution layer between the Session layer and the Transport layer, iii) EID ! IP at the EID resolution 
layer between the Transport Layer and the IP layer. 
 
6.2.5 Intentional Naming System  

 
INS is a resource discovery and service location system designed for networks of mobile and dynamic 
devices and computers. Applications can describe what they are looking for (Intent) in a standard language 
consisting of attribute-value pairs. It forms an overlay network of name resolvers to bind User/Application 
intent to services and also to enable a late binding mechanism between the service names and locations to 
allow for communication session to continue even if this binding changes midway. An unique feature of INS 
is that the resolvers maintain a soft state weak consistency (every mapping is associated with a lifetime, to be 
renewed by constant periodic advertisements by the publisher) in the name mappings which makes it flexible 
enough to incorporate dynamic changes. INS also supports Intentional anycast based on application layer 
service level parameters such as server load etc and Intentional Multicast delivering the data to all services 
which satisfy a particular service name. 
 



  40

6.2.5.1 INS Architecture  
 
INS forms an application level overlay network of resolvers (INR) to resolve application intent to service 
names and also integrates application level message routing using the mechanism of “Late Binding”. Each 
service attaches itself to an INR and advertises its service in an attribute value format. Clients requesting 
services connect to an INR and send their requests using a simple query expression. The INR network 
provide the service of “Early Binding” and “Late Binding”. In Early binding the the INR resolves the user 
query to a set of matching services and returns the user with the set of IP addresses where the services are 
available. In late binding, the INR is responsible for a best effort routing of the message to the appropriate 
location. The INR’s maintain the mapping information by way of periodic dissemination of published 
services information among its neighbours through periodic updates or triggered updates (when an INR 
receives an update with new information). The published service names are maintained in a soft-state (with a 
time to live) and hence deletes entries which has not been advertised for a particular period of time. INS thus 
do not need services to de-register specifically. The INR’s form a spanning tree application level overlay 
network among themselves. A Domain Space Resolver (DSR) maintains a list of active and candidate INR’s 
.The DSR is the source of information about the overlay network for any new INR that wishes to join. 
  

6.2.5.2 Objective summary of INS  
 
Namespace 
INS does not introduce any particular new global namespace. It however contributes to the mapping of 
service names to user queries (Intention) based on a system of attribute-value pair description of services.   
 
Security  
INS certainly does not discuss any aspects related to security in its system. 
 
Mobility 
INS views mobility from two aspects, i) Node mobility and ii) Service mobility. Node mobility is a situation 
when the point of attachment of the communicating node changes due to mobility of the node. Service 
mobility is a situation where the service remains stationary but the best provider of a given service at a given 
instant of time changes based on application level parameter considerations such as system load etc. INS 
solves both the forms of mobility by introducing the idea of “Late Binding” wherein the mapping between the 
service name – location is avoided till actual message delivery time. Specifically, service mobility is 
supported through updated information about load conditions and other application level parameters of the 
various nodes maintained by the overlay network. Node mobility is supported through maintaining a soft 
mapping state at the overlay nodes and also having periodic updates or triggers to report about changes in the 
mapping. INS does not depend upon Mobile IP for this. 
 
IP Dependence 
INS is very much dependant on IP for actual network layer routing. The Overlay network is an application 
layer network and performs application level routing. The actual locater services are provided by the IP. If an 
application chooses late binding, INS does a best effort application level routing to reach the host based upon 
the IP infrastructure. 
 
Scalability 
INS considers the scalability issue in two areas: i) name lookup and ii) name update processing. To arrange 
for lookup scalability the DSR maintains a list of currently inactive candidate INR’s which a currently 
heavily loader INR may use to spawn an instance of itself. An INR is also allowed to drop off if it is sparsely 
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loaded after informing its peers and the DSR so that the spanning tree may be adjusted. The design of INS 
wherein every INR should know about all the names in the system creates a problem in terms of network 
availability and processing capacity of a given INR.  INR proposes the technique of “virtual spaces”, 
partitioning the namespace into virtual spaces and giving each INR responsibility for a subset of all active 
virtual spaces, to resolve this bottleneck. The idea of “virtual spaces” may be considered as a precursor to the 
later revolutionary ideas of Distributed hash tables. 
 
Name Bindings 
INS has two schemes for name bindings. i) Early binding – Binding Service request queries ! Service names 
! IP addresses at Service request time and ii)   Late binding – binding service names! IP address of service 
provider at message delivery time. This innovative scheme gives INS the ability to support service and node 
mobility. 
 
6.2.6    Host Identity Protocol  
 
The Host Identity Protocol (HIP) is one of the most recent proposals among the identity/Location Split 
Architectures. HIP proposes the inclusion of a HIP layer between the transport and IP layer. The HIP layer 
serves the dual purpose of providing an independent identity to the transport layer and also providing a secure 
authentication mechanism to the hosts. The IP is used for routing purposes only.  

6.2.6.1 HIP Architecture 
 
In the Architecture of HIP, the transport endpoints are known by the cryptographic hash of a public key(Host 
Identity)  known as the Host Identity Tag(HIT). The HIT is used during initial base exchange by the 
communicating host to set up a shared secret using diffie hellman key exchange. HIP architecture therafter 
depends on IPSec using the shared key for security of the session. HIT’s provides decoupling of the  
Identity/Locator roles of the IP in the sense that transport layer protocol can now just address packets using 
the corresponding HIT and hand over transport packets to the HIP layer. The HIP layer is responsible for the 
HIT – IP mapping for routing the packet to its desired location. There have been many proposals as to how 
HIP might achieve the mapping. One of the suggestions has been to use the DNS to store such mappings. But 
then such a scheme, though scalable would inherit the demerits of slow update propagation of DNS. Others 
have proposed various overlay based mechanisms. Overlay mechanisms, though much more responsive to   
updates in mapping information has the challenge of providing scalability, especially when HIT’s are 128 
bits flat names. A significant architecture based on HIP is HI3 [49]. HI3 tries to use HIP over I3, thus using 
the Overlay mechanism of I3 and using HIT’s as I3 triggers for security.  
 

6.2.6.2 Objective Summary of HIP 
 
Namespace  
HIP introduces a new namespace of Host Identities which are the public keys of a public/private 
cryptographic key pairs. Different encryption and authentication algorithms tend to use different sized keys. 
Hence, the host identity is mapped to fixed length (128 bits) key called Host identity tag (HIT) by applying a 
cryptographic hash over the Host Identity , for use in protocol headers. The HIT’s can be generated locally an 
has the property of being self certifying and statistically unique.   
 
Security  
One of the main design principles of HIP was to provide authentication of the communicating hosts and setup 
a shared secret between the authenticated hosts. HIP does not provide any mechanism for data security, a 
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responsibility it bestows on other security protocols such as IPSec, using the shared secret. The HIP 
specification leaves the responsibility of developing an effective public key distribution system for secure 
distribution of Host Identities on the implementer, suggesting the use of either Public key Infrastructure or 
DNS, and hence inheriting the security loopholes present therin. It also proposes the use of DNSSEC for 
obtaining a secure channel between the DNS and the host, but such a step does not remove the vulnerability 
of fraudlent publishers in DNS spoofing attack. The HIP base exchange for setting up a HIP association 
between two parties, is especially cautious about any form of Denial of Service attacks by introducing a novel 
methodology of puzzle solving by the initiator before the responder commits any state for the association.  
 
Mobility  
HIP provides locater/identity split and thus provides an independent existence of the Upper protocol layers. 
Though the HIP charter does not provide a clear cut mobility architecture, it nonetheless proposes two 
feasible schemes to support mobility. The first scheme involves direct signaling between the corresponding 
hosts through UPDATE packets in case of any change in the underlying IP mapping. However this scheme 
does not work in conditions of simultaneous movement at both ends and also in situations of locating a 
mobile host. In such cases, HIP proposes the deployment of a rendezvous system which receives updates 
from hosts regarding their Address changes and is responsible for dynamic HIT to IP mapping to support 
mobility. 
 
IP Dependence  
As in most locater/Identity split architecture, IP is reduced to being just locaters of hosts. The HIT’s are just 
host identifiers and are not routable. The mapping between HIT and IP can be done at the Domain name 
servers in static scenarios and through rendezvous server systems in mobile scenarios. 
 
Scalability  
For mapping HIT to IP addresses using the DNS, The scalability of the DNS is inherited. In case of 
rendezvous mechanisms and in fact any mechanisms in which HIT’s are used to index large tables scalability 
would be  an important consideration and it is left open for the implementer to decide on the best solution 
applicable. Also, since HIT’s are statistically global flat identifiers, no central authority is responsible for 
maintaining their uniqueness. 
 
Name Bindings  
Upper layer protocol elements such as transport layer sockets and IPSec Security parameter Index all bind to 
the HIT. The HIT in turn bind to IP in the HIP sublayer to route packets to their destination. 
  
 
 
6.2.7  Locator ID Split Protocol (LISP) 
 
LISP is amongst the latest proposals in the area of Location Identity split architecture family and as of this 
writing, an IRTF routing research group  active proposal. We include this in our study to provide a flavor of 
the most recent developments that is part of active research in this area. The fundamental motivation of LISP 
derives from the present internet scenario of differing requirements of the end host sites and the providers. 
The end host sites expect to be multihomed for better fault tolerance and connectivity and achieve mobility , 
provider switch ( for multihomed sites) and renumbering  with session survivability. For providers on the 
contrary , multihoming cause loss of Aggregation and hence cause scalability issues, efficient resource 
management require them to do traffic engineering and they need to provide scalable solutions and 
infrastructure for supporting end host mobility with session survivability. The rational behind LISP design is 
having provider independent hierarchical addressing (non topological and hence non agggregatable) for end 
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hosts and topologically aggregatable addresses for RLOCs. The idea being to use hierarchical end host 
addresses for local routing and scalable indexing of End host ! RLOC mapping database while using 
topologically aggregatable address of RLOC to do routing across the internet scalably.  
 
 

6.2.7.1 LISP Architecture 
 
In LISP Architecture, each end site has one or more configured tunnel routers or RLOCs and are known as 
Egress tunnel router (ETR) or Ingress tunnel router(ITR) based on the role it is playing. The end host ‘S’ 
wishing to communicate with another end host ‘D’ in a different end site , gets to know D’s EID by DNS 
lookup. ‘S’ then sends an IP packet destined towards ‘D’ to its default router which is configured as an ITR. 
The ITR prepends a LISP header to the packet with source as its own IP and the destination as ‘D’s IP. The 
packet is routed normally as today through the internet. When the egress router of ‘D’ gets the packet it 
performs a lookup in the EID-to-RLOC database. The ETR sends over this mapping to the ITR and 
subsequent packets for ‘D’ are tunneled between ITR and ETR and then forwarded by ETR to the destination. 
When a site is multihomed each tunnel router has an address from the address block from each of the provider 
address block. 

6.2.7.2  Objective Summary of LISP 
 
Namespace 
LISP does not introduce any new namespace but defines a way of namespace allocation based on the current 
IP addresses. The IP address of the End host sites are called EID’s and they are supposed to be allocated in a 
Provider Independent manner and preferably have some sort of hierarchy for scalability in EID-to-RLOC 
database lookups. The RLOC’s are provided aggregatable address from the provider address block to provide 
for scalable internet routing. 
 
Security 
LISP does not discuss much in aspects of security, the primary concern being solving present routing and 
addressing problems in the internet. The only explicit security concern discussed is that of database service 
security when obtaining mapping between EID-to-RLOC, to avoid ETR spoofing. 
 
Mobility  
Mobility with session survivability is realized as one of the most urgent needs of the infrastructure by LISP. 
Basically for fast end host mobility with session survivability, LISP proposes the existing solution of Mobile 
IP. However when a mobile node moves to foreign location, the home RLOC needs to learn the new 
EID-RLOC mapping of the mobile end host in the new network. The issue of fast network mobility has also 
been considered, but it is one of the future endevours of LISP. 
 
IP Dependence 
LISP is completely designed over the present IPv4 system and is supposed to be incrementally deployable 
over the present IP netwotk.The EID and RLOC are all IP addresses, differing only on the mode of allocation. 
The basic idea of LISP is based on IP tunneling between the RLOC’s IP addresses  to deliver packets between 
EID’s associated with these RLOC’s. 
 
Scalability  
Routing table scalability is achieved by having the RLOC’s pick up addresses from a topological 
aggregatable address space. In EID-RLOC mapping databases, scalability is achieved by injecting some sort 
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of hierarchy into the EID names. These are basically the two important areas where scalability is a serious 
concern. 
 
Name Binding  
The only explicit name binding that needs to take place is the EID-RLOC binding at the RLOC’s. 
 
 
 
Summary 
 
The findings of this section may be summarized as in Table 4.The horizontal rows present the various 
attributes which form the basis for our comparison while the vertical columns list each of the locator-identity 
split architectures discussed thus far in this section. All the architectures discussed in this section address the 
common concern of semantic overloading of IP addresses and the constraints imposed on mobility and 
security therewith. Achieving a Locator/identity split would decouple the transport and session protocols 
from the IP layer and thus make way for their independent existence. However as we can see , it is not a 
trivial undertaking and requires a some serious engineering thought. One of the key aspects of such a design 
is that it requires the introduction of some sort of added infrastructure. Hence scalability becomes a serious 
.The numbers one deals with in the scenario of deploying anything on the internet scale, often runs in billions, 
if not more. Any proposal which does not take this into consideration is bound to fail. Also, the present 
internet is not the best place where one may leave things to trust. It is supposedly one of the most insecure 
service environments. Hence, security is a huge concern for any application that needs to run over it. A 
naming architecture which in itself is not secure enough can be of no good to the services running over it. The 
internet is yet to see widesclale deployment of any locater/identity split architecture and hence it is too early 
to comment on the exact requirements of such an architecture. But it may well be said that the obvious 
benefits of such an architecture would compel its wide scale deployment in the near future. We hope that our 
study may help future designers of the internet to learn from earlier experiences, and design a robust, scalable 
and secure architecture attaining locater / identity split.  
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Table 4: A comparison of the locator/Identity Split Architectures 

 
 

 FARA DOA I3 LNA INS HIP LISP 

Namespace 

No Global 
Namespace 
necessarily 
required, 
implementation 
dependant 

Global End 
host Identifier 
:EID 

Global flat 
namespace 
for trigger 
Identifiers 

2 Global flat names: 
i) Service    
Identifiers 
ii) EndPoint 
Identifiers 

No Global 
names, 
User queries in 
name-value pair 
form mapped to 
service names 

Statistically global, 128 
bit Host Identifier Tags 
generated through 
cryptographic hash  of  
public keys called Host 
Identities 

No new Global 
namespace, End host 
Identifiers and Routing 
Locaters are IP 
addresses varying in the 
way they are allocated 

Security 

Implementation 
dependant 

EID – hash of 
public keys, 
ERecords 
signed by 
private keys 

Public and 
Private 
trigger 
Identifiers 

No explicit method, 
but proposes Host 
Identity based 
methods 

No explicit 
method 

Initial public key based 
authentication  and 
shared secret key 
exchange using Host 
Identities, data security 
using IPSec or other 
security protocols 

No explicit method 

Mobility 
Rendezvous based 
overlay mechanism 

No explicit 
proposal 

Overlay 
based 
signaling 

Overlay based 
signaling or dynamic 
peer initiated lookup 
and rebind 

Overlay based 
node and service 
mobility 

Overlay based signaling 
or direct signaling as 
apropriate 

Mobile IP 

    IP 
Dependence 

Meta Architecture 
in which IP may be 
used in an 
instantiation as a 
forwarding 
directive 

Used as 
locator for 
routing 

Used as 
locator for 
routing 

Used as locator for 
routing 

Used as locator 
for routing 

Used as locator for 
routing 

Based on IP, EID’s are 
unaggregatable IP 
addresses and act as 
Identifiers, Routing 
Locaters are 
aggregatable IP 
addresses and used for 
intra-site routing 

Scalability 

Implementation 
dependant 

Distributed 
Hash Tables 
managing 
Flat names 

Distributed 
Hash Tables 
managing 
Flat names 

No explicit method 
suggested to scale the 
management of EID 
and SID which are 
flat namespaces 

Concept of 
“virtual spaces” 
for a distributed  
load balancing  
architecture 

HIT-IP mapping : DNS 
scalability inherited. 
Managing HIT space: 
Implementation 
dependent 

Routing Tables : 
Aggregation of 
RLOC’s. 
EID’s – Internal 
hierarchical structure  
within EID’s 

Name    
Binding 

Entity name !FD 
at Directory 
Service, FD 
Management 
Service responsible 
for rebinding during 
mobility 

DNS!EID at 
DNS, 
EID!EID* 
!IP at 
infrastructure 

Trigger 
identifiers  ! 
IP at 
Infrastructure 

ULD!SID at 
Application level, ii) 
SID!EID at SID 
resolution layer, iii) 
EID ! IP at the EID 
resolution layer 

Service request 
queries 
!service 
names!IP 
addresses, 
a)Early Binding 
b)Late Binding 

TCP,IPSec !HIT. 
HIT !IP at HIP 
sublayer 

EID!RLOC binding at 
RLOC 
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6.3 Flat Address Space Routing Systems 
 
Flat address spaces are characterized by the absence of any form of implicit or explicit structure in their 
names. The use of such names in any form of architecture is generally justified by the requirements of the 
architecture as there are some obvious pros and cons in using such names. The primary benefit of flat names 
is the absence of any organizational structure which sometimes limit the extendability of an architecture. But 
this advantage comes for the price of scalability. Routing of flat names is a serious scalability issue as it is 
difficult to delegate responsibilities. Thankfully, the concept of Distributed Hash Tables   can be used very 
effectively to make such routing architectures scalable. Another advantage of Flat names is that they can be 
generated locally and still ensure global uniqueness with very high probability (the measure of the 
probability depends on the size of the name). Also, names with some cryptographic quality such as 
cryptographic hashes or public keys generally have to be flat since they represent some large number. 
However, flat names are not human readable. Hence their use is limited to situations where machines are 
involved rather than humans. 
 
We shall be discussing about a few architectures based on DHT which use flat names, in an attempt to 
understand some of the issues and their solutions as proposed by various research activities in this field. 
Some of the Architecture we have seen above such as HIP, EID of LNS etc use flat names at some level. We 
shall not be discussing those architectures again but rather try to focus on the principles owing which use of 
flat namespaces in a scalable way became possible. 
 
We shall be discussing two architectures: CAN [59], Tapestry [75]  in the same order to maintain the 
chronological ordering of these proposals. These discussions provides an insight into the way DHT’s can be 
engineered to real architectural solutions to reap all its benefits. 
 
 
6.3.1 Content Addressable Network (CAN) 

 
CAN (Content Addressable Network) was one of the first proposals of putting the concept of DHT to real life 
Engineering problem. The motivation came from trying to find a scalable way to index content in a large 
peer-to-peer environment. Existing solutions either depended on central huge indexes or decentralized 
indexes with request flooding to locate the mapping information. CAN proposed the use of DHT to store 
these indexes by having the file content hash to some unique value called the key and the key being stored in 
a node deemed responsible for storing the key based on a key space partitioning algorithm. This way any 
content file could be stored with an unique key which can be determined in constant time and using the index 
entry for the key can be easily determined by a key based routing algorithm. The scalability of the proposed 
method derives from the fact that each node is responsible for a fraction of the total number of keys, keys 
being distributed evenly among the nodes, and the average number of hops traversed to find the node 
responsible for maintaining the key is (d/4)* n 1/d , where ‘d’ is the number of dimensions in the key space and 
‘n’ is the number of participating nodes. 
 

6.3.1.1 Routing with CAN 
 
Each node maintains coordinate routing table having the IP ! virtual coordinate space mapping of each of its 
Immediate neighbors in the coordinate space. Neighbors are coordinate spans overlapping in (d -1)  
dimensions  and abut in one dimension  Every node employs “greedy forwarding” mechanism to forward 
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each message closer to its destination. Having more than one neighboring node increases robustness in cases 
of node failure. 

6.3.1.2    CAN Construction 
 
A new node (joining the overlay) needs to find out the IP of a node already in the CAN, maybe through some 
sort of DNS lookup. The new   node then randomly chooses a point “P” and sends a JOIN request destined for 
P to  the CAN  node. The existing CAN node forwards this request by CAN routing till it   reaches the  node 
associated with P The node associated with “P” , splits its zone and passes on  half of its zone information to 
the new node. After getting its zone, the new node learns about its coordinate neighbors from the node from 
which it inherits + the previous occupant itself. The previous occupant updates its tables eliminating nodes no 
longer its neighbors. New and old neighbors are informed of the changes. New node joining effects O 
(number of dimensions) nodes in the whole system 
 

6.3.1.3   CAN Node departure or Failure  
 
Node Departure is a situation where a node departs from the overlay after delegating its part of the 
responsibility to some neighboring node, while, Node failure is a situation where the overlay node is not able 
to pass on its responsibility, making the part of the namespace it represents to be out of service till one of the 
neighbors recognize the failure and gather enough information to be able to take its place. 
 
6.3.2 Tapestry 

 
CAN uses shortest overlay path available which may be quite a number of IP hops and also uses run time 
heuristics to optimize while Tapestry  uses optimal local routes right from initialization and maintains them 
in order to reduce routing stretch. Tapestry participating nodes have Node ID’s (Nid), Objects O are given 
Globally unique Identifiers (Guid) and Applications within a host given Aid (similar to a port number). 
 

6.3.2.1 Routing and Object Location 
 
Tapestry maintains information about the neighboring links in actual physical sense and assigns levels to 
them according to the length of prefix match. 
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Figure 12: Routing in Tapestry 

 
 
Whenever routing packets, they are forwarded to the highest level node according to prefix match. For 
instance, in routing from Node 5230 to Node 42AD (Figure 12), since there is no prefix match initially 5230 
searches in its routing database for all level 1 location info it has and tries to find the highest prefix match for 
the destination. Each node tries to forward the message through a higher level match node and thus each hope 
takes the packet closer to its final destination. 
 

6.3.2.2    Object publication and location  
 
A server S storing Object O with Guid Og and root Or, publishes /advertises O by periodic public messages to 
root Or. The node id of the node storing O need not be equal to Og. If there exist a Node with Nid = Og then Or 
= Og else Or = prefix “close to” Og and is deterministic. Each node along the publication path stores <S,Og> for 
efficiency of mapping request for object O without having to go all the way to the root server storing the 
mapping for the object. 
 

 
Summary 
 
There are other architectures of DHT which are equally popular such as CHORD, PASTRY [62] etc. 
However a discussion of CAN and TAPESTRY successfully captures the essence on which any DHT based 
architecture work. It is beyond the scope of our survey to make an objective study of the various DHT 
architectures. We have included this section merely for the sake of completeness of our work. An interested 
reader might follow the references for these architectures for having a better insight to these DHT based 
architectures 
  

7 CONTROL PLANE FUNCTIONS AND ISSUES 
 
Control Plane functions concern the organization and maintenance of the structure of the whole naming 
system - the communication between clients and servers to keep the name unique and consistent among the 
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neighboring servers, to get locators bind with the given name, the procedure initiated by clients to discover if 
specific service is available, the caching of names in local host to expedite the mapping of the static name to 
locator, the replication between the name servers to keep the name service available and reliable; the 
delegation between name servers to make the system scalable and flexible.  
 
In short, control plane functions of a naming system is dedicated to keep the structure of the system and thus 
make the name service available, reachable, reliable, and consistent. 
 

7.1 Name resolution 
 
A given name necessarily needs to be translated into a locator (or address) that allows the user to access the 
corresponding entities. This procedure is called name resolution or mapping. Generally, the resolution could 
be fulfilled by a name lookup between the client and the name server. For example, when a user tries to access 
the resource by a URL, the domain name component of the URL is resolved into an IP address by Domain 
Name System [46] by a lookup of operation between client application and domain name servers. The rest of 
the URL is resolved by application-specific components.  
 
Some flat naming schemes such as UUID does not provide any resolution architecture, and an application 
using UUID is in charge of providing the name resolution mechanism. In XRL, the name resolution function 
is performed by an inter-process communication (IPC) call to the central process called finder, which tracks 
all the predefined and registered target names and the protocols supported. There are two formats of XRL: 
the unresolved and resolved XRL. For the unresolved XRL, as shown in figure 5 , the protocol family is set to 
“finder” and the protocol parameter is set to the target name to be invoked. The unresolved XRL is then 
resolved by finder and the “finder” is replaced by an appropriate protocol name and the target name is 
replaced with a network address. The resolved format is returned to the client and the client uses it to access 
the specified resource. For INS, a name-specifier can be resolved into one or more name records. And all the 
name-specifiers is stored in a name-tree. The name resolution process of INS uses the name-tree to lookup a 
name-specifier and returns the associated name-records. 
 

7.2 Service Discovery 
 
Here, we give two classical concepts related with naming derived from conventional telephone service: 
White Page (WP) data and Yellow Page (YP) data. In telephone services, White Page refer to getting a 
telephone number by the name of a person, while Yellow Page means getting the number by categories, 
address, and provider of the services. Generally speaking, White Page is suitable to be used to name people 
and Yellow Page is used to name services. 
 
Service discovery means that for a given query attribute discover all the services available that match the 
query condition. Discovery differs from lookup in the nature of the query performed. When a name lookup is 
performed, the unique named object is usually known to whoever is performing the lookup. The aim of the 
lookup is to determine the value of some attributes of the object (such as address). When a discovery query is 
performed, however, the subject of the query is typically unknown. The aim of discovery is to determine the 
set of objects that have a certain set of attribute values. In other word, to discover a name or service, the 
operation could be performed by giving the description of the attributes of the services. 
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The discovery requirements for White Page and Yellow Page data are similar. Attribute-based architectures 
have proven superior for both types of data. Although the lookup and discovery queries for White Page and 
Yellow Page may be similar, the results may be handled differently. For example, when duplicate objects are 
returned from a White Page query, the user may need to further disambiguate the results to find the one true 
object. In the Yellow Page case, the user is often satisfied with any response and needs only to choose one. 
 

7.3 Name Caching 
 
Caching is a general mechanism wherein the  client keeps certain resolved mapping between a name and a 
locator, or the local copies of information retrieved from previous queries. 
 
DNS, which is of a hierarchical structure, has been proven to be efficient and scalable in the current Internet, 
but the upper-layer resolvers is potentially overloaded and may become a single points of failure. To solve 
this problem, DNS use a local caching mechanism at lower-layer DNS servers, which could significantly 
reduce the query hits for the upper-layer DNS servers and increase the efficiency of the resolution. However, 
although this local caching mechanism could increase performance and provide a measure for fault-tolerance, 
it could not meet the requirement of the system for supporting mobility, which is because it is difficult to 
propagate the name mapping changes through the system in a fast and efficient way. In the mobile scenario, 
the changing name could bring in, the problem of inconsistency for the system. That also explains why URL 
and DNS scheme fit for static names resolution but does not suit highly dynamic names.  
 

7.4 Name Replication 
 
Name replication could be achieved by replicating the name servers, which could prevent the single points of 
failure problem of the high-level name servers that handle a lot of naming resolution transactions. The 
replication mechanism increases the reliability and security of the naming system greatly, but also it could 
incur extra network overhead. For example, in the three-level naming tree of V-System, any failure in a 
global directory would cause a large sub-tree of the naming system to become inaccessible. V-System use 
replication for these servers due to the relatively slow rate of name changing at this level. But for large-scale 
Internet, replication like this would cost a large amount of extra overhead, and make it infeasible to deploy. 
Fortunately though, we could use some caching functionality to reduce the access rate for these high level 
servers. However, caching has the disadvantage of not being able to support dynamic names, i.e., to support 
mobility across the networks. 
 
As an example, the high-level DNS servers are replicated, which make it fault-torrent. In INS, the name-tree 
is replicated in each INR (Intentional Name Resolver), so the name resolution of INS is performed locally in 
INR. To keep the replicating name-tree consistent among the INRs cost a lot of network traffic, especially for 
the highly dynamic networks. For Solar, as it uses the INR network, just like INS, the INR in Solar is also 
fully replicated. While Solar uses an overlay proxy server layer to redirect the dynamic name to the INR for 
further resolving, the proxy servers should also be replicated in the circumstance that services often move 
between proxies, which also incurs a considerable amount of network overhead. 
 

7.5 Name Proxy 
 
To increase the scalability and flexibility of a naming system, or to offer certain name resolution extension 
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function, some naming systems employ a name proxy server. A name proxy server acts like a delegated agent 
for the name servers. For example, the proxy server layer in Solar [12] acts as an intermediate delegation 
server between dynamic clients and INS networks. By introducing these proxy servers, Solar could support 
mobile dynamical names.  
 
In other cases such as NAT (Network Address Translation), the NAT boxes map one global address to 
multiple internal addresses has provided an ad-hoc solution to the depleting address space problem, and 
could address the security problem. However, for end-to-end applications, especially for future end-to-end 
name resolution and routing function, the NAT could meet some problems. Several schemes such as  IPNL , 
4+4  Plutarch and TRIAD all address the NAT problem for naming. Future naming schemes should provide 
transparency, efficiency, reliability and security for the end-to-end name resolution and traffic routing 
mechanisms even for the networks containing NAT. 
 
To sum-up, in this section, several functions and issues related with the control plane have been addressed. 
These are important for the organization and maintenance of the structure of the whole naming system. In the 
next part, several non-typical naming schemes are given and discussed. They are not addressed in the former 
parts because they only address a very specific function or used in a very specific application related with 
names and naming. So we discuss them here to ensure the integrity of the paper. 

8 OTHER NAME RELATED SCHEMES 
 
In this section, we will discuss some non-typical naming related schemes that address different problems. We 
did not discuss them during the former parts because these schemes aim at a small specific area or provide a 
specific solution concerning certain problem. They are not general schemes like URI, INS and Solar, which 
cover most of the functions of the three planes of the naming reference model. 

 

8.1 HNS 
 
“Heterogeneous Computer Systems” (HCS) was a research project of University of Washington. HNS (HCS 
Name Service) [65] was proposed to solve the naming problem among heterogeneous networks with 
different naming schemes and namespaces. 
 
The general goal of HNS is to integrate different naming services into a global one without changing the 
current application or incurring any re-registration process. 
 
HNS global namespace has two parts: A “context” identifies the local name service where resource can be 
found. An “individual name” determines the name of the object in that local service. 
 
To resolve the name, HNS maps the name to a NSM (Name Semantic manager) to handle retrieval of data 
from the native server determined by “context”. Using NSM, Client can query the name and service without 
being concerned about the underlying name service. Figure 13 illustrates an example of integration between 
two different naming schemes by HNS. As the figure shows, a HCS client calls the HNS using heterogeneous 
RPC (HRPC), passing the HNS name. The HNS returns an HRPC Binding that allows the client to call the 
appropriate NSM. The client then calls the NSM directly using specific interface that includes original HNS 
name. The NSM translates the individual name portion to the corresponding local name, communicating with 
local service using this name, and return the results. 
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NSM is separated from both client and HNS, which allows reconfiguration without altering either, and 
adding new systems only requires building new NSM and registering it with HNS.  
 

 
Figure 13: Example  scenario of HNS querying 

 

8.2 UNS 
 
Similar to HNS, Universal Name Semantics (UNS [28]) also tried to address the naming issues across 
heterogeneous networks and among the heterogeneous name spaces, but different from HNS, UNS tried to 
accomplish this by managing or merging different namespaces into one. 
 
UNS attempted to partially automatically fulfill the naming translation (using a prototype language) between 
the different namespaces by exploiting “abstract similarity” i.e., merging different namespaces based on their 
similarity. 
 
UNS is somewhat creative on addressing this heterogeneous naming issue, but this merging mechanism seem 
to be infeasible when the different naming scheme are completely different. For example, it will be very 
difficult to merge a naming scheme with flat name structure into a naming scheme using a descriptive name 
mechanism, since their “similarity” somehow is very limited. 
 

8.3 HFN 
 
HFN (Human-Friendly Names) [6] was proposed for highly popular and replicated websites (such as search 
engine) which may have very large volume of simultaneous access requests at the same time. The current 
scheme for these websites is to use multiple URLs to identify each replica. HFN builds on the present 
URN/URL system and uses descriptive human-friendly names (HFNs) to identify a resource. The HFN is 
resolved to one or more URNs and each URN can be resolved to one or more URLs. As figure 14 (a) shows, 
it is the current scheme of using a URL for each replica, the system will not be user-friendly and the 
replication is not transparent to the users. So we may use a location-independent URN to name the resource 
and since URN does not care about the location of the resource, it has to be mapped to multiple URL. Figure 
14 (b) provides this transparent replication for the web servers. Since URN refers to a resource rather than the 
location, the resource can be moved around without changing its URN, the mechanism in figure 14 (b) thus 
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can support mobile resources. However, since URNs are designed to be used for computers, they are not 
required to be human-friendly. So by introducing HFN, scheme in figure 14 (c) allows descriptive, 
human-friendly, and highly usable names. 
 

 
Figure 14: Comparison of three schemes for naming replicated resources 

 
This two-step resolution process that binds the HFN to a URN and the URN to multiple URLs offer certain 
advantages. For example, replicating or moving a resource will not affect its name and users can freely 
change the HFN without affecting replica placement. HFN’s HFN-to-URL resolution mechanism scheme 
support a large number of resources and resource distributed over a large geographical area. 
 
However, HFN is specifically designed to meet the requirements of the highly popular and replicated web 
services. For common applications, its HFN-to-URN and URN-to-URL mapping mechanism could bring 
extra overhead. So this makes HFN inappropriate for a system supporting highly mobility and multi-homing 
functions. 
 

8.4 CNRP 
 
CNRP (Common Name Resolution Protocol) [43][56][57] is proposed by IETF CNRP working group. 
Common name is a word or a phrase, without imposed syntactic structure, that may be associated with a 
resource. It refers to things in the real world such as a trade name, company name, or a book title. These 
names are sometimes easier for people to remember and use than URLs, and don’t have to worry about the 
problem with URLs that because of the limited syntax of URLs, companies and individuals are finding that 
the names that might be most reasonable  for their resources are being used elsewhere and are unavailable. 
 
CNRP is a lightweight search protocol that lets users of client applications to communicate with common 
name resolution services in both the browser enhancement and search site paradigms. Name resolution 
services are not generic search services and thus do not need to provide complex Boolean query, relevance 
ranking or similar capabilities. 
 
Resolving common names at different information providers permits acquiring different types of information. 
However the working group’s scope does not include discovery, selection or implementation of a scalable 
common name resolution service, administration of resolution service, name registration, name ownership, 
and methods for creating, identifying or insuring unique common names. 
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Since Common Name Resolution Service is not based on web-content,  but on highly structured directory 
service to identify a resource and the resolution service is external to the actual resource, so it is suitable to 
provide more specific service for the users, and it could act as a complement for the search engine. For 
example, it could provide business directories services such as real time stock information for NASDAQ; it 
could provide White Page services, E-commerce directories; publishing or entertainment directories; Yellow 
pages services, etc.  
 
To sum up, in this section, we discussed several non-typical naming schemes. HNS and UNS tried to provide 
a tentative solution for the naming problems in heterogeneous systems using different naming schemes. HFN 
was proposed to provide better service for highly popular and replicated websites. CNRP gives a lightweight 
common name resolution protocol to provide specialized structural directory service, which could act as a 
complement to the current search engine. 

 

9 NAMING SCHEME: FUTURE DIRECTIONS 
 
The internet that we have today was designed and implemented around 40 years back. Since then it has 
undergone numerous modifications and enhancements, but the basic underlying principles of the design still 
remain the same. It can easily be awarded to have been one of the mot successful designs in the history of 
technology, having withstood the test of time for such an extended period. But technology in the world of 
communication sciences has taken massive strides since then and today we are forced to ask the question as 
to how would we have designed the internet if we were to design it today. One of the significant changes that 
we cannot fail to notice is the huge growth in the diversity of communication devices that we have today. And 
we cannot possibly overlook the fact that homogenization of the network into one single network type is 
clearly not the correct choice owing to diversities in technology and organizational / political disparities. The 
future of the internet is in having all these heterogeneous networks communicate with each other in their 
explicit contexts. In such a network, the problem of naming and addressing looms large. The future work of 
this survey points towards a successful design of a naming system which could address this problem of large 
scale convergence with explicit contexts. It is a mammoth undertaking and in our view, one of the most 
important considerations for the design of the next generation internet. 
 

10 CONCLUSION 
 

In this survey, we have presented a study of the various naming schemes that have been proposed for the 
present internet at various times and under various contexts. The uniqueness of our work, as opposed to other 
surveys in this are, lies in the fact that we have successfully delineate the problem of naming into three 
semantic planes which are somewhat orthogonal to each other. We believe, such a model of naming would 
allow future researchers in this area to be able to better organize their thoughts and hence come up with more 
practical and workable solutions.  The motive of our work is to satisfy the survey needs of anyone 
envisioning to design a new naming scheme, hopefully for the next generation of the internet.  
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