
1

The P-ART Framework for Placement of Virtual
Network Services in a Multi-cloud Environment

Lav Guptaa,*, Raj Jaina, Aiman Erbadb, Deval Bhamarec
a
Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, USA

b
Department of Computer Science and Engineering, Qatar University, Doha, Qatar

c
Department of Mathematics and Computer Science, Karlstad University, Sweden

Abstract—Carriers' network services are distributed, dynamic, and investment intensive. Deploying them as virtual network services (VNS) brings
the promise of low-cost agile deployments, which reduce time to market new services. If these virtual services are hosted dynamically over multiple
clouds, greater flexibility in optimizing performance and cost can be achieved. On the flip side, when orchestrated over multiple clouds, the
stringent performance norms for carrier services become difficult to meet, necessitating novel and innovative placement strategies. In selecting the
appropriate combination of clouds for placement, it is important to look ahead and visualize the environment that will exist at the time a virtual
network service is actually activated. This serves multiple purposes – clouds can be selected to optimize the cost, the chosen performance
parameters can be kept within the defined limits, and the speed of placement can be increased. In this paper, we propose the P-ART (Predictive -
Adaptive Real Time) framework that relies on predictive-deductive features to achieve these objectives. With so much riding on predictions, we
include in our framework a novel concept-drift compensation technique to make the predictions closer to reality by taking care of long-term traffic
variations. At the same time, near real-time update of the prediction models takes care of sudden short-term variations. These predictions are then
used by a new randomized placement heuristic that carries out a fast cloud selection using a least-cost latency-constrained policy. An empirical
analysis carried out using datasets from a queuing-theoretic model and also through implementation on CloudLab, proves the effectiveness of the P-
ART framework. The placement system works fast, placing thousands of functions in a sub-minute time frame with a high acceptance ratio, making
it suitable for dynamic placement. We expect the framework to be an important step in making the deployment of carrier-grade VNS on multi-cloud
systems, using network function virtualization (NFV), a reality.

Keywords—Virtual Network Services, Network Function Virtualization, Service Function Chain, Virtual Network Function, Multi-cloud Systems, Machine Learning,
Dynamic Placement

1. INTRODUCTION – CHALLENGES AND CONTRIBU-
TIONS

Carriers perceive Network Function Virtualization (NFV) as
a disruptive technological development that has the potential of
delivering them from the problems of the traditional physical
networks. NFV allows network functions and appliances to be
instantiated in software on computing and networking resources
obtained from datacenters or cloud service providers. The
concoction of NFV and cloud computing holds a great promise
for carriers. It promises to deliver freedom from vendor
dependence and expensive proprietary equipment, ease of
service creation and phasing out, the flexibility of scaling and
de-scaling, having points of presence closer to the users and
avoiding a single point of failure. Cloud computing and Network
Function Virtualization have a natural synergy that awaits full
exploitation. It is expected that these two powerful paradigms
would evolve together to support the requirements of virtual
network services (VNS). The European Telecommunications
Standards Institute (ETSI) specification of classification of
cloud-native VNF implementations describes the creation of
VNFs on different types of clouds [1].

One of the biggest challenges in deploying NFV over

multiple clouds today is the low VNS performance. There is a
general concern regarding the current technological capability to
extract carrier-grade performance from NFV-based services
[2] [3]. The Internet Engineering Task Force (IETF) has also
identified performance and guaranteeing the quality of service as
open research areas and technology gaps in NFV [4]. The
performance standards have been strict in telecommunications
networks, with International Telecommunications Union (ITU)
standards being adopted by most administrations. The standards
prescribe stringent control over performance parameters like
latency, jitter and packet loss [5]. The availability requirement is
of the order of five nines (permissible downtime of just 26
seconds in 30 days).

There are a number of reasons why the software versions of the
network functions, i.e., Virtual Network Functions (VNFs), do not
give a performance that is comparable to the purpose-built
physical appliances used in the traditional networks. As anyone
would guess, the main reason is the inability of the network
functions created in software over general-purpose hardware, in
matching the performance of specialized hardware-based
functions. The performance suffers further when these
‘softwarized’ functions are instantiated over clouds. To compound
the problem, carriers have lesser control when network appliances
move from their own switch rooms and transmission centers onto
the Cloud Service Providers’ (CSPs’) virtual machines (VMs).
Add to this the newfound ease of creation, destruction, migration,
and scaling of virtual resources (courtesy NFV), and opportunities
for indiscriminate virtualization proliferate. All of these issues
cause performance to go downhill. Previous work has shown that
virtualization may lead to abnormal latency variations and

———————————————
* Corresponding Author Address: Dept. of CSE, Washington University
in St Louis, St Louis, MO 63130, USA, Tel: +1 314-825-0063
E-mails:lavgupta@wustl.edu (Lav Gupta), jain@wustl.edu (Raj Jain),
aerbad@qu.edu.qa (Airman Erbad), deval.bhamare@kau.se (Deval
Bhamare)

ePrint
 Computer Communications, Volume 139, 1 May 2019, Pages 103-122

mailto:lavgupta@wustl.edu
mailto:jain@wustl.edu
mailto:aerbad@qu.edu.qa
mailto:deval.bhamare@kau.se

significant throughput instability [6]. In their infrastructure
overview, ETSI has indicated latency and throughput constraints
as the discouraging factors for the use of public clouds for hosting
NFV. Even though researchers have proposed ways of improving
the performance of virtual network functions [7] [8], legitimate
concerns still remain. All said and done, the advantages of the
VNSs are far too important for researchers in academia and
industry to forge ahead.

In the VNS game, carriers and CSPs may not always have a
cordial relationship. It is challenging to co-optimize their
conflicting goals when they collaborate to provide VNSs. Carriers
look for standards-grade performance and availability at the
minimum cost and in the desired time frame. So, not to take any
chances, they incorporate these in their Service Level Agreements
(SLAs) with the CSP. On the other hand, the CSPs aim to
maximize the utilization of their physical and virtual resources to
improve their profit margin.

In this paper, we make a case for the P-ART framework that
will help CSPs alleviate some of the main concerns of carriers
while deploying services - meeting the contracted performance
and keeping the cost within the prescribed budget. The main
contributions of this paper are summarized below:

1. We develop techniques for improving the performance of
deployed VNSs through the following:

i) We propose an innovative predictive dynamic placement
algorithm that takes care of changes in the state of the
cloud environment to ensure the validity of the placement
at the time of activation of a service. In addition, we
propose placing complete chains rather than the commonly
followed path of placing VNFs individually, to yield better
results. As most carrier services are affected by latency, we
choose to work with latency as an important performance
measure. The work can be extended to other parameters
following the same guiding principles.

ii) Since a public dataset suitable for the problem is scarce, we
generated realistic datasets to train and test the models. To
be doubly sure, we used a dataset obtained by building a
queuing-theoretic model and another by implementing the
system on CloudLab [9].

iii) One of the important parts of the framework is a novel
method that refines the prediction algorithm by taking into
account variations in network latency because of
temporally varying traffic conditions in the carriers’
networks. Unattended, such variations cause a concept-
drift, which makes predictions unreliable and affects the
accuracy of predictions. For this, we introduce a novel
concept of using time as a feature in training the predictive
machine learning models. The resulting use of multiple
models makes the framework adaptive to diurnal traffic
variations.

iv) Short-term traffic changes, because of events like a football
match or an election rally, do not follow a pattern like
diurnal traffic variations and need a different way of
handling. Since retraining of models is a time consuming
and expensive operation, the framework uses incremental
learning to keep the models up-to-date.

2. We propose multiple criteria optimization through an
innovative placement strategy. Specifically, placements are carried
out to optimize cost and keep latency within the specified
threshold. We explain in the related works section that, in general,
ILP and its variants give optimal solutions but take significantly
more time than other methods. This limits their utility in
responding fast to the change of state of the multi-cloud system
and the subscriber demands from the service during its actual
operation. To the best of knowledge, the random optimization as a
viable method to achieve optimized placement has not been used
before. The algorithm converges to the global minimum even in
the case of a multi-modal dataset.

3. We incorporate in our framework, innovative techniques for
making the placement fast with high acceptance rate. The high
speed of placements allows the CSP to make changes in the
network dynamically, in real-time or near real-time, as the factors
like demand, traffic congestion on links, availability of resources
on various clouds change. A high acceptance rate implies that a
placement attempt would be successful every time if enough
resources are available on the clouds.

4. Finally, the ideas explained above are brought together to form
the P-ART framework for dynamic predictive, adaptive and real-
time placement of carrier virtual network services.

In the preliminary version of the paper, presented at an IEEE
conference in 2017, the contributions mentioned in 1(i), 1(ii), 2
and 3 were explored [10]. The new work explained in 1(iii), 1(iv)
and 4 enables us to report the complete framework in this paper.
The rest of the paper is organized as follows. In Section 2, we
discuss the VNS environment. This section also serves to clarify
the terminology used. Section 3 presents a summary of the
related work and how this work is different from other
previously reported solutions. The problem description is in
Section 4. The P-ART framework is discussed in Section 5. In
Section 6, we present the evaluation results. Finally, Section 7
gives a summary and describes the ongoing work.

2. VIRTUAL NETWORK SERVICE ENVIRONMENT
The network services are voice and data services, wired or

wireless, provided by telecommunication companies (referred to as
carriers in this paper). These network services include public
services like mobile telephony, broadband and Internet, content
delivery, enterprise networks, leased circuits, and virtual private
networks. Traditionally, networks providing these services have
been built using physical appliances and transmission links that are
custom built for carrier-grade performance. This physicality usually
creates vendor lock-in, prolonged service deployment time,
inflexibility in scaling and introducing new services, and high cost.
NFV and cloud computing provide a way to create network
functions, in software, over inexpensive virtual resources. Such
virtual functions can be linked with virtual network resources to
create VNSs. The VNSs result in flexible, scalable and less
expensive networks that are not proprietary and prevent vendor
lock-in. We shall see the constituents of VNS in this section along
with the cloud set-up that can be used for hosting such services.

2.1 Constituents of a Virtual Network Service
In most discussions on VNSs, VNFs are the basic unit of

placement. VNFs are software-based implementations of

physical network functions that are used in traditional carrier and
enterprise networks. They exhibit functional behavior similar to
their physical counterparts and have well-defined interfaces
consistent with relevant industry standards. VNFs can be
instantiated on virtual machines (VMs) obtained from
datacenters, or from cloud service providers. All the instances of
a VNF, say the core router function, would usually be hosted on
one or more dedicated VMs on one or more clouds depending on
the carriers’ requirements and CSPs own policies regarding these
deployments.

A Service Function Chain (SFC) or a VNF forwarding graph
is a set of VNFs interconnected to route the packets in a well-
defined sequence [11]. They are connected like the physical
appliances are connected in a traditional network [12]. IETF
RFC 7498 [13] describes each network service (NS) being
implemented through one or more service function chains (SFC)
[14]. The carrier may like to retain some of the legacy physical
network functions (PNFs) while virtualizing the other functions.
The SFC may, therefore, consist of VNFs, PNFs, and links
among them. Figure 1 shows the components of an SFC and
associated modules.

The broadband VNS, shown in Figure 1, is an SFC
consisting of four VNFs, viz., an aggregation switch, two types
of Border Network Gateways (BNGs) and a core router. It also
has multiple instances of a Physical Network Function (PNF),
viz., Digital Subscriber Line Access Multiplexers (DSLAMs),
retained from the legacy network. Each VNF has its own
Element Management System (EMS), which interfaces the VNF
to rest of the network [12]. The Operation Support
System/Business Support System (OSS/BSS) of the carrier
manages the VNFs and SFC through the EMSs.

Fig. 1. Broadband service function chain and associated modules

SFCs can be placed on the available clouds in a number of
ways. CSPs may offer commonly used network functions in the
form of VNF-as-a-Service (VNFaaS), which may be a part of an
SFC. Alternatively, a carrier may lease virtual resources in the
clouds and instantiate VNFs itself, with a view to exercise more
control over performance parameters and cost. Our discussions
presume the use of the latter method. Figure 2 shows an example
of an SFC mapped to multiple clouds. It may be noted that we
now have four VNFs as the SFC has two types of BNGs. The
Aggregation Switch is presumed to have a built-in load-
balancing function for distributing traffic between the two forked
paths. The end-to-end latency of the service function chain
would depend on how, when, and where the constituent
functions have been placed. The users shown in the figure are
customers of the carrier while the carrier is a tenant on the cloud
system. When the initially placed SFC does not meet the
required conditions, operations, like moving around the VNFs in

the clouds or scaling up the number of instances, would be
resorted to.

 Fig. 2. Mapping service function chain to the multi-cloud system

2.2 The Multi-cloud Hierarchy

There are public cloud services like Amazon EC2, Google
Cloud Services, and Microsoft Azure that provide the advantage
of a relatively inexpensive resource leasing solution. Big public
clouds are multi-tenant and have a regional or international pres-
ence. These clouds can handle large volume, variety, and veloci-
ty of traffic. Large public clouds do offer greater flexibility in
obtaining resources and more analytical sophistication, but tak-
ing all the data to just one public cloud would create traffic con-
gestion and increase the access latency. Using a single cloud
could often result in a single point of failure in the case of cloud
blackouts, which are not uncommon.

Additionally, the points of presence (PoPs) of large public
clouds may not be close to the subscriber clusters and may give
rise to increased access latency. If the application calls for lower
access latencies then edge clouds may offer a good solution.
Carriers may also have their own private clouds, which they can
customize and exercise more control over. This hierarchy of
clouds – mobile-edge, private, and public – forms a multi-cloud
system to provide a combination of features like low latency,
high storage, complex computations, lower cost, and better secu-
rity.

2.3 Representation of the Tenant Profile

In this work, a cloud tenant (in our case, a carrier) profile is
represented as a tuple <cN, v1, v2, …, vm, p> for each request.
Here, v1, …, vm represent the VNFs and the order of traffic tra-
versal in a linear chain. The term cN is the native cloud for the
tenant to which it is parented and through which the traffic en-
ters an SFC and p is the desired packet rate (packet/second).
Multiple tuples can be used to represent branched traffic flows.
Other stipulations like latency threshold (Lth) are part of the
SLA. All the requests of the tenant are consolidated to calculate
the required number of instances of each VNF and inter-VNF
links of appropriate capacities. The cloud topology may be
represented by the graph Gc = (C, T), where C is the set of avail-
able clouds {c1, c2, …, ck} and ti,j are the inter-cloud links. The
CSP (or a cloud broker who integrates services from multiple
clouds) carries out the task of mapping service chains onto the
available clouds to achieve optimal results for the carrier. In our
case, optimality refers to the least-cost solution that meets the
end-to-end latency threshold requirement.

3. PROBLEM DEFINITION

In this section, we summarize some of the key outstanding

problems in the dynamic placement of carrier VNSs, in a multi-
cloud environment that we attempt to handle in the P-ART
framework described in this paper.

3.1 Achieving Dynamic Placement in Multi-cloud Systems
Some carrier services may be fairly static, e.g., fixed voice

network. Thus, over time the number of instances of VNFs and
link capacities required only change slowly over time. On the
other hand, some services may be extremely dynamic, requiring
a change in number and types of VNF instances, re-
dimensioning of links and changes in the offered features of the
service very frequently. An example of such a service would be
an intelligent network service like televoting in a TV reality
show. Different TV reality shows may require different features
and the number of voters may swing unpredictably during the
voting window. If the CSP only offers largely static placement
with reactive and relatively slow modifications, then the carrier’s
requirements may not be met.

The bottom line is that both, the dynamic and static services
would require the CSP to scale VNF capacities or links, albeit at
a different rate. However, dynamic services may be more
demanding in terms of types and number of instances of VNFs
and link resources and may even require migration of VNFs
from one cloud to another to be able to continuously meet the
cost and end-to-end latency constraints. A dynamic placement
algorithm, that monitors the SLA parameters and proactively
causes changes in the amount of resources and the combination
of clouds to meet all the requirements, is still a challenging
issue.

3.2 Optimizing the SFC Performance
When the data are high dimensional and multi-modal,

optimizing placement of individual VNFs may not achieve the
global minimum. Placing SFCs as a unit yields better results.
The opportunity to achieve the global minimum for the
parameter being optimized is available when placing the SFC. If
sufficient resources are not available to implement full-service
chains, then the request may be rejected or, if the policy permits,
degraded service (for instance without firewall) is provided
[11] [15]. In this paper, we only consider complete SFC
placement. The case where the customer accepts degraded
performance due to low-capacity chain placement or partial
functionality due to incomplete chain placement would be taken
up in future work.

3.3 Meeting the Cost and Latency Constraints
From the carrier’s perspective, the placement problem boils

down to placing network functions to meet the cost and latency
objectives. At the commencement of the VNS and during
operation, the placement problem needs to be repeatedly solved
to ensure that the carrier requirements are continually met.
Performance criteria vary from service to service. For the carrier
services like voice, broadband, and content delivery some of the
common factors are jitter, packet loss, latency, and throughput.
ITU standards for QoS parameters in carrier networks are
available in [5]. Latency is one of the most important criteria,
and we have taken that as a reference performance parameter.
The framework can be extended to include other criteria as well.

3.4 Speed and Accuracy of the Placement
Carriers want short placement and reconfiguration time so that

the solution can be useful in an operational network. The CSP
wants the solution to have the high success of placement
requests such that utilization of the virtual resources increases.
When the system cannot place despite the availability of
resources, CSPs lose by way of unused resources and possible
breach of SLA.

3.5 Interference Among VNFs
The CSP may instantiate a number of VMs on a physical

machine (PM) and a number of virtual links on the physical
inter- and intra-cloud links. VNFs of more than one service
provider may be instantiated on the same PM. In some cases, pre-
instantiated VNFs may be shared among carriers. Sharing of virtual
resources does not only cause performance concerns but could also
give rise to security concerns. In this paper, we have presumed that
VNFs of different types belonging to a carrier are on different VMs.

3.6 Problems Addressed and Not-addressed in this Paper
The following issues have been specifically addressed in the

paper:
a) Dynamic placement of the complete SFCs belonging to a

VNS.
b) Meeting the specified performance and cost criteria.
c) Prediction of latency using machine learning as a basic

input for the placement algorithm.
d) Refining the prediction by handling the temporal varia-

tion of traffic, unplanned short-term spikes in traffic and
the time lag between planning and commissioning of
SFCs.

e) A fast placement algorithm that places with high success
rate.

The following problems are left for future work:
a) Use of under-dimensioned service chains
b) Security issues of the VNSs.

4. RELATED WORK AND HOW THIS RESEARCH AD-
VANCES THE STATE-OF-THE-ART

A review of recent publications shows a strong interest of re-
searchers in the problem of placement in the context of NFV. We
discuss here some of the relevant works published during the last
two years to show how the field has progressed. There is some
older useful research on which many of the recent works build,
and these have been cited in the works that have been examined.
Since our research is in the area of cost and latency optimization,
we focus on research dealing directly (for example by optimiz-
ing cost or latency) or indirectly (by optimizing utilization of
resources thereby reducing cost) with these aspects. We conclude
this section by elaborating how our work advances the state-of-
the-art.

4.1 Review of recent works on VNF placement

1. Methods based on ILP and its variants for optimization
In [16] the authors contend that unlike most other works they

have considered QoS/SLA along with resource requirement of
network services. They show that the virtualization overhead
increases with traffic load and the number of VMs due to factors
such as scheduling delays, context switching, and flow routing.

The authors include virtualization overhead while setting up
their MILP model to optimize resource usage while guaranteeing
latency requirements. The model optimizes the cost including
the utilized processor, memory and physical links under the la-
tency constraint of maximum round-trip time. It is seen that for a
network with 28 nodes and 41 links the model takes about an
hour to arrive at an optimum solution. The authors in [25], use
an MILP model to optimize network latency and increase the
acceptance rate of strict delay requirements. One of the con-
straining factors in evaluation is the location of all the VNFs in
the same cloud. It is also somewhat unclear how the method will
scale from 5 VNF to a large network, for delays. The algorithm
chooses a more expensive path to ensure a minimum delay. An
intuition that probably does not require proof is that delay will
be more with high bandwidth requirement, or when more re-
quests seek the same link. In cases where the number of requests
is high, the solver is not able to find an optimal solution in the
joint delay and routing cost optimization problem. The solution
for the optimal chaining and routing with MILP limits the scale
of the problem.

2. ILP and Heuristic to speed up ILP
In [17], the authors optimize the number of physical ma-

chines (PM) used using an ILP model. They take into account
the time-varying workloads while instantiating VNFs in PM. A
two-stage heuristics solution has been suggested to solve the
ILP, with a correlation-based greedy algorithm as the first stage
and a further adjustment at the VNF in each SFC as the second.
The simulation demonstrates improved utilization of network
resources and reduced number of PMs compared to the bench-
marks. This and some other works presume multi-tenant VNFs
to improve utilization. While this may be good from the point of
view of cloud service providers, but carriers would usually re-
quest exclusive VNFs hosted on exclusive VMs because of secu-
rity and performance concerns. In [20] the authors propose
placement of VNFs in the edge clouds to minimize end-to-end
latency. Using and ILP model, the authors show that cloud-only
deployments gave more than 3 times more latency than cloud-
and-edge deployments. The absolute times for initial placement
and for each re-configuration are not known. They also present a
way to dynamically re-schedule the optimal placement of VNFs
based on temporal network-wide latency fluctuations using op-
timal stopping theory. Scheduling re-optimization may reduce
latency violations, but they may require an increased number of
migrations. Periodic migration also has a problem, as it requires
human intervention to decide on the periodicity of tuning. The
authors suggest a method using optimal stopping theory to select
the right time for placement.

3. ILP and heuristics for comparison

In [19], the authors consider an IoT-edge cloud-main cloud
scenario in a dynamic multi-user situation. The authors set up an
MILP model to minimize the end-to-end communication delay
while keeping the cost to the minimum. However, they realize
that the MIP formulations rapidly increase in complexity and
take a long time to give an optimum solution, as the problem
becomes large. To counter this, the authors also propose Tabu
search for placement and chaining. They find that the MIP meth-
od takes 200 times slower than the Tabu Search. The authors in
[24] solve VNF placement and chaining problem as ILP and also

propose another method called Cost-efficient Centrality-based
VNF Placement and chaining algorithm (CCVP). The objective
is to minimize the cost by finding an optimal number of VNF
instances and their locations for handling the required traffic. To
simplify they assume that the network provider is the owner of
NFVI so concerned factors are under its control. The CCVP is
based on the Betweenness centrality algorithm. The high central-
ity indicates that a vertex of a graph G can reach other vertices
on relatively short paths. This results in lower network cost.
They show that the overall cost of their method is close to ILP. It
should be noted that processing delays and link bandwidths are
not considered in the analysis. In [26], the authors pursue the
objective of optimization of energy consumption as an ILP mod-
el. This purportedly gives a reduction in the operational cost of
the placement. They also propose a near-optimal approximated
algorithm to solve the problem using the Markov approximation
technique. They show that their algorithm can achieve the per-
formance arbitrarily close to the global optimum. Simulation
results show that the algorithm saves up to 14.84% energy con-
sumption compared with previous VNF placement algorithms.

4. Non-ILP heuristic solutions

In [18] the authors presume sharing of VNFs among different
service chains. It should be noted that while sharing may im-
prove VM utilization, it might consume more link bandwidth
because these chains may need to go through a longer path in
order to reach the shared VM. As mentioned before, from carri-
ers' point of view this arrangement may give rise to security is-
sues as well as make it difficult to control latency. The authors
contend that most of the existing works are mainly targetted on
improving VM utilization, without considering the required
bandwidth resources. This paper has examined the joint VNF
placement and Path Selection problem, so as to maximize the
served traffic demands. In [21], the authors discuss a proactive
placement model in the context of a content distribution network
(CDN). They argue that VNF chaining and placement affect
QoS, and formulate an optimization problem to find the optimal
number of locations as well as efficient chaining such that the
CDN cost is minimized and QoS is satisfied. The authors set up
the problem as a bin-packing problem that involves selection of
bins (surrogate servers) and dropping the items (VNFs) into
them. The authors conclude that while their solution gives fewer
servers but may give a high communications cost. In [22], the
authors investigate the optimal placement of virtual resources to
minimize the average response time in mobile edge computing
(MEC) environment with a capacity constraint on the edge net-
work. They use OEPA (Optimal Enumeration Placement Algo-
rithm) as a benchmark to compare Latency-Aware Heuristic
Placement Algorithm (LAHPA), which has lower computation
complexity, Clustering Enhanced Heuristic Placement Algorithm
(CEHPA) to enhance the performance of LAHPA, Substitution
Enhanced Heuristic Placement (SEHPA). SEPHA turns out to be
better than LAHPA. CEHPA and outperforms LAHPA and both
are better than the general Greedy Placement Algorithm. The
authors in [23] describe a dynamic placement algorithm based
on traffic variations that saves operational expenditures. Their
algorithm consolidates VNFs in the fewer possible number of
network nodes while maintaining low blocking probability and
guaranteeing latency targets to the supported services. They re-
use VNFs, select VNFs based on locality and activate them

based on the shortest path. The authors claim that their algorithm
is able to balance the trade-off between minimizing latency vio-
lations, decreasing blocking probability and reducing operational
expenditure. The success rate of the algorithm has not been men-
tioned. The authors claim 50% saving in telecom operators cost.

4.2 How does this work advance the state-of-the-art?
A carrier's environment is essentially different from an IT ap-

plication environment. Carriers assiduously follow norms that
have long been enforced by standardization agencies like ITU or
through self-imposed discipline. They are generally loath to give
these good practices up, even if that would mean marginally
sacrificing on other competing cost objectives. Some of these
practices relate to five nines reliability, guarding against inad-
vertent or malicious interaction of services (for example, be-
cause of VNFs being on the same servers or VNFs sharing the
same VM) and having well-defined points of interconnections.
Another important aspect is ensuring the security of their ser-
vices. Some of these may be required by regulation to account
for revenue generation by different networks or to have non-
contentious sharing among carriers in case of multi-domain ser-
vices.

There are a number of important factors that go into the
planning of carriers' network services. The locality of VNFs, for
instance, those belonging to the access network (like Radio Ac-
cess Network), should ensure that the VNFs serving a cluster of
subscribers are instantiated close to them to reduce cost and la-
tency. There are a number of virtual functions that have an
affinity and need to be placed as close as possible. In a broad-
band network, the edge routers may be connected to two core
routers in order to ensure that large clusters of subscribers are
not cut off from the network. In such a case, the cost of connec-
tivity would be exorbitant if edge routers are generally located
far away from the core routers. In the case of carrier's VNSs
deployed over clouds, it must be remembered that the cloud re-
sources (or the NFV resources) may not all belong to the carrier.
In such a case, when the placement solution deals with packing
the VNFs into physical or virtual machines, it generally helps the
cloud service providers to reduce their cost. The carrier's objec-
tives of isolation of services, security, affinity and QoS parame-
ters may be jeopardized.

Unlike most other papers that deal with placing VNFs on vir-
tualized datacenter resources or single clouds, this paper pre-
sumes a multi-cloud environment. Rather than optimizing the
utilization of physical or virtual resources, it assumes carriers'
viewpoint and optimizes, under latency constraint, the total cost
of placement of network functions, which includes resources on
various clouds and links. The cost is presumed to be adjusted to
contain the apportioned capital and operational costs for the vir-
tual network service under deployment. The method that we
propose falls in the category of dynamic and proactive place-
ment algorithms rather than being either of those. Our objective
and constraint-based determination of clouds, on which the SFC
will be placed, removes the tight binding between resources and
the VNFs of the SFC. During operation, the placement is fre-
quently re-evaluated to ensure continued optimality. We avoid
the ILP route and use machine learning for placement, which
reduces the time taken even for large placements and renders the
re-evaluation problem trivial. If required, new placement and

virtual resource dimensioning will be done consistent with the
carrier SLA requirements and CSP policies. Selection of clouds
for placement of chains of VNFs is based on the prediction of
the state of the clouds at the time of placement. A number of
innovations have been proposed in this part of the work. One
such refinement is the compensation of concept drift due to di-
urnal variation of traffic. The methods adopted also lead to the
high efficiency of the placement process, which ensures that
placement requests are successful in all cases where enough ca-
pacity is available and constraints can be met.

5. THE PROPOSED P-ART FRAMEWORK
In this section, we describe our framework with approaches

to solutions for the problems mentioned in Section 3 and for
achieving the objectives specified. We also describe how the
refinements mentioned were carried out to achieve the solution
that can be used for carrier networks as well as in the enterprise
environment. For our studies, we will consider the placement of
the SFC shown in Figure 3.

Fig. 3. The configuration of the experimental service chain

5.1 Information Available from Carriers and CSPs
Carriers, who request service chain placement, provide in-

formation about the performance requirement for a VNS, and the
number and structure of SFCs and VNFs to be instantiated. A
VNS may have one or more SFCs. The ith SFC Si can be repre-
sented in terms of the constituent VNFs, i.e.,

Si = <CN, vnf1(i), vnf2(i), …, vnfn(i), p> (1)

Where CN is the native cloud and p is the maximum packet rate
through the chain. The native cloud is usually the point of pres-
ence (PoP) of the CSP closest to the carrier and provides inter-
connection to the carrier. The CSP may provide an option to
connect at PoPs located at other places. This gives a choice to
the carrier to have traffic ingress points close to the customers.
The design is to be carried out such that the costs of the network,
as well as latency in reaching the cloud system, are kept to the
minimum or below a given threshold value.

An SFC is represented as a forwarding graph of the type Gv
= (V, E), the nodes V being virtual network functions and edges
E the virtual links among these functions. The demanded capaci-
ty of ith VNF, vnfi (i ≤ n) is expressed as vi

c in the same integrat-
ed units as the cloud capacities (shown in Table 2). An integrated
figure represents the compute capacity ck, of a cloud k, consist-
ing of a certain amount of processing, memory and storage com-
ponents. However, there is no integer constraint on the VNF
capacities. These are mapped onto resources in the available
clouds represented as another graph Gc = (C, T), where C repre-
sents the set of clouds with physical/virtual infrastructure and T
the set of links tij among them. The state of a cloud k at any time
would involve the cloud compute and link capacities –installed

capacities denoted as ck
(c) and tkj

(c), and the corresponding used
capacities are ck

(u) and tkj
(u). The tenant carrier provides the max-

imum expected packet rate p for each request originating from a
cluster of subscribers. The expected end-to-end latency is
specified by the carrier in terms of a latency threshold (Lth). The
CSP consolidates the VNF requests and packet rates required for
each type of chain to allocate resources in an optimum way. Ta-
ble 1 gives the symbols frequently used in the paper

Some of the important constraints subject to which the cost
optimization is carried out are:
• The number of instances of each type of VNF across all the

used clouds, for any carrier, should not exceed the number of
licenses for that function type paid for by the carrier.

• To place any chain, at least one instance of each type of VNF
needs to be instantiated.

• The total capacity of each type of VNF placed on any cloud k
should not exceed the capacity available in the cloud.

• At any given time the sum of the traffic flows, due to all ser-
vice chain placements, between any two clouds k and j should
not exceed inter-cloud link capacity tkj

(c).
• The end-to-end latency, L, of any chain should not exceed the

specified threshold Lth.
• While the cost is optimized, the carrier may additionally speci-

fy a budget CB for it.

 The framework requires that the CSP lays down its policies
regarding tariffs, integrated virtual resource capacities, clouds
offered, the arrangement with other cloud providers, cloud and
link capacities offered, etc.

5.2 Predictive Adaptive Real Time Strategy

The proposed placement solution optimizes cost and con-
strains the end-to-end latency below the specified threshold, Lth.
We assume that the design for instantiation of SFCs, belonging
to a VNS, is ready at time t, but actual placement is yet to hap-
pen. In other words, the placement problem has been solved at
time t for the placement and activation that will actually take
place at time t1. Predictive placement is used to take care of the

change of state because of this time difference. Using prediction
of the latency as the basis of design also takes care of the large
number of infrastructure and network level parameters that in-
teract in a complex way to decide the end-to-end latency. In ad-
dition to these, the background traffic in the network affects the
latency experienced by the subscribers of the VNS being placed.
Therefore, taking care of the diurnal traffic variations in the net-
work makes the prediction of latencies more accurate and system
more adaptive to such changes [27]. Short-term surges in traffic,
due to events like a football match, would affect latency during
the event and should be accommodated by dimensioning and
reconfiguring the SFCs. This renders the system more respon-
sive (and near real-time) in terms of latency predictions. We
have taken into account all these factors in formalizing our pre-
diction algorithm. Latencies so predicted are then used to select
a suitable subset of least-cost clouds meeting the latency con-
straint. The complete algorithm is given in Algorithm 1.

Algorithm 1: PLACE_SERVICE_CHAIN (client_demands, csp_data,
cv_model)
1: Set up cloud data // all ck ∈ C and tk,j ∈ T

2: Set up client data // all vi ∈ V
3: Latency thresholdLth

4: Cost budget  CB
6: NCloud  cN // Native Cloud

7: vi
c  capacity demands for vnfi

8: n  length of the service function chain (number of VNFs)
9: native  true // set native to 1 if native cloud is used else 0

10: if (native == 1) //place as many VNFs as possible in the native cloud
11: for vi, i =1, n
12: if cc

N –cu
N > vi

c // native cloud has unused capacity
13: pop vi

14: cu
N cu

N+vi
c // update cloud capacity

15: else
16: break
17: end if
18: end for
19: end if
20: if V != 0 // for remaining vnfs
21: call RANDOM_SELECTION(C, cv_model, r_clouds) //get a set of
lowest cost clouds
22: sort ascending r_clouds on cost //set of smallest latency clouds
23: while V != 0
24: place vnfs //on sorted clouds
25: update capacity
26: update bandwidth
27: update vnfs_placed status
28 : end while
29: end if
30: if all_vnf_placed & latency of chain < Lth & cost of chain < CB
31: output placement details
32: else
33: report failure to place
34: end if

The essential elements of the placement process can be
understood like this: the placement process takes care of the
change of state of the cloud system by predicting latencies at the
time of actual activation of the SFCs. This obviates the need for
drastic changes soon after placement or reconfiguration. Predic-
tion is, thus, an essential element of the framework. Having said

TABLE 1
SYMBOLS USED

Sym
bol

Description Sym
bol

Description Sym
bol

Description

ck Cloud k cN

Native cloud ck
(u) Used capacity

of cloud k
C Set of all

clouds
available

vi
(c) Capacity

demand for
VNF i

tij
(u) Used capacity

of the link
between
clouds i & j

tkj Link from
cloud k to j

cN
(c)

Equipped cap
of native
cloud

p The maximum
expected
packet rate

T Set of all
inter-cloud
links

cN
(u) Used cap of

native cloud
m No of clouds

selected

vi ith VNF ck
(c) Installed ca-

pacity of
cloud k

vnfi The ith VNF in
the SFC

V Set of
VNFs

tij
(c) Capacity of

link between
clouds i & j

Lth Latency
threshold

n Types of
VNFs

Vi
(c) Capacity

demand for ith
VNF

CB

Cost budget

that, the prediction methodology needs to be robust against traf-
fic variations. With this, the framework becomes adaptive to
placement time and traffic variations. To make the framework
fast, responsive, and useful in real-time, further steps need to be
taken. For this, short-term traffic variations are taken into ac-
count. Two other important factors that need to be taken into
account are speed and acceptance rate of placement. Fast
placement algorithms would allow continuous optimization by
making real-time changes (e.g., migration) possible when the
need arises during the operation of the network. For dynamic
scaling, a fast algorithm would be able to place hundreds or
thousands of functions in sub-minute time frame. Concurrently, a
100% acceptance rate implies that the algorithm is able to satisfy
all requests for placing SFC, subject to capacity being available.
This contributes to the avoidance of repeated attempts and saves
time.

Algorithm 1 is called for placement and reconfiguration. The
cloud and client data are initialized based on the CSP resources and
the client request and policies (lines 1-5). A separate process pro-
duces a trained model cv_model using the training data (X  fea-
ture_set and y  labels), which is available to the placement proce-
dure. The placement normally begins with the native cloud (this can
be overridden in line 9 by setting native = 0). The algorithm ac-
commodates as many VNFs as possible in the native cloud (lines
10-18). For the remaining VNFs, the SVR module predicts the
latency of various clouds. This algorithm uses Algorithm 3 (proce-
dure RANDOM_SELECTION) to select the set of m least-cost
clouds that meet the latency requirements. The number m can be
decided to start with enough capacity to place all the VNFs. For the
least-cost set, the algorithm calculates the assignment of VNFs in
the sequence in which they appear in the SFC. The final cost and
latency are reported (line 31). If the clouds are exhausted, and
placement has not completed, then failure to place is reported. If this
case happens frequently, then the number m needs to be increased.

5.2.1 Predictive Placement for Handling Change of State of the
System
The cost of placing an SFC is a function of the set of clouds

Cs (Cs ⊆ C), where C is the set of all available clouds), selected
to place the virtual network functions and the amount of compu-
ting, storage, and networking resources consumed. End-to-end
Latency (L) of the SFC depends on a number of factors promi-
nent of which are, a) the installed and used capacities of compu-
ting, networking and storage resources in the physical servers
and the links, b) the traffic pattern on the links, c) the types of
network functions sharing the servers, and d) the distance be-
tween clouds. These factors together constitute the state St of the
multi-cloud system at time t.

As the system operates, the number of tenants and their
workloads change, the state also changes. The amount of latency
introduced in a placement by the state of the cloud, therefore,
changes over time. Given the state St, latency can be computed
by using assumptions about the type of traffic, e.g., Poisson,
service times and the queuing discipline. The process of plan-
ning service function chains, creating virtual resources to host
network functions and booting them up takes time [28]. Loading
the network function software for various VNFs, chaining,
acceptance testing, and commissioning need additional time.
Initial placements and reconfigurations planned based on calcu-

lations at time t, and the state St, are actually carried out at a time
t1. In due course, parameters may change and require fresh re-
configuration [29].

Figure 4 shows the SFC to be placed and the available
clouds. Used and installed compute capacities (in integrated
units) are shown within the clouds, and so are the used and in-
stalled link capacities in M (Megabits) or G (Gigabits) per sec-
ond. At time t, the assessed end-to-end latency is 20ms. When
the actual placement and activation takes place at time t1, the
latency turns out to be 50ms. This may cause SLA violation right
at the inception and trigger reconfiguration of the chain. When
this happens for several service chains, it may lead to a heavy
penalty to be paid by the CSP and a loss of customers and reve-
nue for the carrier. When the states of the target clouds are
known, the set of least-cost clouds, which give cost and latency
below the stated thresholds, can be determined.

Thus, if the state St1 at the time t1 can be predicted and the
placement is carried out based on this state then the placement
remains consistent with the requirements. This is demonstrated
by our empirical study given in Section 6.

How is the placement carried out: In an operational CSP set-
up as well as the carrier network, a large amount of useful la-
beled data is available, which can be curated for use with super-
vised machine learning techniques. As the speed, simplicity, and
accuracy are of concern, we worked on a prediction technique
that could be applied repeatedly for cloud set selection consistent
with the objectives of the framework. A review of the literature
shows that many supervised machine-learning techniques have
been used in cloud computing settings, such as Artificial Neural
Networks (ANNs), Bayesian networks, Ensemble classifiers and
Support Vector Machines (SVMs). We worked with a number of
methods and found interesting results using a well trained and
tuned support vector regression (SVR). We discuss the results
given by some well-known stock algorithms to show the reason
for our choice in Section 6.4. SVR offers the advantage of a
unique global minimum as it solves a convex optimization prob-
lem. Also, it is amenable to incremental learning. We found that
it adapts well to multi-modal cases where the latency is time
variant and needs multiple models to fully capture the actual
situation. Well-tuned and trained models generalized well from
training to the production environment. The results of our exper-
imental evaluation are given in Section 6. For a thorough expo-
sure of SVR, readers are referred to [30].

Fig. 4. Need for predictive placement

5.2.2 Time Adaptive Placement - Incorporating Temporal
Variation of Traffic in the Model
We show through our empirical analysis that taking diurnal

traffic variations into account will improve prediction of laten-
cies. In carrier networks, there is temporal and spatial variation
in traffic demand because of time differences and patterns of use.
The amount of traffic flowing through the virtual devices and
links varies from place to place and hour to hour. This affects the
latency experienced by the subscribers of the carrier’s VNS. If
the provider over provisions the resources, to meet the surge in
traffic in the busy hour, then resources may lie unused most of
the time. On the other hand, if enough resources are not provi-
sioned fully in order to reduce the cost of the deployment, then
traffic may be lost along with the associated revenue. Fig-
ures 5 (a) and 5 (b) show an hourly variation of the actual traffic
on a 100 Gbps link from Chicago to Seattle and 10 Gbps link
from Los Angeles to San Jose [31].

 Fig. 5. (a) Traffic variation on Chicago-Seattle link

Fig. 5. (b) Traffic variation on Los Angeles-San Jose Link

The traffic that a carrier routes through the VNFs consists of
streams of voice, video, and data with different probability dis-
tributions. Each of this traffic varies independently in the time
domain. The aggregate traffic in the CSP’s network is a compo-
site of all the tenants’ traffic and has a complex distribution. The
traffic flows continuously as data streams and has properties of
big data [32]. In such a dynamically changing and non-stationary
environment, the data distribution changes over time, causing
the phenomenon of concept drift [33]. The drift is characterized
by the change in the density function that is, in turn, reflected by
the change in the shape of the traffic distribution or its statistical
properties like mean and variance. Thus, the joint distribution pt
of the predictor variables (X) and the labels (y) would change
dynamically over time such that at time t0, t1, …, tn the following
relationship (2) holds for all X.

pt0(X, y) ≠ pt1(X, y) ≠ … ≠ ptn(X, y) (2)

How do we propose to solve the diurnal traffic variation
problem?: The solution that we propose takes care of the con-
cept drift to ensure more accurate traffic predictions. While a
single SVR model works well in situations where there is no
sizable ambient traffic from other applications and network
services. However, SVR by itself does not take care of the time-
varying nature of the traffic present on the links from other
voice, data, and video applications. To handle this, we incorpo-
rate time as a feature by allocating numerical codes to windows.

Researchers have experimented with both fixed and adaptive
window methods to handle concept drift in real time situation. In
the case of fixed windows, the data is segregated into many small
windows to have lower overall generalization errors as com-
pared to a single window situation [33]. The utility of fixed
window sizes under certain conditions for topological data
analysis has been shown by the authors in [34]. A window of a
certain minimal fixed size allows learning concepts because the
extent of drift is appropriately limited [35]. In Adaptive Win-
dows [36], the window size is changed so that the difference in
errors (ϵ), given by a point in two neighboring windows, is
bounded by a small value δ such that ϵt –ϵt-1 < δ.

To achieve a good compromise between prediction accuracy
and complexity, we propose a method that has the simplicity of a
fixed number of windows and is also flexible to include a varia-
ble number of traffic data points depending on the frequency of
variations in different windows. Consequently, we call this
method fixed-time variable-points (FTVP) window. SVR models
are trained, one for each window, to tackle the effect of the con-
cept drift. While even as few as two windows give an
improvement in prediction, finding the right number and sizes is
a matter of optimization. A larger number of small windows may
give more accuracy, but would produce a larger number of mod-
els and would necessitate maintenance of all of them. Using this
concept, time is incorporated as one of the features in the train-
ing examples. In a sense, each example carries a time-stamp,
which makes it a member of a particular FTVP window. When a
prediction for a new point is made, the time feature will cause
the framework to use the model appropriate for the correspond-
ing time window. In our experiments, this method gives far low-
er prediction root mean squared error (RMSE) and absolute error
ratio (AER) than a single integrated windowless model.

To validate the FTVP concept, we created a trained SVR
model using a single window (full integrated dataset) and sepa-

Fig. 6. Comparison of generalization error with an integrated model

and FPTV model

rately for each of the four selected FTVP windows. In Figure 6,
we show a plot of the absolute error rate versus the latency for
both cases. The motivation for using multiple training datasets,
using time as one of the predictors, becomes amply clear. The
errors, in general, remain more controlled in the FTVP case.

5.2.3 Corrections for Short-Term Traffic Variations –
Incremental Learning from New Data
In an operational network, the dynamicity of the environment

would render the trained predictive models obsolete if the effect
of the short-term changes in the traffic is not accounted for.
Short-term variations are caused by events like festivals, game
tournaments, or rallies. If the effect of short-term changes in
traffic is not taken care of, latency prediction and consequent
placement decisions may not be correct. Since retraining of all
the models would entail prohibitive time and cost, we have used
an incremental update of the models. The authors in [33] con-
firm that the online method can adapt to sudden changes.

Choice of SVR for prediction makes incremental learning
easier to understand. In SVR, the support vectors are the only
points that determine the decision surface. They also satisfy the
Karush-Kuhn-Tucker (KKT) conditions [30]. Each new point
generated because of the change in traffic is checked for being a
support vector. If it is a support vector and improves the overall
model for future predictions, then it is included. If this becomes
time-consuming, due to continuously generated traffic data,
training in small batches speeds up the process. Support vectors
can be separately found for each batch of fresh points, and they
can be included in the model only if they improve it. Algorithm
2 gives the incremental training algorithm. We see in the next
section that this contributes positively to the model empirically.

The initial training process creates a set S = {xs, ys} of sup-
port vectors that decide the decision surface. Algorithm 2 starts
with the solution function f(t) at time t in terms of the initial
training dataset T = {(xi, yi), i = 1, …, n} xi ∈ Rn and yi ∈ R.
The set of support vectors at this time are S(t). For the time t+1
for which the model needs to be incrementally updated each of
the new example {xnew(t), ynew(t)} is received in the time window
(t, t+1), the algorithm checks if the new point is a support vector.
The new support vectors are incorporated in the set S(t+1) if
they improve the performance of the model as indicated by re-
duced mean squared error. Our simulations given in Section 6.6
also support this argument. The simplified algorithm is given
below:

Algorithm 2: TRAIN_REAL_TIME (T, xnew, ynew)
1: //Initial training set T = ((x1, y1)…(xn, yn))
2: f (t) = A(T) //Training done at time t
3: f(t) : S(t) //S(t) is the set of support vectors at time t
4: Initialize S(t+1) to S(t)
5:for all {xnew, ynew} in the window (t, t+1)
6: if xnew(t) : xs and ynew(t) : ys // new point is a support vector
7: S(t+1) = S(t+1)) ∪ (xnew, ynew)
8: endif
9: endfor
10: output f(t+1) : S(t+1) //updated model at t+1

The removal of support vectors when the short-term traffic
condition that created them has passed will be taken up as future
work.

5.3 Cost optimization

5.3.1 Random Optimization for Cloud Selection
An important part of the solution is to select the set of clouds

that would be used for placing the VNFs of an SFC such that the
total placement cost is the lowest possible, within the budget CB
specified by the carrier, and is consistent with the latency
constraints, i.e., ∑i li ≤ Lth where li is the latency within ith cloud,
and its link to the next cloud and Lth is the threshold given in the
SLA. Following Occam’s razor, we looked for an algorithm that
would be simple and yet effective in meeting the real-time re-
quirements. Algorithms like A-Star are efficient in finding a low-
cost walking path from one node to another. Even with one pa-
rameter, i.e., the length of the path, its time complexity can de-
generate to exponential.

A naïve approach is to search m lowest cost clouds (enough
to meet the capacity requirements), one at a time out of total n
(m ≤ n) such that the total cost (in terms of cloud resources and
links) is minimized and the latency remains below the given
threshold. In large networks, a systematic search like this for the
global minimum becomes impractical [37]. The worst case time
complexity of this algorithm can be assessed as follows: the
search for each next lowest cost cloud requires approximately n
lookups, searching m clouds would have the complexity O (mn).
Again in the worst case, we would need to look through all the
remaining (n-m) clouds to make sure the latency is below the
threshold. Thus the complexity is O((n-m).mn) or O(n2m – nm2).
Selecting just five clouds out of a hundred would require 47,500
iterations. In Section 6.8 we compare the randomized cloud
search with a modified sequential baseline method to show the
usefulness of the adopted technique.

We find that the application of the general theory of optimi-
zation by random search gives us good results in the multi-cloud
environment. The mathematical treatment of this technique is
given in [38]. We have adapted this model to multimodal cases
in the presence of constraints [37]. The random search algorithm
pursued in this work belongs to the category of Global Optimi-
zation. This category of algorithms is useful and efficient for
large-scale ill-structured global optimization problems. In con-
trast with the deterministic methods like branch and bound
which guarantee asymptotic convergence to the optimum at the
high computational effort, random search algorithms find a rela-
tively good solution quickly and easily. It has been shown that a
global optimum can be found with random optimization even if
the objective function is multi-modal [39]. Deterministic meth-
ods for global optimization are NP-hard, a random search meth-
od may be executed in polynomial time [40]. Many of the global
random search (GRS) algorithms have the following desirable
features because of which they are popular (i) the algorithms are
usually easy to construct with guarantee of convergence, even if
the objective function is multi-modal [40]; ii) they are insensi-
tive to noise in the objective function; iii) they are insensitive to
the shape of the feasible reason; (iv) they are insensitive to the
growth in the dimensionality of the feature set (c). In these cases,
it is relatively easier to construct GRS algorithms guaranteeing
theoretical convergence. The theoretical basis of general random
search is given below. The implementation is shown in Algo-
rithm 3, and the convergence is proven empirically in Section
6.8.

According to [41], the general problem of minimization can
be stated in terms of minimization of the objective function f(x)
in the feasible region x∈X, if x* is the global minimizer of f(x)
or f(x*) = minx∈X f(x). A global minimization algorithm con-
structs a set of points xi i=1…n, in X. A global minimization
algorithm is a rule for constructing a sequence of points x1, x2, . .
. from the region X, such that the sequence of labels yi=1…n =
mini=1...n f(xi) approaches the minimum f(x*) as n increases.

To establish the convergence of a global random search, we
assume that if x is randomly chosen from within the region X,
then f(x*) is a result of some stochastic process. We are presum-
ing a generalized construction of the algorithm where the next
point can be chosen from the entire space. Thus, if X⊆ Rd and
0<X<∞, ∑j=1…∞ inf Pj(B(x, ε)) = ∞ for all all x ∈ X and ε > 0,
where B(x, ε) = {y∈X : ||y−x||2 ≤ ε} and the infimum is over all
possible previous points x1…(j-1) and the result of the evaluation
of the objective function at these points. Pj are the probability
distribution of xj. Then with probability one, the sequence of
points x1, x2, ... falls infinitely often into any fixed neighborhood
of any global minimizer. In other words, if the algorithm is al-
lowed to converge to a global optimum in a finite number of
iterations within an acceptance probability, then it will converge
with probability one [41] [42]. The authors in [38] prove that as
long as random sampling does not ignore any region, then the
algorithm converges with probability one.

As even for large chains, the number of clouds from which
resources are to be taken is not very large; we apply random
selection to our problem by selecting at each step a unique set of
the desired number of clouds randomly. Accordingly, we repeat-
edly choose, with replacement, a set M of m clouds from a space
N of n clouds (such that m ≤ n) with replacement. If the total
cost of the last set is less than the set examined in the last itera-
tion, and the latency is still less than the prescribed threshold,
then the algorithm remembers this set. The cost includes that of
cloud resources and inter-cloud links. The link costs are usually
much larger and ensure locality of clouds while selecting clouds
for placement. When the random selection no longer changes the
achieved least cost, the process terminates, and the resulting
least cost cloud-set is used for placement of the SFC in Algo-
rithm 1. Alternatively, to ensure graceful stop, if the difference
between the last two costs falls below a given value, the process
can be terminated.

It is appropriate to mention that the total cost and latency of
the selected cloud-set places an upper bound on the final figures
as eventually more than one VNF may be placed on the same
cloud, and all the clouds in the selected set may not be used. As
the algorithm iterates over the available clouds, the set M clus-
ters around the minimum. The algorithm converges to the global
minimum, with probability one, even in a multimodal case, as
long as it does not consistently ignore any of the clouds in the
space N. These conditions are met in our implementation. Algo-
rithm 3 gives the details of random selection. The procedure
PREDICT_LATENCY has not been separately elaborated as it is
based on the SVR model(s) refined for concept drift and short-
term changes in traffic as already discussed above.

Algorithm 3: RANDOM_SELECTION (C, Lth, cv_model, r_clouds)
1: //C: a set of available clouds, cv_model: trained model
2: init small //contains the sum of costs of the current smallest cost

clouds
3: init lat // lat: latency
4: init iter //set iterations large enough for convergence
5: while (iter)
6: init r_clouds // r-cloud array holds final min cost set of clouds
7: //find a set of m unique clouds
8: while (m_clouds not unique)
9: m_clouds a random set of m clouds from set C
10: end while
11: //test set r_clouds still has the lowest cost and lat ≤ threshold
12: call PREDICT_LATENCY //uses trained and refined models
13: for k = 1, m
14: lat = lat + latk //initial assessment of total latency
15: cost = cost + costk
16: end for
17: if cost < small and lat ≤ Lth
18: small = cost
19: r_clouds  m_clouds
20: end if
21: end while

Algorithm 3 expects CSP data like the available clouds C
and a trained prediction model cv_model and produces a set of
'm' minimum cost clouds to be used for placement by Algorithm
1. The variable small represents the smallest total cost of the
selected clouds. In line 8-10 a set of m unique clouds is selected.
Line 12 calls the procedure that predicts latencies for the selected
set of clouds. The total cost of the selected clouds is checked
against the current minimum cost, and if found to be lower then
the vector r_clouds is updated with the new set of clouds and
small with the new lower cost.

5.4 Increasing Speed and Acceptance Ratio of Placement

These requirements arise from the dual necessity of real-time
usage and agility of the service deployment.

a) Speed for real-time usage
In an operational virtual network service, the cloud service

provider needs to monitor latency continuously for avoiding a
breach of SLA requirements. Not only the latency and other QoS
requirements should be met on initial placement, but also during
operation of the service. If the end-to-end latency goes over the
stipulated threshold, then the change of placement of VNFs and
reconfiguration of the SFC is required. This necessitates the
algorithm to be fast in giving optimum SFC placement,
migration, and scaling (increasing or reducing the number of
instances) decisions so that the network can be dynamically
managed. As reported in the literature, ILP based solutions for
the placement problem may take a long time (of the order of
hours) to converge to the optimum solution [43] making them
unsuitable in many situations of dynamic placement.

b) Efficiency of placement
The efficiency of placement refers to successful placement

rate (also called the acceptance rate) and reconfiguration of
chains consistent with SLA requirements. It is important for this
rate to be high since frequent failure to place and reconfigure
chains according to the requirement may lead to the carrier not
being able to handle customer requests.

5.5 Combining the Elements of the Framework

The placement strategy described above has been implemented
in a placement framework called the P-ART framework. The main
modules of P-ART are as shown in Figure 7 along with the

relationship with the algorithms discussed.

Fig. 7. The P-ART placement framework

The framework allows CSP and carrier policies to be stored as

well as the means for them to communicate with the framework.
The instant state of a cloud consists of the used capacities of virtual
compute, storage and networking resources. For each placement
request, the management and monitoring module produces a
success or a failure report. A brief description of the modules is as
follows:

SVR Training and Windowing: This part takes the integrated dataset
and breaks it into a separate dataset for the specified number of
windows. It then trains one model for each window applying the
FTVP methodology discussed above. Short-term changes are
incorporated through incremental training. These predictions are
used by the prediction module to give an assessment of latencies at
the time of placement.
CSP Policies: Through this module, the cloud service provider (or a
multi-cloud broker) enters the cloud configuration data, installed
and used cloud capacities, installed and used link capacities as well
as tariffs for resources.
Carrier Policies: This module accepts client’s requests for changes
in service chain placements, types of virtual functions and inter-
function traffic rates. Operative parts of the tenants’ SLAs, including
latency, threshold, and cost budgets are also stored. Carrier
privileges are also recorded in the database.
Prediction module: The prediction module uses the correct model
for prediction of latencies at the time of activation of the chain. It
predicts the latencies among clouds at the time an SFC would be
actually placed and activated.

Placement and Reconfiguration Module: This module carries out
placement, scaling, and adaptation to the changed State of the
environment. Heuristics for placement has been devised to work fast
and converge to a set of clouds close to the minimum cost and

latency below the threshold. If a placement is successful, it gives the
end-to-end latency and cost.
Monitoring and Management Module: This module keeps an
inventory of the resources used, the status of performance
parameters and the state of the cloud environment. If placement is
successful, it gives the end-to-end latency and the cost. Online
monitoring reports are part of the future extension.

6. EVALUATION OF THE FRAMEWORK
We evaluated the P-ART framework to confirm the validity of

all the sub-systems incorporated, viz., model training and
generalization, prediction and its refinement, cloud selection for
placement, speed and acceptance ratio of placement. To keep
evaluation close to reality and to cross-verify results, datasets
used for training and testing were generated in two ways:
simulation using a queuing-theoretic model and an actual
implementation on CloudLab [9].

6.1 The Experimental Set-up for Evaluation

In our experiments, we use multiple instances of the VNS
using one SFC with 5 VNFs introduced in Section 5 (Figure 3).
As we shall see in Section 6.8, the method scales well for bigger
chains with thousands of virtual functions. The traffic entering
the aggregation switch (VNF1) is divided into two streams, one
going to one of the Provider Edge (PE)-routers (VNF2 or VNF3)
depending on the carrier’s traffic routing policies. For instance,
the policy may route traffic from different geographical areas
through different paths. All the traffic passes through one of the
instances of BNG (VNF4) where in practice, the flow
accounting will take place for billing purposes. The traffic is
then routed to P-Router on route to the destination. The end-to-
end latency of the chain would be the greater of the latencies of
the two paths VNF1-VNF2-VNF4-VNF5 and VNF1-VNF3-

VNF4-VNF5.

In the experiments reported here, the CSP domain consists of
10 clouds. However, we also tested the random selection algo-
rithm for a larger number of clouds, and the results have been
discussed in Section 6.6. Without the loss of generality, we gen-
erate the link capacities randomly from the chosen set of realistic
capacities. In our experiments, we choose from the set L=
[0.016, 0.064, 0.100, 0.155, 0.622, 2.5] (in Gbps). All links are
presumed to be bi-directional. The compute capacities of the
VMs hosting VNFs have been taken as a single consolidated
figure for processor, memory, and storage. An example of such a
usage is Amazon EC2 where, for instance, t2, the medium virtual
machine provides two virtual CPUs, 4 GB storage and elastic
storage. In our experiments, the categories defined are as shown
in Table 2.

TABLE 2
CATEGORIZATION OF SERVER RESOURCES

Integrated
capacity

vCPUs Memory Storage

1 1 1GB Flexible
2 2 2GB Flexible
4 4 4GB Flexible
6 4 8GB Flexible
8 8 8GB Flexible
10 8 16GB Flexible

6.2 Selection of Features for Training the Prediction Models
Considering the importance of the selection of predictor

variables, due attention was given to this aspect. Too many
features can make prediction models complex, increase the
training time and make test errors worse. Further, selecting a
good set of features, out of all the features generated, improves
the accuracy of prediction and speed of processing. Cross-
validation error has been used to guide feature selection for our
prediction models in SVR. Features that do not give an
improvement in terms of lower overall errors (indicating better
prediction) were removed from the initial feature set. We settled on
the set of features given in Table 3. Further analysis, to include other
variables that are not highly correlated with the existing ones, but
may reduce the cross-validation error, is left as future work.

As seen in Table 3, the feature space is represented by X = [x1,
x2, x3, x4, x6, x7, x8]T and corresponding labels y. The equipped
physical compute, and storage capacities of a server govern the
number of VMs that can be created on it and correspondingly the
number VNFs that can be hosted. VMs on the same PM may cause
interference in each other’s operation because of shared
resources which may lead to delays. As far as the links are
concerned, each additional Gbps of equipped capacity does not
give the same increase in traffic carrying capacity. The amount
of traffic that can actually be carried depends on the grade of
service required. Total ingress traffic depends on the number of
served subscriber clusters. The end-to-end latency depends on
the traffic, requiring this feature to be included. We have seen in
Section 5 that traffic is dependent on the time of the day. We
discussed the number of windows and its relationship with the
complexity of the model. The increasing window number is
indicative of the increasing time of the day. While the number of

windows is a parameter in the evaluation, we obtained good
compensation of concept drift with four windows as indicated by
the results.

6.3 Obtaining Training Datasets

We were cognizant of the fact that if a model has been trained
with the adequate, realistic dataset, it will generalize well in the
production environment. For a more thorough evaluation of the
model, we use two methods for generating datasets. One dataset
was obtained through simulation of inter-VNF traffic flows and
the other through actual implementation of the service chain on
CloudLab. The details are as follows.

6.3.1 Inter-VNF Traffic Flow Simulation
Carrier networks carry all kinds of traffic: voice, data, and

video. Some of these applications are real-time, and their packets
have higher priorities. When queues build up at link or router
buffers, the higher priority traffic may pre-empt lower priority
traffic. It follows that different types of traffic will experience
different delays. The delay model shown in Figure 8 takes care
of all the important delays. Queuing delay in the links is the
variable part of the end-to-end delay and depends on the network
load. Propagation delay is the time required by the signal to
travel on the link from one VNF to another. This delay depends
on the media and is proportional to the length of the link,
approximated by the distance between clouds. The other
prominent delays are processing delay in the clouds, queueing
delay in the virtual machines, and transmission queueing delays
on the link. Intercloud simulation was carried out covering all
significant delays.

The total time spent by voice and data packets in the
network can follow any distribution. Following the conclusion in
[44] [45], we have assumed an M/G/1 queueing system of
infinite capacity with non-preemptive priority. The traffic load is
varied to imitate the pattern of the actual traffic. A C++ routine
generates the dataset that incorporates all the parameters
described above. The dataset was normalized to keep the
numbers comparable. This will prevent any feature from
overpowering others in the model and avoid biases.

TABLE 3
PREDICTOR VARIABLES AND OUTPUT LABEL

Predictor variables Label
(output)

x
1
 Origin cloud compute installed

capacity
y: Latency
(ms)

x
2
 Destination cloud compute installed

capacity

x
3
 Link installed capacity (Gbps)

x
4
 Link used capacity (Gbps)

x
5
 Origin cloud compute capacity used

x
6
 Destination cloud compute used

capacity

x
7
 Window #

x
8
 The distance between the origin and

destination clouds

6.3.2 CloudLab Implementation
CloudLab is a “meta-cloud” that has been implemented by the

University of Utah, Clemson University, the University of Wiscon-
sin, Madison, the University of Massachusetts Amherst, Raytheon
BBN Technologies, and the US Ignite for researchers to build their
own clouds for experimentation [45]. The software stack that man-
ages CloudLab is based on Emulab. The infrastructure at Utah, Wis-
consin and South Carolina is interconnected with nationwide and
international infrastructure from Internet2, so it has been possible to
extend, software-defined networks right to every host. The Cloud-
Lab set up created for this study is shown in Figure 9.

Fig. 9. The CloudLab Implementation

The data collection process involves traffic being routed from

a host on the WUSTL (Washington University in St. Louis) LAN
through the Internet to the CloudLab nodes. Thus the test traffic
goes with the live traffic on the Internet and provides real-life
traffic conditions. Nodes 0, 7 and 10 are the transit points for
traffic at APT Utah, Clemson University and IG Utah DDC (In-
staGENI Rack in Downtown Data Center) clouds, respectively.
The distance from the host at Washington University in St Louis
to each of these were IG Utah DDC (800 miles), Clemson Uni-
versity (1950 miles) and APT Utah (800 miles). The VNFs are
presumed to be hosted as follows: VNF1 on node11, VNF2, and
VNF3 on Node 10, VNF4 on Node 7 and VNF5 on Node 9. De-
lays on the link from WUSTL to the CloudLab depended on the
traffic on the Internet. Within CloudLab the delays were varied
by loading the links with different amounts of traffic. Various
delays were recorded as part of the training data. A snapshot of
part of one of the training sets is shown in Table 4.

6.4 Selection of the Machine Learning Model

There are quite a few AI techniques, involving machine learn-
ing, that are potentially applicable to the problem of detection
and localization of fault and performance anomalies. Models
with a single layer of non-linearity, e.g., a neural network with
one hidden layer, are referred to as shallow structures or shallow
machine learning architectures and those with more than one
layer of non-linearity as deep structures or deep learning archi-
tectures. Shallow models with linear hypothesis may have O(n)
prediction time complexity and training time of O(l2+n3) where l
denotes the size and n the degree of the dataset, but approxima-
tion errors are large for the high dimensional and large volume of
data that are usually associated with FP problem. With non-linear
hypothesis space and kernel trick, the approximation errors may
be smaller at the cost of higher complexity of the training time
which is O(l3 + l2n) and prediction speed of O(ln). Of the preva-
lent shallow machine learning architectures, Support Vector Ma-
chines (SVM) and Random Forest (RF) are considered useful for
diagnostic applications [46]. Another supervisory technique,
Bayesian Network (BN), has been applied to fault management
in the industrial settings. We will discuss below the analysis that
was carried out to finalize the model [47].

Size of Training Dataset: The size of the available training
dataset governs the choice of the machine-learning algorithm.
How much data is enough depends on the number of features and
the non-linearity in the relationship of features and labels among
others. If the dataset is small, one may choose high bias and low
variance classifiers like Naïve Bayes as compared to the low bias
and high variance classifies like kNN to avoid overfitting. When
the training dataset size is large, low bias and high variance clas-
sifiers give a lower asymptotic error.

Number of Parameters: Most machine learning algorithms
are associated with some parameters and hyperparameters. Pa-
rameters of an algorithm are internal to it and their values affect
how the algorithm behaves. They are usually learned at the time
of training of the model. The value chosen for these parameters
may affect the accuracy with which the model predicts. Support
vectors of the SVM algorithm are an example of a model pa-
rameter. Hyperparameters are normally external to the algorithm.
They need careful tuning to get good accuracy from the model.
An example is the C hyperparameter in SVM. Even though hav-
ing many parameters or hyperparameters typically provides
greater flexibility, training time and accuracy of the algorithm

Fig. 8. Traffic Delay Model for Data Generation

TABLE 4
AN EXTRACT OF THE INTEGRATED TRAINING DATASET

can sometimes be quite sensitive to getting just the right settings.

Number of Features: If the number of features is large then
the dataset is said to be high dimensional. With high dimensional
dataset, we need more data to train the model. Increase in size of
the dataset affects different algorithms differently. The complexi-
ty of some machine learning algorithms may rise exponentially in
such cases. The training time may become too long for the model
to be used in real-time applications.

Learning Process: The learning process of a model may be
supervised or unsupervised based on whether labels are available
or not. Since the labels indicate the ground truth, we know how
our trained model should behave. In unsupervised learning, the
data is unlabeled, so the model learns the inherent structure in the
data. If there is some labeled data and a lot of unlabeled data,
then we may use semi-supervised learning in which the labeled
data can be used to improve the accuracy of the model built using
unlabeled data . Another thing to note is that we are predicting
latency values which vary in a continuous range. This would,
therefore, call for a regression model as against a classification
model.

We need to understand the requirements of the problem to
pick the right algorithm for the application. In our case, it is im-
portant that the model works in real-time or near real-time. This
is possible if the placements and reconfigurations are fast. The
model should be fast to train and update with real-time infor-
mation. This requires models to be generally simple, with con-
trolled dimensionality and a manageable number of hyperparam-
eters to tune. Additionally, some models may not be suitable for
online training.

Keeping the above in view, we compared a few suitable
stock methods to decide on the one that we would include in our
model. The models were created and tested on Weka [49]. In each
case, the models were tuned for good parameter values, and a 13-
fold cross validation was used. We discuss the methods briefly
followed by a comparison of their performance in Table 5.

Random Forest is a supervised method which is robust yet
simple to use. It provides good results in many situations. It does
not have many hyperparameters to tune, the useful ones being the
number of trees and the maximum number of features to be tried
in each tree. Despite their flexibility, random forest does not
support online learning. Retraining by rebuilding the trees when
new examples are introduced takes time. The maximum depth of
each tree has been set at unlimited. The number of iterations or
number of trees is set as 100.

Support Vector Machine (SVM) is a supervised learning al-
gorithm. The regression version of SVM, which is designated
SVR or Support Vector Machine for Regression (SMOReg),
gives good accuracy and can work with high dimensional data,
which is not linearly separable. Parameter values that obtained
for good results are C=200, γ=0.01, ∈= 10E-8, RBF Kernel.

K-Means is an unsupervised model and has been included
for comparison here. In this, k data points are chosen, and data is
divided into clusters with each example going with the nearest
data-point. Then, centers of the clusters are converted, and the
process repeats until convergence. The result depends on the
initial choice of the points, and the global minimum is not guar-
anteed.

Multi-layer Perceptron (MLP) are neural networks with at
least three layers of neurons – an input, a hidden and an output
layer. These layers are connected in the form of a directed graph
between the input and the output layers. It is also called a feed
forward network. An MLP uses backpropagation as a supervised
learning technique. Some of the parameters include N (the num-
ber of epochs for training) taken as 500, E (the number of con-
secutive increases of errors allowed for validation before termi-
nating the training) fixed at the default of 20 and L(the learning
rate) taken as 0.3.

Gaussian processes are a supervised learning technique and
generalization of Gaussian probability distribution. Gaussian
distributions are governed by stochastic processes and describe
random variables.
A Gaussian distribution is fully specified by its mean and covar-
iance matrix. In a similar manner, a Gaussian process
is specified by a mean and a covariance function. Some of the
parameters are L (the level of Gaussian noise) taken at the de-
fault value of 1 and K (the Kernel to use) taken as PolyKernel.

Using the root mean square error as a good indication of the
appropriateness of the algorithm for the datasets used we see that
Random Forest gives the lower error followed by SVR. Taking
into account our requirement of online updates, we chose to im-
plement SVR.

6.5 Prediction Model Tuning and Testing

In the SVR models, three hyper-parameters, viz., ∈, C, ϒ
need attention. Tuning these hyper-parameters is one of the main
challenges in improving the predictive accuracy of an SVR
model. The ϒ parameter can be seen as the inverse of the radius
of influence of samples selected by the model as support vectors.
With a small ϒ, the model cannot capture the complexity or
“shape” of the data. If ϒ is too large, the radius of the area of
influence of the support vectors only includes the support vector
itself, and no amount of regularization with C will be able to
prevent overfitting. The constant C determines the tradeoff
between the flatness of f and the amount of error allowed above
ϵ. A low C makes the decision surface smooth; a high C aims at
classifying all training examples correctly by giving the model
freedom to select more samples as support vectors. Most
researchers have followed a standard procedure in using a grid
search [9] to determine the appropriate values. Some of the re-
sults are given in Table 5. A number of runs narrowed down the
parameters to C = 1×10-2 and ϒ = 1. The cross-validation error

TABLE 5
COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS

 Corr.
Coeff.

Mean
Absolute
Error

RMS
Error

Relative
absolute
error (%)

Root rela-
tive
squared
error (%)

Random
Forest

0.8639 1.1881 2.4219 33.6077 50.3668

SVR 0.8610 1.2426 2.5048 35.4465 52.8385
KNN 0.8007 1.469 2.9681 41.9043 61.7248
MLP 0.8015 1.9317 2.9405 55.103 61.1514
Gaussian 0.5714 2.7523 3.9340 78.5130 81.8128

for this combination was the lowest at 7.84295×103. It is worth
mentioning that with system decided settings when the built-in
tuning feature is allowed to choose the parameters; the loss is
higher at 2.21345×104. The grid search has, in this case, resulted
in better hyper-parameter values.

The basic idea of using latency prediction is to improve the
placement of virtual functions at a future time. This will only work
if the predictive model produces good predictions of latency. With
the Weka tool, SVR with RBF Kernel with the hyper-parameters set
at C=10, ∈=0.4 and 20% hold-out for cross-validation, we get the
errors shown in Tables 6 and 7. It can be seen that both the training
and test RMSEs are low indicating good performance. In the classi-
cal case, test errors would be slightly higher than the training errors.
A lower test error may indicate overfitting or biases in the dataset.
These can be overcome by curating the training dataset.

TABLE 6
TRAINING ERROR

=== Evaluation on training set ===
=== Summary ===

Correlation coefficient 0.861
Mean absolute error 1.2426
Root mean square error 2.5408
Relative absolute error 35.4465%
Root relative squared error 52.8385%

TABLE 7

TEST ERROR
=== Evaluation on training set ===
=== Summary ===

Correlation coefficient 0.7304
Mean absolute error 1.8895
Root mean squared error 2.5469
Relative absolute error 63.5334 %
Root relative squared error 71.5849 %
Total Number of Instances 56

A comparative plot of training and test error ratios (defined

as prediction_error/acutal_latency) is given in Figure 10. It can
be seen that the model training errors are low and generalize
well with the test data.

Fig. 10 Training and test error ratios (with standard error bars)

6.6 Refinement of Latency Prediction by Compensating
Concept Drift

The FTVP method for handling the concept drift in telecommunica-
tion traffic was presented in Section 5.2. This method brings in the
sense of time in the datasets. Most researchers working with predictive
model do not include time as a feature. In our experience, including
time as a feature affects the predictions positively. We divided the data
into windows of equal time blocks, which give variable data ranges.
The window# is the feature (x7) in the training dataset and has a direct
relation with the time as increasing number relates to increasing time.
All the time-related observations were divided into four windows. A
sample from each of these is given in Figure 11.

The data in different windows have different characteristics as

shown by the mean and standard deviation in Table 8:
TABLE 8

PROBABILITY DISTRIBUTION PARAMETERS IN DIFFERENT WINDOWS
Window 1 2 3 4

Latency range (1.824-0.422) (27.683-7.452) (7.317-4.131) (4.216-1.869)

Mean 1.083 11.834 5.366 2.773
Standard devia-
tion

0.425 4.848 0.797 0.588

SVR with separate window models gives much better predic-

tions on new data-points falling in those windows. Comparison of
latency prediction and error ratios for each window and full dataset
is given in Figure 12 (a) through (h).

TABLE 9
ERRORS WITH INTEGRATED AND MULTIPLE MODELS

 Full
dataset

Window
1

Window
2

Window
3

Window
4

Mean abso-
lute error 3.2279 0.3698 0.4613 0.7342 2.5248

Root mean
squared error 4.5869 0.4283 0.5515 0.9102 2.9353

Table 9 summarizes the mean absolute errors and RMSE for
the full (integrated) dataset and the window-based model. In the
integrated model validation was done with 20% of the data
points separated as a test set. For each window model also cross-

Fig. 11 Extract of FTVP windows

validation was done with separate test sets. It can be seen that
errors are less in a separate model for each widow compared to
predictions made using integrated dataset.

(a) Comparative Window 1 and full
dataset performance

(b) Error ratios for Window 1 and
the full dataset

Window 1 RMSE =0.06, full model RMSE =0.47

(c) Comparative Window 2 and full
dataset performance

(d) Error ratios for Window 2 and the
full dataset

Window 2 prediction RMSE=1.27, full model prediction RMSE = 1.62

(e) Comparative Window 3 and full
dataset performance

(f) Error ratios for Window 3 and the
full dataset

Window 3 prediction RMSE=0.36 full model prediction RMSE = 0.74

(g) Latency prediction by a model
trained for Window 4 and that by full
dataset

(h) Error ratios for prediction by the
model trained for Window 4 and with
the full dataset

Window 4 model prediction RMSE = 0.042 Full model RMSE =1.01

Fig. 12. Comparison of performance window-based integrated models

6.7 Incremental Update of Models to Compensate for Short-
Term Variations in Traffic

We tested an incremental update of the trained models, with
support vectors generated during VNS operation, while the
trained model was in use. The result of initial training is given in
Table 10, and after the introduction of separately generated sup-
port vectors, the results improved as shown in Table 11. We can
see that both the mean absolute error and the RMSE decrease

when new support vector points are learned online. Before the
addition of new support vectors, the RMSE was 1.74; while after
addition, it reduced to 1.68, which along with other measures of
errors show an improved model.

TABLE 10 PERFORMANCE OF SVR BEFORE ADDING NEW SUPPORT

VECTORS

SUPPORT VECTORS BEFORE

ONLINE UPDATE

 PERFORMANCE BEFORE ONLINE

UPDATE

SV# Actual
Latency

Predicted
Latency

Error === Evaluation on test set ===

50 5.713 5.379 -0.334 Correlation coefficient 0.8742

51 7.452 5.233 -2.219 Mean absolute error 1.2677

52 3.111 3.152 0.041 Root mean squared error 1.7366

53 1.531 2.785 1.254 Relative absolute error 47.3488

54 5.572 4.625 -0.947 Root relative squared error 49.2994

55 5.771 5.298 -0.473 Total Number of Instances 55

TABLE 11 PERFORMANCE OF SVR AFTER ADDING NEW SUPPORT

VECTORS

SUPPORT VECTORS AFTER

ONLINE UPDATION

 PERFORMANCE AFTER ONLINE

UPDATION
SV# Actual

Latency
Predicted
Latency

Error === Evaluation on test set ===

50 5.713 5.379 -0.334 Correlation coefficient 0.8816

51 7.452 5.233 -2.219 Mean absolute error 1.2014

52 3.111 3.152 0.041 Root mean squared error 1.6797

53 1.531 2.785 1.254 Relative absolute error 44.5651

54 5.572 4.625 -0.947 Root relative squared error 47.9109

55 5.771 5.298 -0.473 Total Number of Instances 60

56 3.111 3.374 0.264

57 0.605 2.424 1.820

58 3.345 3.190 -0.155

59 3.315 3.579 0.064

60 10.259 10.199 -0.060

6.8 Cloud Optimization with Iterative Random Selection
The principle and methodology of random selection of clouds

for placement of VNFs have been discussed in Section 5.3 In
one trial, a total of 50 experiments were conducted with 1500
and 1700 iterations each. The minimum possible cost was
51 units, and latency threshold was set at 150 ms. In the former
case, 98% of times the minimum cost of 51 units was reached
(Figure 13 (a)) with a latency of 137 ms. In the 1700 iteration
case, the minimum cost clouds were selected with the latency
below the threshold in all cases (Figure 13 (b)).

 Fig. 13. (a) 50 experiments with1500 iterations each

Fig. 13. (b) 50 experiments with1700 iterations each

In another trial of 5000 experiments, 50 each with the number

of clouds increasing from 10 to 100 in steps of 10 and iterations
from 500 to 2000, the convergence rate is as shown in Figure 14.
Somewhere between 1500 and 2000 iterations, the algorithm
converges to the minimum cost in 100% cases. This is an order
of magnitude improvement over the exhaustive search described
above.

Fig. 14. Number of convergences in 50 experiments

We implemented as the baseline a variation of the sequential

method, which we call modified-sequential (M-sequential). In
this method, the first set of lowest cost clouds were sequentially
selected from a set of 100 clouds without replacement. This en-
sures the lowest cost. However, if the total latency of the select-
ed cloud was more than the given latency threshold, then the
highest latency cloud was removed from the selected set, and a

search was made for the next lowest cost cloud. The search
stopped when a set of lowest cost with latency below the given
threshold was found.

Fig. 15 shows the number of iterations required to achieve the
target latencies (from 100 to 160ms) for both the randomized and
M-sequential algorithms. We see that the M-Sequential takes from
34% to about 67% more iterations than randomized. Fig. 16 gives
the final latencies achieved in the number of iterations for which the
algorithm was run (as shown in Fig. 15). From these, we can con-
clude that the randomized algorithm performs better than the base-
line both in terms of the number of iterations and latencies achieved
in selecting the required set of clouds for placement.

Fig 15. Number of iterations required by randomized and M-

Sequential to achieve latency below the threshold

Fig. 16. Latencies achieved by randomized and M-Sequential in the

number of iterations shown in Fig. 15

6.9 Speed and Efficiency

It is important for dynamic rescaling that the designed place-
ment strategy is able to carry out a large number of placements
within an acceptable time period. A slow placement algorithm
would not be able to respond fast to the changing network situa-
tion or a tenant’s new request. Changes made too late may not be
suitable, and may actually be detrimental to the health of the
network, as by that time the situation would have changed. On
the other hand, if at a future time, maintaining the required per-
formance does not need all the resources that have been
deployed, then not descaling would use up a higher amount of
resources leading to higher expenses. For the training time of
SVR, various assessments of complexity in the range O(n2) to

O(n3) are available in the literature. According to [29] the com-
plexity is O(max(n, d) min(n, d)2) where d is the size of the fea-
ture set. If n is much larger than d, then it can be approximated
to O(nd2). However, the time complexity of the search is linear.
It took about 1.19 s to train with 2720 examples in Weka and
0.76 s in MATLAB. For speed of placement, we tested with 10
clusters, each requesting 10 to 100 SFCs of 5 VNFs each. Thus,
the number of VNFs was varied from 500 to 5,000. We observe
that the algorithm is able to place up to 3,000 VNFs in about 1
minute (Figure 17).

Fig. 17. Placement time Vs. No of SFCs
To see how the speed of the proposed method compares with

the placement speeds obtained in other works we see the work
done in [50]. The two methods have been performed under dif-
ferent conditions and are thus not strictly comparable. However,
we do get the general idea of the behavior of the methods. From
Fig. 18, we see that in case of up to 20 SFCs the ILP solution is
able to find a solution but the author reported average time is 8
minutes and 41 seconds and that of heuristic 1 minute and 21
seconds. For the case of 60 SFCs, the ILP model takes unduly
longer times (>48 hours for ≥18 SFCs). The heuristic was able
to give a solution in less than 30 minutes. For small instances, 40
SFC requests (with 75 network functions per request or a total of
3000 functions) take about 1000 seconds.

Fig. 18. Placement time reported in [50]

A comparison has also been made with results obtained by a

completely different technique presented in [51]. The authors
have carried out joint optimization of resource allocation in NFV
(JoraNFV). The authors assume that the number of VNFs can be
3, 4 or 5. Taking the example of a 5 VNF SFC and medium
traffic, the authors conclude that their method works faster than
CoordVNF [52] and a simulated annealing approach [53].

The coordinated NFV-RA is formulated as mixed-integer
linear programming (MILP). And we propose a heuristic based
two-stage approach to get the near optimal solution. For ten units
of traffic, the number of instances deployed are about 7 for
JoraNFV, 10.5 for CoordVNF and 7 for the SA method. For a 90
node network, the JoraNFV and CoorNFV take 10 seconds to
place an SFC while SA takes about 2000 sec. Even if we assume
a linear increase in time taken, for 3000 functions/instances
JoraNFV will take 4285 seconds (Fig. 19).

 Fig. 19. Average placement time reported in [51]

ILP based solutions for a large number of VNFs are slow,
even with efficient solvers. Researchers in [54] and [27] have
carried out VNF placement of different configurations using ILP
method. In [27], the authors have reported that ILP takes 2.3, 4.0
and 7.2 hours for 10, 30 and 50 functions. In [54], the authors
have tried to solve ILP for large networks (60 SFC with 4 VNFs
and 30 instances, each, i.e., 7200 VNF instances) but for more
than 18 SFCs the time taken is more than 48 hours. The authors
have suggested heuristics to find an acceptable solution within
reasonable time limits. Thus, [28] suggests using Genetic Algo-
rithm with which 200-700 functions are placed in 8-13 seconds.
In [54], the heuristics involve guiding the ILP solution by reduc-
ing the solution search space using binary search. With this for
7200 VNF instances, the time taken is 30 minutes. In [18], MILP
based algorithm takes 500 s for 3,000 VNFs. We have shown
above that with our framework we are able to place up to 3,000
VNF instances in less than 60 s. It needs to be appreciated that
the results are not exactly comparable because of different ex-
perimental environments, but do give a sense of improvement
with predictive algorithms.

The acceptance rate of the heuristic is an important parameter
that often gets ignored. In the ongoing operations, whether we
are looking at new placements or reconfiguration or migration of
existing chains, it is important for the placement engine to be
able to place SFCs every time a request is made subject to re-

sources being available. If a large number of requests cannot be
placed despite adequate capacities being available, then the ac-
ceptance rate is low, and we do not have a good algorithm. Fail-
ure to place SFCs would mean the loss of business for cloud
service providers and may affect the requesting carriers revenue.
For a medium-sized placement request, viz. 100 SFCs or 500
functions, the acceptance rate with our algorithm turns out to be
100% (Fig. 20).

Fig. 20. Acceptance rate Vs. Number of SFCs

As the number of service chains increases, the acceptance
rate may fall because of a lack of capacity to place the complete
service chains. When corrected for capacity, the acceptance rate
for our algorithm remains above 98% up to the tested configura-
tion of 500 SFCs or 2,500 VNFs.

We compare this with the real-time placement presented in
[55]. The authors propose an ILP model to provide an optimal
solution for placement and chaining VNFs based on minimizing
the resources allocation and the deployment (mapping) delay
while meeting the real-time condition. They also propose a heu-
ristic solution named Degree Based Heuristic (DBH) to mini-
mize the end-to-end delay and resources allocation cost. A com-
parison of successful requests is given in Fig. 21.

Fig. 21. Acceptance % reported in [55]

The authors in [18] claim that with 500 VNFs, the acceptance
rate is 85%. In comparison, for our solution, the acceptance rate
is 100% for up to 100 SFCs or 500 VNFs. Above this, the ac-
ceptance rate drops to 98% for up to 2500 VNFs.

7. SUMMARY AND FUTURE WORK
Innovative strategies are required to extract carrier-grade per-

formance from SFCs that use resources from multiple clouds.
Our strategy consists of techniques based on a predictive ap-

proach to performance optimization. Complex performance indi-
cators, like end-to-end latency of a service chain at activation
time, depend on far too many deterministic and probabilistic
factors, to be modeled accurately by deterministic techniques.
We have shown that a carefully designed predictive approach
combined with heuristics to select low-latency clouds can help
us in keeping the performance consistent with the SLA and costs
within the carrier’s budget. To make latency predictions more
accurate, we have worked with time-based windows and an
incremental update of the models used for prediction. Making
use of the predicted latencies is an iteratively convergent ran-
domized search heuristic used to select low latency clouds for
successive placement of VNFs. Not only the proposed strategy
produces results with low error, but it also executes fast so that
the results can be used to take corrective actions. A comprehen-
sive empirical evaluation has been carried out and reported in
this paper. The proposed P-ART framework has been built from
all the techniques that have been described in this paper.

A number of research directions are foreseen in this project.
When enough resources are not available, carriers may accept
under-dimensioned service chains. The service has to be func-
tional, even though not meeting the performance criteria. Anoth-
er important issue to be worked upon is the security aspect of
VNSs in the multi-cloud environment.

ACKNOWLEDGMENT
This publication was made possible by NPRP grant #8-634-1-

131 from the Qatar National Research Fund (a member of Qatar
Foundation), NSF CNS-1718929 and NSF CNS-1547380. The
findings achieved herein are solely the responsibility of the au-
thor[s].

This paper is a revised and significantly expanded version of
a paper entitled ‘COLAP: A Predictive Framework for Service
Function Chain Placement in a Multi-cloud Environment’ pre-
sented at the 7th IEEE CCWC in Las Vegas in January 2017.
The paper won the ‘Best Paper’ award in the Cloud Computing
track at the conference. The similarity between the conference
and this paper is about 40%.

REFERENCES

[1] Network Functions Virtualization (NFV); Virtualised Network Function;
Specification of the Classification of Cloud Native VNF Implementations
(work-in-progress), ETSI GS NVF-EVE 011 V0.0.9 2018.

[2] Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F.
Huici, “Clickos and the art of network function virtualization,” in Proceed-
ings of the 11th USENIX Conference on Networked Systems Design and
Implementation, 2014, pp. 459-473.

[3] F. Lopez-Pires and B. Baran, “Virtual machine placement literature re-
view,” Polytechnic School, National University of Asuncion, Tech. Rep.,
2015. [Online]. Available: http://arxiv.org/abs/1506.01509.

[4] CJ Bernardas, A Rahman, JC Zunjia, L.M. Contreras, P. Aranda, P. Lynch
“Network Virtualization Research Challenges,” IETF internet draft, 2018.

[5] Series G: Transmission Systems And Media, Digital Systems And Net-
works, The E-model: a computational model for use in transmission plan-
ning, Recommendation ITU-T G.107, 2015.

[6] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualiza-
tion: Challenges and opportunities for innovations,” Communications
Magazine, IEEE, vol. 53, no. 2, 2015, pp. 90–97.

[7] F. Callegati, W. Cerroni, C. Contoli, G. Santandrea, “Performance of Net-
work Virtualization in cloud computing infrastructures: The OpenStack
case,” IEEE 3rd International Conference on Cloud Networking (Cloud-
Net), 2014, pp. 132-137.

[8] Kangkang Li, Huanyang Zheng, and Jie Wu, “Migration-based Virtual

http://arxiv.org/abs/1506.01509

Machine Placement in Cloud Systems,” IEEE Cloudnet, 2013, pp. 83-90.
[9] R. Ricci, E. Eide, the CloudLab Team, “Introducing CloudLab: Scientific

Infrastructure for Advancing Cloud Architectures and Applications,” Use-
nix login: 39(6), 2014. pp. 36-37.

[10] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, C. Metz, “COLAP:
A Predictive Framework for Service Function Chain Placement in a Multi-
cloud Environment,” 7th IEEE Annual Computing and Communication
Workshop and Conference, 2017, pp. 1-9

[11] Network Functions Virtualisation (NFV); Accountability; Report on Quali-
ty Accountability Framework, ETSI GS NFV-REL 005 V1.1.1, 2016.

[12] NFV Use cases, ETSI GS NFV 0001, 2013.
[13] P Quinn, T Nadeau, "Problem Statement for Service Function Chaining,"

IETF RFC 7498, 2015.
[14] D. Bhamare, R. Jain, M. Samaka, A. Erbad, "A Survey on Service Function

Chaining." Journal of Network and Computer Applications, 2016, pp. 138-
155.

[15] R. Yu, G. Xue, V. T. Kilari, Xiang Zhang, “Network Function Virtualization
in the Multi-Tenant Cloud, IEEE Network,” 2015, pp 42-47.

[16] D. B. Oljira, K.-J Grinnemo, J. Taheri, A. Brunstrom, “A Model for QoS-
Aware VNF Placement and Provisioning,” IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN),
2017, pp. 1-7.

[17] D. Li, P. Hong, K. Xue, J. Pei, “Virtual Network Function Placement Con-
sidering Resource Optimization and SFC Requests in Cloud Datacenter,'
IEEE Transactions On Parallel And Distributed Systems, Vol. 29, No. 7, Ju-
ly 2018 pp. 1664-1677.

[18] T.W. Kuo, B.H. Liou, K.C.J. Lin, M.-J. Tsai, Member, “Deploying Chains
of Virtual Network Functions: On the Relation Between Link and Server
Usage,” IEEE/ACM Transactions On Networking, 2016, pp. 1562-1576.

[19] A. Leivadeas, M. Falkner, I. Lambadaris, M. Ibnkahla, G Kesidi, "Balanc-
ing Delay and Cost in Virtual Network Function Placement and Chaining,"
IEEE NetSoft 2018 - International Workshop on Smart network Technolo-
gies and Edge computing for the Tactile Internet (STET), 2018, pp. 433-
440.

[20] Dynamic, Latency-Optimal vNF Placement at the Network Edge, IEEE
INFOCOM- IEEE Conference on Computer Communications, 2018, 693-
701.

[21] M. Dieye, S. Ahvar, J. Sahoo, E. Ahvar, R. Glitho, H. Elbiaze, N. Crespi,
“CPVNF: Cost-Efficient Proactive VNF Placement and Chaining for Val-
ue-Added Services in Content Delivery Networks,” IEEE Transactions On
Network And Service Management, Vol. 15, No. 2, June 2018, pp. 774-
786.

[22] L. Zhao, J. Liu, "Optimal Placement of Virtual Machines for Supporting
Multiple Applications in Mobile Edge Networks," IEEE Transactions on
Vehicular Technology, 2018, pp. 6533 – 6545.

[23] L. Askari, A. Hmaity, F. Musumeci, M. Tornatore, "Virtual-Network-
Function Placement For Dynamic Service Chaining In Metro-Area Net-
works," International Conference on Optical Network Design and Model-
ing (ONDM), 2018, pp. 136-141.

[24] S. Ahvar, H. P. Phyu, S. M. Buddhacharya, E. Ahvar, N. Crespi, and R.
Glitho, “CCVP: Cost-Efficient Centrality-Based VNF Placement And
Chaining Algorithm For Network Service Provisioning,” in Proc. IEEE
Conference on Network Softwarization (NetSoft), 2017, pp. 1-9.

[25] R. Gouareb, V. Friderikos, A. H. Aghvami, "Delay Sensitive Virtual Net-
work Function Placement and Routing," 25th International Conference on
Telecommunications, 2018, pp. 394 – 398.

[26] Z. Xu, X. Zhang, S. Yu, Ji Zhang, "Energy-efficient Virtual Network Func-
tion Placement in Telecom Networks," IEEE International Conference on
Communications (ICC), 2018, 1-7.

[27] G. Nychis, D. R. Licata, "The Impact Of Background Network Traffic On
Foreground Network Traffic," The Proceeding of the IEEE Global Tele-
communications Conference GLOBECOM, 2001, pp. 1-16.

[28] Amazon Opworks, https://aws.amazon.com/opsworks/, 2019, last accessed
2 January 2019.

[29] S. Clayman, E. Maini, A. Galis, A. Manzalini and N. Mazzocca, “The
Dynamic Placement of Virtual Network Functions,” IEEE Network Opera-
tions and Management Symposium (NOMS), 2014, pp. 1-9.

[30] A.J. Smola, B. Scholkopf, “A Tutorial on Support Vector Regression,”
Statistics and Computing, 2004, pp. 199-222.

[31] The CAIDA Anonymized Internet Traces 2016 Dataset, Center for Applied
Internet Data Analysis, http://www.caida.org/data/passive/passive_2016,
last modified June 2018, last accessed 17 December 2018.

[32] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, B. Pfahringer, “Ef-
ficient Online Evaluation Of Big Data Stream Classifiers,” Proceedings of
the 21st ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD ’15), 2015, pp. 59-68.
[33] Y. Sun, Z. Wang, H. Liu, Chao Du, and Jidong Yuan, “Online Ensemble

Using Adaptive Windowing for Data Streams with Concept Drift,” Interna-
tional Journal of Distributed Sensor Networks, 2016, pp. 1-9.

[34] L. M. Seversky, S. Davis, “On Time-series Topological Data Analysis: New
Data and Opportunities,’ IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2016, 1014 – 1022.

[35] D.P. Helmbold, P.M. Long, “Tracking drifting concepts by minimizing
disagreements,” Machine Learning, 14(1), 1994, pp. 27-45.

[36] R. Klinkenberg and Th. Joachims, “Detecting Concept Drift with Support
Vector Machines,” Proceedings of the 17th International Conference on
Machine Learning (ICML), 2000, pp. 487-494.

[37] R.W. Becker, G.V. Lago, “A global optimization Algorithm,” Proceedings
of the 8th Allerton Conf. Circuits Systems Theory, 1970.

[38] F.J. Solis, J-b. Wets, “Minimization By Random Search Techniques,”
Mathematics Of Operations Research, 1998.

[39] T. Weis, "Global Optimization Algorithms – Theory and Application – e-
book, http://www.it-weise.de/projects/book.pdf, 2009, last accessed 10
December 2018.

[40] Zelda B Zabinsky, “Random Search Algorithms,” Wiley Encyclopedia of
Operations Research and Management Science, 2009.

[41] A. Zhigljavsky, "Stochastic global optimization," School of Mathematics,
Cardiff University, Cardiff, U.K, Springer book 2008 edition.

[42] B´elisle, C. J. P. (1992), “Convergence Theorems for a Class of Simulated
Annealing Algorithms on Rd,” J. Applied Probability, 29, 885-895

[43] W.A. Rankothge, J. Me, F. Le, A. Russo, J. Lobo, “Towards making net-
work function virtualization a cloud computing service,” IEEE Internation-
al Symposium on Integrated Network Management (IM), 2015, pp. 89-97.

[44] V. Gupta, S Dharmaraja, and V Arunachalam, ”Stochastic modeling for
delay analysis of a VoIP network,” Ann Oper Res, Springer Science, 2015,
pp. 171-180

[45] A. Akella, “Experimenting with Next-Generation Cloud Architectures
Using CloudLab,” IEEE Internet Computing, 2015, pp. 77-81.

[46] M.J. Kearns, “The computational complexity of machine learning,” MIT
Press, 1990, 176 pages

[47] S. Raschka, "Model Evaluation, Model Selection, and Algorithm Selection
in Machine Learning," arXiv:1811.12808v2 [cs.LG], 2018

[48] T. O. Ayodele, "Types of Machine Learning Algorithms," University of
Portsmouth, U.K., published by Intech, 2010

[49] E. Frank, M. A. Hall, I. H. Witten, “The WEKA Workbench. Online Ap-
pendix for Data Mining: Practical Machine Learning Tools and Tech-
niques,” Morgan Kaufmann, Fourth Edition, 2016.

[50] M. C. Luizelli, L. R. Bays, L. S. Buriol M. P. Barcellos, L. P. Gaspary,
“Piecing Together the NFV Provisioning Puzzle: Efficient Placement and
Chaining of Virtual Network Functions,” IFIP, 2015.

[51] L. Wang et al., "Joint Optimization of Service Function Chaining and Re-
source Allocation," IEEE Access, 2018

[52] M. T. Beck and J. F. Botero, ‘‘Coordinated allocation of service function
chains,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015,
pp. 1–6

[53] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, ‘‘Improve service chaining per-
formance with optimized middlebox placement,’’ IEEE Trans. Serv., 2017.

[54] S.A. Ajila, A.A. Bankole, “Cloud Client Prediction Models Using Machine
Learning Techniques,” IEEE 37th Annual Computer Software and Applica-
tions Conference, 2013.

[55] A. Alleg, R. Kouah, Moussaoui, T. Ahmed, "Virtual Network Functions
Placement and Chaining for Real-Time Applications," 2017, pp. 1-6.

Lav Gupta is a senior member of IEEE. He received BS and MS degrees from
the Indian Institute of Technology (IIT) in 1978 and 1980, respectively. He is
currently a doctoral candidate in Computer Science and Engineering at Washing-
ton University in St. Louis, Missouri, USA. He has worked for about fifteen
years in the area of telecommunications planning, deployment, and regulation.
He has also worked as a senior faculty of Computer Science and Access Network
Planning in India and the UAE for a total of about fifteen years. He is the author
of one book, ten first author papers and has been a speaker at many international
seminars. His current research areas are virtual network services, multi-cloud
systems, fault and performance management in cloud-based Network Function
Virtualization and application of AI in the management of virtual network ser-
vices over clouds

Raj Jain is currently the Barbara J. and Jerome R. Cox, Jr., Professor of Com-
puter Science and Engineering at Washington University in St. Louis. Dr. Jain is

https://aws.amazon.com/opsworks/
http://www.caida.org/data/passive/passive_2016
http://www.it-weise.de/projects/book.pdf

a Life Fellow of IEEE, a Fellow of ACM, a Fellow of AAAS, a recipient of 2018
James B. Eads Award from St. Louis Academy of Science, 2017 ACM
SIGCOMM Life-Time Achievement Award, 2015 A.A. Michelson Award from
Computer Measurement Group and ranks among the Most Cited Authors in
Computer Science. Previously, he was one of the Co-founders of Nayna Net-
works, Inc - a next-generation telecommunications systems company in San
Jose, CA. He was a Senior Consulting Engineer at Digital Equipment Corpora-
tion in Littleton, Mass and then a professor of Computer and Information Sci-
ences at Ohio State University in Columbus, Ohio.

Aiman Erbad is an Assistant Professor in the Department of Computer Science
and Engineering (CSE) at Qatar University. Dr. Erbad obtained a Ph.D. in Com-
puter Science from the University of British Columbia (Canada) in 2012, a Mas-
ter of Computer Science in Embedded Systems and Robotics from the University
of Essex (UK), and a Bachelor of Science in Computer Engineering from the
University of Washington (USA). Since September 2016, Dr. Erbad is the Direc-
tor of Research Support, responsible for all research grants and contracts. Before
that, he was the Coordinator of the Computer Engineering program and the Chair
of the Curriculum and Quality Assurance committee leading ABET accreditation
and curriculum enhancement efforts at the CSE department. Dr. Erbad is a recip-

ient of the Platinum Education Excellence Award (Ph.D. Category) in 2013. His
research interests span cloud computing, multimedia systems and networking,
and security. His research received funding from the Qatar National Research
Fund, and his research is published in reputed international conferences and
journals. Dr. Erbad is a member of various University committees (Policy, Rank-
ing, Institutional Effective, Intellectual Property, Appeal, and Reinstatement) and
the Chair of the University Research Support Committee. He serves as an Editor
in the European Alliance for Innovation (EAI) Endorsed Transactions on Collab-
orative Computing, and as a technical program committee member in various
IEEE and ACM international conferences. Dr. Erbad acts as an expert in infor-
mation technology strategy and research techniques for various national entities.

Deval Bhamare is currently working as a post-doctorate at Karlstad University,
Sweden. He has earned his Ph.D. from IITB-Monash Research Academy, a joint
venture between Indian Institute of Technology, Bombay, India and Monash
University, Melbourne, Australia. He has earned his Master of Science in Com-
puters from the University of Southern California, LA and Bachelor of Engineer-
ing from VJTI, Mumbai, India. His areas of research include Network Optimiza-
tion, Middleware Architecture for Cloud-Based Services, Cloud Security and
Software Defined Networks.

	1. Introduction – challenges and contributions
	2. Virtual Network Service Environment
	2.1 Constituents of a Virtual Network Service
	2.2 The Multi-cloud Hierarchy
	2.3 Representation of the Tenant Profile

	3. Problem Definition
	3.1 Achieving Dynamic Placement in Multi-cloud Systems
	3.2 Optimizing the SFC Performance
	3.3 Meeting the Cost and Latency Constraints
	3.4 Speed and Accuracy of the Placement
	3.5 Interference Among VNFs
	3.6 Problems Addressed and Not-addressed in this Paper

	4. Related Work and How This Research Advances the State-of-the-Art
	4.1 Review of recent works on VNF placement
	4.2 How does this work advance the state-of-the-art?

	5. The Proposed P-ART Framework
	5.1 Information Available from Carriers and CSPs
	5.2 Predictive Adaptive Real Time Strategy
	5.2.1 Predictive Placement for Handling Change of State of the System
	5.2.2 Time Adaptive Placement - Incorporating Temporal Variation of Traffic in the Model
	5.2.3 Corrections for Short-Term Traffic Variations – Incremental Learning from New Data

	5.3 Cost optimization
	5.3.1 Random Optimization for Cloud Selection

	5.4 Increasing Speed and Acceptance Ratio of Placement
	5.5 Combining the Elements of the Framework

	6. Evaluation of the Framework
	6.1 The Experimental Set-up for Evaluation
	6.2 Selection of Features for Training the Prediction Models
	6.3 Obtaining Training Datasets
	6.3.1 Inter-VNF Traffic Flow Simulation
	6.3.2 CloudLab Implementation

	6.4 Selection of the Machine Learning Model
	6.5 Prediction Model Tuning and Testing
	6.6 Refinement of Latency Prediction by Compensating Concept Drift
	6.7 Incremental Update of Models to Compensate for Short-Term Variations in Traffic
	6.8 Cloud Optimization with Iterative Random Selection
	6.9 Speed and Efficiency

	7. Summary and Future Work
	Acknowledgment
	References

