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Abstract—Carriers' network services are distributed, dynamic, and investment intensive. Deploying them as virtual network services (VNS) brings 
the promise of low-cost agile deployments, which reduce time to market new services. If these virtual services are hosted dynamically over multiple 
clouds, greater flexibility in optimizing performance and cost can be achieved. On the flip side, when orchestrated over multiple clouds, the 
stringent performance norms for carrier services become difficult to meet, necessitating novel and innovative placement strategies. In selecting the 
appropriate combination of clouds for placement, it is important to look ahead and visualize the environment that will exist at the time a virtual 
network service is actually activated. This serves multiple purposes – clouds can be selected to optimize the cost, the chosen performance 
parameters can be kept within the defined limits, and the speed of placement can be increased. In this paper, we propose the P-ART (Predictive -
Adaptive Real Time) framework that relies on predictive-deductive features to achieve these objectives. With so much riding on predictions, we 
include in our framework a novel concept-drift compensation technique to make the predictions closer to reality by taking care of long-term traffic 
variations. At the same time, near real-time update of the prediction models takes care of sudden short-term variations. These predictions are then 
used by a new randomized placement heuristic that carries out a fast cloud selection using a least-cost latency-constrained policy. An empirical 
analysis carried out using datasets from a queuing-theoretic model and also through implementation on CloudLab, proves the effectiveness of the P-
ART framework. The placement system works fast, placing thousands of functions in a sub-minute time frame with a high acceptance ratio, making 
it suitable for dynamic placement. We expect the framework to be an important step in making the deployment of carrier-grade VNS on multi-cloud 
systems, using network function virtualization (NFV), a reality. 
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1. INTRODUCTION – CHALLENGES AND CONTRIBU-
TIONS 

Carriers perceive Network Function Virtualization (NFV) as 
a disruptive technological development that has the potential of 
delivering them from the problems of the traditional physical 
networks. NFV allows network functions and appliances to be 
instantiated in software on computing and networking resources 
obtained from datacenters or cloud service providers. The 
concoction of NFV and cloud computing holds a great promise 
for carriers. It promises to deliver freedom from vendor 
dependence and expensive proprietary equipment, ease of 
service creation and phasing out, the flexibility of scaling and 
de-scaling, having points of presence closer to the users and 
avoiding a single point of failure. Cloud computing and Network 
Function Virtualization have a natural synergy that awaits full 
exploitation. It is expected that these two powerful paradigms 
would evolve together to support the requirements of virtual 
network services (VNS). The European Telecommunications 
Standards Institute (ETSI) specification of classification of 
cloud-native VNF implementations describes the creation of 
VNFs on different types of clouds [1]. 

One of the biggest challenges in deploying NFV over 

multiple clouds today is the low VNS performance. There is a 
general concern regarding the current technological capability to 
extract carrier-grade performance from NFV-based services 
[2] [3]. The Internet Engineering Task Force (IETF) has also 
identified performance and guaranteeing the quality of service as 
open research areas and technology gaps in NFV [4]. The 
performance standards have been strict in telecommunications 
networks, with International Telecommunications Union (ITU) 
standards being adopted by most administrations. The standards 
prescribe stringent control over performance parameters like 
latency, jitter and packet loss [5]. The availability requirement is 
of the order of five nines (permissible downtime of just 26 
seconds in 30 days). 

There are a number of reasons why the software versions of the 
network functions, i.e., Virtual Network Functions (VNFs), do not 
give a performance that is comparable to the purpose-built 
physical appliances used in the traditional networks. As anyone 
would guess, the main reason is the inability of the network 
functions created in software over general-purpose hardware, in 
matching the performance of specialized hardware-based 
functions. The performance suffers further when these 
‘softwarized’ functions are instantiated over clouds. To compound 
the problem, carriers have lesser control when network appliances 
move from their own switch rooms and transmission centers onto 
the Cloud Service Providers’ (CSPs’) virtual machines (VMs). 
Add to this the newfound ease of creation, destruction, migration, 
and scaling of virtual resources (courtesy NFV), and opportunities 
for indiscriminate virtualization proliferate. All of these issues 
cause performance to go downhill. Previous work has shown that 
virtualization may lead to abnormal latency variations and 
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significant throughput instability [6]. In their infrastructure 
overview, ETSI has indicated latency and throughput constraints 
as the discouraging factors for the use of public clouds for hosting 
NFV. Even though researchers have proposed ways of improving 
the performance of virtual network functions [7] [8], legitimate 
concerns still remain. All said and done, the advantages of the 
VNSs are far too important for researchers in academia and 
industry to forge ahead. 

In the VNS game, carriers and CSPs may not always have a 
cordial relationship. It is challenging to co-optimize their 
conflicting goals when they collaborate to provide VNSs. Carriers 
look for standards-grade performance and availability at the 
minimum cost and in the desired time frame. So, not to take any 
chances, they incorporate these in their Service Level Agreements 
(SLAs) with the CSP. On the other hand, the CSPs aim to 
maximize the utilization of their physical and virtual resources to 
improve their profit margin. 

In this paper, we make a case for the P-ART framework that 
will help CSPs alleviate some of the main concerns of carriers 
while deploying services - meeting the contracted performance 
and keeping the cost within the prescribed budget. The main 
contributions of this paper are summarized below: 

1. We develop techniques for improving the performance of 
deployed VNSs through the following: 

i) We propose an innovative predictive dynamic placement 
algorithm that takes care of changes in the state of the 
cloud environment to ensure the validity of the placement 
at the time of activation of a service. In addition, we 
propose placing complete chains rather than the commonly 
followed path of placing VNFs individually, to yield better 
results. As most carrier services are affected by latency, we 
choose to work with latency as an important performance 
measure. The work can be extended to other parameters 
following the same guiding principles. 

ii) Since a public dataset suitable for the problem is scarce, we 
generated realistic datasets to train and test the models. To 
be doubly sure, we used a dataset obtained by building a 
queuing-theoretic model and another by implementing the 
system on CloudLab [9]. 

iii) One of the important parts of the framework is a novel 
method that refines the prediction algorithm by taking into 
account variations in network latency because of 
temporally varying traffic conditions in the carriers’ 
networks. Unattended, such variations cause a concept-
drift, which makes predictions unreliable and affects the 
accuracy of predictions. For this, we introduce a novel 
concept of using time as a feature in training the predictive 
machine learning models. The resulting use of multiple 
models makes the framework adaptive to diurnal traffic 
variations. 

iv) Short-term traffic changes, because of events like a football 
match or an election rally, do not follow a pattern like 
diurnal traffic variations and need a different way of 
handling. Since retraining of models is a time consuming 
and expensive operation, the framework uses incremental 
learning to keep the models up-to-date. 

2. We propose multiple criteria optimization through an 
innovative placement strategy. Specifically, placements are carried 
out to optimize cost and keep latency within the specified 
threshold. We explain in the related works section that, in general, 
ILP and its variants give optimal solutions but take significantly 
more time than other methods. This limits their utility in 
responding fast to the change of state of the multi-cloud system 
and the subscriber demands from the service during its actual 
operation. To the best of knowledge, the random optimization as a 
viable method to achieve optimized placement has not been used 
before. The algorithm converges to the global minimum even in 
the case of a multi-modal dataset. 

3. We incorporate in our framework, innovative techniques for 
making the placement fast with high acceptance rate. The high 
speed of placements allows the CSP to make changes in the 
network dynamically, in real-time or near real-time, as the factors 
like demand, traffic congestion on links, availability of resources 
on various clouds change. A high acceptance rate implies that a 
placement attempt would be successful every time if enough 
resources are available on the clouds. 

4. Finally, the ideas explained above are brought together to form 
the P-ART framework for dynamic predictive, adaptive and real-
time placement of carrier virtual network services. 

In the preliminary version of the paper, presented at an IEEE 
conference in 2017, the contributions mentioned in 1(i), 1(ii), 2 
and 3 were explored [10]. The new work explained in 1(iii), 1(iv) 
and 4 enables us to report the complete framework in this paper. 
The rest of the paper is organized as follows. In Section 2, we 
discuss the VNS environment. This section also serves to clarify 
the terminology used. Section 3 presents a summary of the 
related work and how this work is different from other 
previously reported solutions. The problem description is in 
Section 4. The P-ART framework is discussed in Section 5. In 
Section 6, we present the evaluation results. Finally, Section 7 
gives a summary and describes the ongoing work. 

2. VIRTUAL NETWORK SERVICE ENVIRONMENT 
The network services are voice and data services, wired or 

wireless, provided by telecommunication companies (referred to as 
carriers in this paper). These network services include public 
services like mobile telephony, broadband and Internet, content 
delivery, enterprise networks, leased circuits, and virtual private 
networks. Traditionally, networks providing these services have 
been built using physical appliances and transmission links that are 
custom built for carrier-grade performance. This physicality usually 
creates vendor lock-in, prolonged service deployment time, 
inflexibility in scaling and introducing new services, and high cost. 
NFV and cloud computing provide a way to create network 
functions, in software, over inexpensive virtual resources. Such 
virtual functions can be linked with virtual network resources to 
create VNSs. The VNSs result in flexible, scalable and less 
expensive networks that are not proprietary and prevent vendor 
lock-in. We shall see the constituents of VNS in this section along 
with the cloud set-up that can be used for hosting such services. 

2.1 Constituents of a Virtual Network Service 
In most discussions on VNSs, VNFs are the basic unit of 

placement. VNFs are software-based implementations of 



  

 

physical network functions that are used in traditional carrier and 
enterprise networks. They exhibit functional behavior similar to 
their physical counterparts and have well-defined interfaces 
consistent with relevant industry standards. VNFs can be 
instantiated on virtual machines (VMs) obtained from 
datacenters, or from cloud service providers. All the instances of 
a VNF, say the core router function, would usually be hosted on 
one or more dedicated VMs on one or more clouds depending on 
the carriers’ requirements and CSPs own policies regarding these 
deployments. 

A Service Function Chain (SFC) or a VNF forwarding graph 
is a set of VNFs interconnected to route the packets in a well-
defined sequence [11]. They are connected like the physical 
appliances are connected in a traditional network [12]. IETF 
RFC 7498 [13] describes each network service (NS) being 
implemented through one or more service function chains (SFC) 
[14]. The carrier may like to retain some of the legacy physical 
network functions (PNFs) while virtualizing the other functions. 
The SFC may, therefore, consist of VNFs, PNFs, and links 
among them. Figure 1 shows the components of an SFC and 
associated modules. 

The broadband VNS, shown in Figure 1, is an SFC 
consisting of four VNFs, viz., an aggregation switch, two types 
of Border Network Gateways (BNGs) and a core router. It also 
has multiple instances of a Physical Network Function (PNF), 
viz., Digital Subscriber Line Access Multiplexers (DSLAMs), 
retained from the legacy network. Each VNF has its own 
Element Management System (EMS), which interfaces the VNF 
to rest of the network [12]. The Operation Support 
System/Business Support System (OSS/BSS) of the carrier 
manages the VNFs and SFC through the EMSs. 

 

 
Fig. 1. Broadband service function chain and associated modules 

SFCs can be placed on the available clouds in a number of 
ways. CSPs may offer commonly used network functions in the 
form of VNF-as-a-Service (VNFaaS), which may be a part of an 
SFC. Alternatively, a carrier may lease virtual resources in the 
clouds and instantiate VNFs itself, with a view to exercise more 
control over performance parameters and cost. Our discussions 
presume the use of the latter method. Figure 2 shows an example 
of an SFC mapped to multiple clouds. It may be noted that we 
now have four VNFs as the SFC has two types of BNGs. The 
Aggregation Switch is presumed to have a built-in load-
balancing function for distributing traffic between the two forked 
paths. The end-to-end latency of the service function chain 
would depend on how, when, and where the constituent 
functions have been placed. The users shown in the figure are 
customers of the carrier while the carrier is a tenant on the cloud 
system. When the initially placed SFC does not meet the 
required conditions, operations, like moving around the VNFs in 

the clouds or scaling up the number of instances, would be 
resorted to. 

 Fig. 2. Mapping service function chain to the multi-cloud system 

2.2 The Multi-cloud Hierarchy 

There are public cloud services like Amazon EC2, Google 
Cloud Services, and Microsoft Azure that provide the advantage 
of a relatively inexpensive resource leasing solution. Big public 
clouds are multi-tenant and have a regional or international pres-
ence. These clouds can handle large volume, variety, and veloci-
ty of traffic. Large public clouds do offer greater flexibility in 
obtaining resources and more analytical sophistication, but tak-
ing all the data to just one public cloud would create traffic con-
gestion and increase the access latency. Using a single cloud 
could often result in a single point of failure in the case of cloud 
blackouts, which are not uncommon.  

Additionally, the points of presence (PoPs) of large public 
clouds may not be close to the subscriber clusters and may give 
rise to increased access latency. If the application calls for lower 
access latencies then edge clouds may offer a good solution. 
Carriers may also have their own private clouds, which they can 
customize and exercise more control over. This hierarchy of 
clouds – mobile-edge, private, and public – forms a multi-cloud 
system to provide a combination of features like low latency, 
high storage, complex computations, lower cost, and better secu-
rity. 

2.3 Representation of the Tenant Profile 

In this work, a cloud tenant (in our case, a carrier) profile is 
represented as a tuple <cN, v1, v2, …, vm, p> for each request. 
Here, v1, …, vm represent the VNFs and the order of traffic tra-
versal in a linear chain. The term cN is the native cloud for the 
tenant to which it is parented and through which the traffic en-
ters an SFC and p is the desired packet rate (packet/second). 
Multiple tuples can be used to represent branched traffic flows. 
Other stipulations like latency threshold (Lth) are part of the 
SLA. All the requests of the tenant are consolidated to calculate 
the required number of instances of each VNF and inter-VNF 
links of appropriate capacities. The cloud topology may be 
represented by the graph Gc = (C, T), where C is the set of avail-
able clouds {c1, c2, …, ck} and ti,j are the inter-cloud links. The 
CSP (or a cloud broker who integrates services from multiple 
clouds) carries out the task of mapping service chains onto the 
available clouds to achieve optimal results for the carrier. In our 
case, optimality refers to the least-cost solution that meets the 
end-to-end latency threshold requirement. 

3. PROBLEM DEFINITION 

In this section, we summarize some of the key outstanding 



  

 

problems in the dynamic placement of carrier VNSs, in a multi-
cloud environment that we attempt to handle in the P-ART 
framework described in this paper. 

3.1 Achieving Dynamic Placement in Multi-cloud Systems 
Some carrier services may be fairly static, e.g., fixed voice 

network. Thus, over time the number of instances of VNFs and 
link capacities required only change slowly over time. On the 
other hand, some services may be extremely dynamic, requiring 
a change in number and types of VNF instances, re-
dimensioning of links and changes in the offered features of the 
service very frequently. An example of such a service would be 
an intelligent network service like televoting in a TV reality 
show. Different TV reality shows may require different features 
and the number of voters may swing unpredictably during the 
voting window. If the CSP only offers largely static placement 
with reactive and relatively slow modifications, then the carrier’s 
requirements may not be met. 

The bottom line is that both, the dynamic and static services 
would require the CSP to scale VNF capacities or links, albeit at 
a different rate. However, dynamic services may be more 
demanding in terms of types and number of instances of VNFs 
and link resources and may even require migration of VNFs 
from one cloud to another to be able to continuously meet the 
cost and end-to-end latency constraints. A dynamic placement 
algorithm, that monitors the SLA parameters and proactively 
causes changes in the amount of resources and the combination 
of clouds to meet all the requirements, is still a challenging 
issue. 

3.2 Optimizing the SFC Performance 
When the data are high dimensional and multi-modal, 

optimizing placement of individual VNFs may not achieve the 
global minimum. Placing SFCs as a unit yields better results. 
The opportunity to achieve the global minimum for the 
parameter being optimized is available when placing the SFC. If 
sufficient resources are not available to implement full-service 
chains, then the request may be rejected or, if the policy permits, 
degraded service (for instance without firewall) is provided 
[11] [15]. In this paper, we only consider complete SFC 
placement. The case where the customer accepts degraded 
performance due to low-capacity chain placement or partial 
functionality due to incomplete chain placement would be taken 
up in future work. 

3.3 Meeting the Cost and Latency Constraints 
From the carrier’s perspective, the placement problem boils 

down to placing network functions to meet the cost and latency 
objectives. At the commencement of the VNS and during 
operation, the placement problem needs to be repeatedly solved 
to ensure that the carrier requirements are continually met. 
Performance criteria vary from service to service. For the carrier 
services like voice, broadband, and content delivery some of the 
common factors are jitter, packet loss, latency, and throughput. 
ITU standards for QoS parameters in carrier networks are 
available in [5]. Latency is one of the most important criteria, 
and we have taken that as a reference performance parameter. 
The framework can be extended to include other criteria as well. 

3.4 Speed and Accuracy of the Placement 
Carriers want short placement and reconfiguration time so that 

the solution can be useful in an operational network. The CSP 
wants the solution to have the high success of placement 
requests such that utilization of the virtual resources increases. 
When the system cannot place despite the availability of 
resources, CSPs lose by way of unused resources and possible 
breach of SLA. 

3.5 Interference Among VNFs 
The CSP may instantiate a number of VMs on a physical 

machine (PM) and a number of virtual links on the physical 
inter- and intra-cloud links. VNFs of more than one service 
provider may be instantiated on the same PM. In some cases, pre-
instantiated VNFs may be shared among carriers. Sharing of virtual 
resources does not only cause performance concerns but could also 
give rise to security concerns. In this paper, we have presumed that 
VNFs of different types belonging to a carrier are on different VMs. 

3.6 Problems Addressed and Not-addressed in this Paper 
The following issues have been specifically addressed in the 

paper: 
a) Dynamic placement of the complete SFCs belonging to a 

VNS. 
b) Meeting the specified performance and cost criteria. 
c) Prediction of latency using machine learning as a basic 

input for the placement algorithm. 
d) Refining the prediction by handling the temporal varia-

tion of traffic, unplanned short-term spikes in traffic and 
the time lag between planning and commissioning of 
SFCs. 

e) A fast placement algorithm that places with high success 
rate. 

The following problems are left for future work: 
a) Use of under-dimensioned service chains 
b) Security issues of the VNSs. 

4. RELATED WORK AND HOW THIS RESEARCH AD-
VANCES THE STATE-OF-THE-ART 

A review of recent publications shows a strong interest of re-
searchers in the problem of placement in the context of NFV. We 
discuss here some of the relevant works published during the last 
two years to show how the field has progressed. There is some 
older useful research on which many of the recent works build, 
and these have been cited in the works that have been examined. 
Since our research is in the area of cost and latency optimization, 
we focus on research dealing directly (for example by optimiz-
ing cost or latency) or indirectly (by optimizing utilization of 
resources thereby reducing cost) with these aspects. We conclude 
this section by elaborating how our work advances the state-of-
the-art. 

4.1 Review of recent works on VNF placement 

1. Methods based on ILP and its variants for optimization  
In [16] the authors contend that unlike most other works they 

have considered QoS/SLA along with resource requirement of 
network services. They show that the virtualization overhead 
increases with traffic load and the number of VMs due to factors 
such as scheduling delays, context switching, and flow routing. 



  

 

The authors include virtualization overhead while setting up 
their MILP model to optimize resource usage while guaranteeing 
latency requirements. The model optimizes the cost including 
the utilized processor, memory and physical links under the la-
tency constraint of maximum round-trip time. It is seen that for a 
network with 28 nodes and 41 links the model takes about an 
hour to arrive at an optimum solution. The authors in [25], use 
an MILP model to optimize network latency and increase the 
acceptance rate of strict delay requirements. One of the con-
straining factors in evaluation is the location of all the VNFs in 
the same cloud. It is also somewhat unclear how the method will 
scale from 5 VNF to a large network, for delays. The algorithm 
chooses a more expensive path to ensure a minimum delay. An 
intuition that probably does not require proof is that delay will 
be more with high bandwidth requirement, or when more re-
quests seek the same link. In cases where the number of requests 
is high, the solver is not able to find an optimal solution in the 
joint delay and routing cost optimization problem. The solution 
for the optimal chaining and routing with MILP limits the scale 
of the problem. 

2. ILP and Heuristic to speed up ILP 
In [17], the authors optimize the number of physical ma-

chines (PM) used using an ILP model. They take into account 
the time-varying workloads while instantiating VNFs in PM. A 
two-stage heuristics solution has been suggested to solve the 
ILP, with a correlation-based greedy algorithm as the first stage 
and a further adjustment at the VNF in each SFC as the second. 
The simulation demonstrates improved utilization of network 
resources and reduced number of PMs compared to the bench-
marks. This and some other works presume multi-tenant VNFs 
to improve utilization. While this may be good from the point of 
view of cloud service providers, but carriers would usually re-
quest exclusive VNFs hosted on exclusive VMs because of secu-
rity and performance concerns. In [20] the authors propose 
placement of VNFs in the edge clouds to minimize end-to-end 
latency. Using and ILP model, the authors show that cloud-only 
deployments gave more than 3 times more latency than cloud-
and-edge deployments. The absolute times for initial placement 
and for each re-configuration are not known. They also present a 
way to dynamically re-schedule the optimal placement of VNFs 
based on temporal network-wide latency fluctuations using op-
timal stopping theory. Scheduling re-optimization may reduce 
latency violations, but they may require an increased number of 
migrations. Periodic migration also has a problem, as it requires 
human intervention to decide on the periodicity of tuning. The 
authors suggest a method using optimal stopping theory to select 
the right time for placement. 

3. ILP and heuristics for comparison 

In [19], the authors consider an IoT-edge cloud-main cloud 
scenario in a dynamic multi-user situation. The authors set up an 
MILP model to minimize the end-to-end communication delay 
while keeping the cost to the minimum. However, they realize 
that the MIP formulations rapidly increase in complexity and 
take a long time to give an optimum solution, as the problem 
becomes large. To counter this, the authors also propose Tabu 
search for placement and chaining. They find that the MIP meth-
od takes 200 times slower than the Tabu Search. The authors in 
[24] solve VNF placement and chaining problem as ILP and also 

propose another method called Cost-efficient Centrality-based 
VNF Placement and chaining algorithm (CCVP). The objective 
is to minimize the cost by finding an optimal number of VNF 
instances and their locations for handling the required traffic. To 
simplify they assume that the network provider is the owner of 
NFVI so concerned factors are under its control. The CCVP is 
based on the Betweenness centrality algorithm. The high central-
ity indicates that a vertex of a graph G can reach other vertices 
on relatively short paths. This results in lower network cost. 
They show that the overall cost of their method is close to ILP. It 
should be noted that processing delays and link bandwidths are 
not considered in the analysis. In [26], the authors pursue the 
objective of optimization of energy consumption as an ILP mod-
el. This purportedly gives a reduction in the operational cost of 
the placement. They also propose a near-optimal approximated 
algorithm to solve the problem using the Markov approximation 
technique. They show that their algorithm can achieve the per-
formance arbitrarily close to the global optimum. Simulation 
results show that the algorithm saves up to 14.84% energy con-
sumption compared with previous VNF placement algorithms. 

4. Non-ILP heuristic solutions 

In [18] the authors presume sharing of VNFs among different 
service chains. It should be noted that while sharing may im-
prove VM utilization, it might consume more link bandwidth 
because these chains may need to go through a longer path in 
order to reach the shared VM. As mentioned before, from carri-
ers' point of view this arrangement may give rise to security is-
sues as well as make it difficult to control latency. The authors 
contend that most of the existing works are mainly targetted on 
improving VM utilization, without considering the required 
bandwidth resources. This paper has examined the joint VNF 
placement and Path Selection problem, so as to maximize the 
served traffic demands. In [21], the authors discuss a proactive 
placement model in the context of a content distribution network 
(CDN). They argue that VNF chaining and placement affect 
QoS, and formulate an optimization problem to find the optimal 
number of locations as well as efficient chaining such that the 
CDN cost is minimized and QoS is satisfied. The authors set up 
the problem as a bin-packing problem that involves selection of 
bins (surrogate servers) and dropping the items (VNFs) into 
them. The authors conclude that while their solution gives fewer 
servers but may give a high communications cost. In [22], the 
authors investigate the optimal placement of virtual resources to 
minimize the average response time in mobile edge computing 
(MEC) environment with a capacity constraint on the edge net-
work. They use OEPA (Optimal Enumeration Placement Algo-
rithm) as a benchmark to compare Latency-Aware Heuristic 
Placement Algorithm (LAHPA), which has lower computation 
complexity, Clustering Enhanced Heuristic Placement Algorithm 
(CEHPA) to enhance the performance of LAHPA, Substitution 
Enhanced Heuristic Placement (SEHPA). SEPHA turns out to be 
better than LAHPA. CEHPA and outperforms LAHPA and both 
are better than the general Greedy Placement Algorithm. The 
authors in [23] describe a dynamic placement algorithm based 
on traffic variations that saves operational expenditures. Their 
algorithm consolidates VNFs in the fewer possible number of 
network nodes while maintaining low blocking probability and 
guaranteeing latency targets to the supported services. They re-
use VNFs, select VNFs based on locality and activate them 



  

 

based on the shortest path. The authors claim that their algorithm 
is able to balance the trade-off between minimizing latency vio-
lations, decreasing blocking probability and reducing operational 
expenditure. The success rate of the algorithm has not been men-
tioned. The authors claim 50% saving in telecom operators cost. 

4.2 How does this work advance the state-of-the-art?  
A carrier's environment is essentially different from an IT ap-

plication environment. Carriers assiduously follow norms that 
have long been enforced by standardization agencies like ITU or 
through self-imposed discipline. They are generally loath to give 
these good practices up, even if that would mean marginally 
sacrificing on other competing cost objectives. Some of these 
practices relate to five nines reliability, guarding against inad-
vertent or malicious interaction of services (for example, be-
cause of VNFs being on the same servers or VNFs sharing the 
same VM) and having well-defined points of interconnections. 
Another important aspect is ensuring the security of their ser-
vices. Some of these may be required by regulation to account 
for revenue generation by different networks or to have non-
contentious sharing among carriers in case of multi-domain ser-
vices. 

There are a number of important factors that go into the 
planning of carriers' network services. The locality of VNFs, for 
instance, those belonging to the access network (like Radio Ac-
cess Network), should ensure that the VNFs serving a cluster of 
subscribers are instantiated close to them to reduce cost and la-
tency. There are a number of virtual functions that have an 
affinity and need to be placed as close as possible. In a broad-
band network, the edge routers may be connected to two core 
routers in order to ensure that large clusters of subscribers are 
not cut off from the network. In such a case, the cost of connec-
tivity would be exorbitant if edge routers are generally located 
far away from the core routers.  In the case of carrier's VNSs 
deployed over clouds, it must be remembered that the cloud re-
sources (or the NFV resources) may not all belong to the carrier. 
In such a case, when the placement solution deals with packing 
the VNFs into physical or virtual machines, it generally helps the 
cloud service providers to reduce their cost. The carrier's objec-
tives of isolation of services, security, affinity and QoS parame-
ters may be jeopardized.  

Unlike most other papers that deal with placing VNFs on vir-
tualized datacenter resources or single clouds, this paper pre-
sumes a multi-cloud environment. Rather than optimizing the 
utilization of physical or virtual resources, it assumes carriers' 
viewpoint and optimizes, under latency constraint, the total cost 
of placement of network functions, which includes resources on 
various clouds and links. The cost is presumed to be adjusted to 
contain the apportioned capital and operational costs for the vir-
tual network service under deployment. The method that we 
propose falls in the category of dynamic and proactive place-
ment algorithms rather than being either of those. Our objective 
and constraint-based determination of clouds, on which the SFC 
will be placed, removes the tight binding between resources and 
the VNFs of the SFC. During operation, the placement is fre-
quently re-evaluated to ensure continued optimality. We avoid 
the ILP route and use machine learning for placement, which 
reduces the time taken even for large placements and renders the 
re-evaluation problem trivial. If required, new placement and 

virtual resource dimensioning will be done consistent with the 
carrier SLA requirements and CSP policies. Selection of clouds 
for placement of chains of VNFs is based on the prediction of 
the state of the clouds at the time of placement. A number of 
innovations have been proposed in this part of the work. One 
such refinement is the compensation of concept drift due to di-
urnal variation of traffic. The methods adopted also lead to the 
high efficiency of the placement process, which ensures that 
placement requests are successful in all cases where enough ca-
pacity is available and constraints can be met. 

5. THE PROPOSED P-ART FRAMEWORK 
In this section, we describe our framework with approaches 

to solutions for the problems mentioned in Section 3 and for 
achieving the objectives specified. We also describe how the 
refinements mentioned were carried out to achieve the solution 
that can be used for carrier networks as well as in the enterprise 
environment. For our studies, we will consider the placement of 
the SFC shown in Figure 3. 

 
Fig. 3. The configuration of the experimental service chain 

5.1 Information Available from Carriers and CSPs 
Carriers, who request service chain placement, provide in-

formation about the performance requirement for a VNS, and the 
number and structure of SFCs and VNFs to be instantiated. A 
VNS may have one or more SFCs. The ith SFC Si can be repre-
sented in terms of the constituent VNFs, i.e., 

Si = <CN, vnf1(i), vnf2(i), …, vnfn(i), p>      (1) 

Where CN is the native cloud and p is the maximum packet rate 
through the chain. The native cloud is usually the point of pres-
ence (PoP) of the CSP closest to the carrier and provides inter-
connection to the carrier. The CSP may provide an option to 
connect at PoPs located at other places. This gives a choice to 
the carrier to have traffic ingress points close to the customers. 
The design is to be carried out such that the costs of the network, 
as well as latency in reaching the cloud system, are kept to the 
minimum or below a given threshold value. 

An SFC is represented as a forwarding graph of the type Gv 
= (V, E), the nodes V being virtual network functions and edges 
E the virtual links among these functions. The demanded capaci-
ty of ith VNF, vnfi (i ≤ n) is expressed as vi

c in the same integrat-
ed units as the cloud capacities (shown in Table 2). An integrated 
figure represents the compute capacity ck, of a cloud k, consist-
ing of a certain amount of processing, memory and storage com-
ponents. However, there is no integer constraint on the VNF 
capacities. These are mapped onto resources in the available 
clouds represented as another graph Gc = (C, T), where C repre-
sents the set of clouds with physical/virtual infrastructure and T 
the set of links tij among them. The state of a cloud k at any time 
would involve the cloud compute and link capacities –installed 



  

 

capacities denoted as ck
(c) and tkj

(c), and the corresponding used 
capacities are ck

(u) and tkj
(u). The tenant carrier provides the max-

imum expected packet rate p for each request originating from a 
cluster of subscribers. The expected end-to-end latency is 
specified by the carrier in terms of a latency threshold (Lth). The 
CSP consolidates the VNF requests and packet rates required for 
each type of chain to allocate resources in an optimum way. Ta-
ble 1 gives the symbols frequently used in the paper 

Some of the important constraints subject to which the cost 
optimization is carried out are: 
• The number of instances of each type of VNF across all the 

used clouds, for any carrier, should not exceed the number of 
licenses for that function type paid for by the carrier. 

• To place any chain, at least one instance of each type of VNF 
needs to be instantiated. 

• The total capacity of each type of VNF placed on any cloud k 
should not exceed the capacity available in the cloud. 

• At any given time the sum of the traffic flows, due to all ser-
vice chain placements, between any two clouds k and j should 
not exceed inter-cloud link capacity tkj

(c). 
• The end-to-end latency, L, of any chain should not exceed the 

specified threshold Lth. 
• While the cost is optimized, the carrier may additionally speci-

fy a budget CB for it. 

 The framework requires that the CSP lays down its policies 
regarding tariffs, integrated virtual resource capacities, clouds 
offered, the arrangement with other cloud providers, cloud and 
link capacities offered, etc. 

5.2 Predictive Adaptive Real Time Strategy 

The proposed placement solution optimizes cost and con-
strains the end-to-end latency below the specified threshold, Lth. 
We assume that the design for instantiation of SFCs, belonging 
to a VNS, is ready at time t, but actual placement is yet to hap-
pen. In other words, the placement problem has been solved at 
time t for the placement and activation that will actually take 
place at time t1. Predictive placement is used to take care of the 

change of state because of this time difference. Using prediction 
of the latency as the basis of design also takes care of the large 
number of infrastructure and network level parameters that in-
teract in a complex way to decide the end-to-end latency. In ad-
dition to these, the background traffic in the network affects the 
latency experienced by the subscribers of the VNS being placed. 
Therefore, taking care of the diurnal traffic variations in the net-
work makes the prediction of latencies more accurate and system 
more adaptive to such changes [27]. Short-term surges in traffic, 
due to events like a football match, would affect latency during 
the event and should be accommodated by dimensioning and 
reconfiguring the SFCs. This renders the system more respon-
sive (and near real-time) in terms of latency predictions. We 
have taken into account all these factors in formalizing our pre-
diction algorithm. Latencies so predicted are then used to select 
a suitable subset of least-cost clouds meeting the latency con-
straint. The complete algorithm is given in Algorithm 1. 

Algorithm 1: PLACE_SERVICE_CHAIN (client_demands, csp_data, 
cv_model) 
1: Set up cloud data // all ck ∈ C and tk,j ∈ T 

2: Set up client data // all vi ∈ V 
3: Latency thresholdLth 

4: Cost budget  CB 
6: NCloud  cN // Native Cloud 

7: vi
c  capacity demands for vnfi 

8: n  length of the service function chain (number of VNFs) 
9: native  true // set native to 1 if native cloud is used else 0 

10: if (native == 1) //place as many VNFs as possible in the native cloud 
11:  for vi, i =1, n  
12:       if cc

N –cu
N > vi

c // native cloud has unused capacity 
13:            pop vi 

14:           cu
N cu

N+vi
c  // update cloud capacity 

15:       else 
16:            break 
17:       end if 
18:  end for 
19: end if 
20: if V != 0 // for remaining vnfs 
21:  call RANDOM_SELECTION(C, cv_model, r_clouds)   //get a set of 
lowest cost clouds 
22:  sort ascending r_clouds on cost   //set of smallest latency clouds 
23:  while V != 0 
24:       place vnfs //on sorted clouds 
25:       update capacity 
26:       update bandwidth 
27:      update vnfs_placed status 
28 :  end while 
29: end if 
30: if all_vnf_placed & latency of chain < Lth & cost of chain < CB 
31:  output placement details 
32: else 
33:  report failure to place 
34: end if 

The essential elements of the placement process can be 
understood like this: the placement process takes care of the 
change of state of the cloud system by predicting latencies at the 
time of actual activation of the SFCs. This obviates the need for 
drastic changes soon after placement or reconfiguration. Predic-
tion is, thus, an essential element of the framework. Having said 

TABLE 1 
SYMBOLS USED 

Sym
bol 

Description Sym
bol 

Description Sym
bol 

Description 

ck Cloud k cN 
 

Native cloud ck
(u) Used capacity 

of cloud k 
C Set of all 

clouds 
available 

vi
(c) Capacity 

demand for 
VNF i 

tij
(u) Used capacity 

of the link 
between 
clouds i & j 

tkj Link from 
cloud k to j 

cN
(c) 
 

Equipped cap 
of native 
cloud 

p The maximum 
expected 
packet rate 

T Set of all 
inter-cloud 
links 

cN
(u) Used cap of 

native cloud 
m No of clouds 

selected 

vi ith VNF  ck
(c) Installed ca-

pacity of 
cloud k 

vnfi The ith VNF in 
the SFC 

V Set of 
VNFs 

tij
(c) Capacity of 

link between 
clouds i & j 

Lth Latency 
threshold 

n Types of 
VNFs 

Vi
(c) Capacity 

demand for ith 
VNF 

CB 
 

Cost budget 



  

 

that, the prediction methodology needs to be robust against traf-
fic variations. With this, the framework becomes adaptive to 
placement time and traffic variations. To make the framework 
fast, responsive, and useful in real-time, further steps need to be 
taken. For this, short-term traffic variations are taken into ac-
count. Two other important factors that need to be taken into 
account are speed and acceptance rate of placement. Fast 
placement algorithms would allow continuous optimization by 
making real-time changes (e.g., migration) possible when the 
need arises during the operation of the network. For dynamic 
scaling, a fast algorithm would be able to place hundreds or 
thousands of functions in sub-minute time frame. Concurrently, a 
100% acceptance rate implies that the algorithm is able to satisfy 
all requests for placing SFC, subject to capacity being available. 
This contributes to the avoidance of repeated attempts and saves 
time. 

Algorithm 1 is called for placement and reconfiguration. The 
cloud and client data are initialized based on the CSP resources and 
the client request and policies (lines 1-5).  A separate process pro-
duces a trained model cv_model using the training data (X  fea-
ture_set and y  labels), which is available to the placement proce-
dure. The placement normally begins with the native cloud (this can 
be overridden in line 9 by setting native = 0). The algorithm ac-
commodates as many VNFs as possible in the native cloud (lines 
10-18). For the remaining VNFs, the SVR module predicts the 
latency of various clouds. This algorithm uses Algorithm 3 (proce-
dure RANDOM_SELECTION) to select the set of m least-cost 
clouds that meet the latency requirements. The number m can be 
decided to start with enough capacity to place all the VNFs. For the 
least-cost set, the algorithm calculates the assignment of VNFs in 
the sequence in which they appear in the SFC. The final cost and 
latency are reported (line 31). If the clouds are exhausted, and 
placement has not completed, then failure to place is reported. If this 
case happens frequently, then the number m needs to be increased. 

5.2.1 Predictive Placement for Handling Change of State of the 
System 
The cost of placing an SFC is a function of the set of clouds 

Cs (Cs ⊆ C), where C is the set of all available clouds), selected 
to place the virtual network functions and the amount of compu-
ting, storage, and networking resources consumed. End-to-end 
Latency (L) of the SFC depends on a number of factors promi-
nent of which are, a) the installed and used capacities of compu-
ting, networking and storage resources in the physical servers 
and the links, b) the traffic pattern on the links, c) the types of 
network functions sharing the servers, and d) the distance be-
tween clouds. These factors together constitute the state St of the 
multi-cloud system at time t.  

As the system operates, the number of tenants and their 
workloads change, the state also changes. The amount of latency 
introduced in a placement by the state of the cloud, therefore, 
changes over time. Given the state St, latency can be computed 
by using assumptions about the type of traffic, e.g., Poisson, 
service times and the queuing discipline. The process of plan-
ning service function chains, creating virtual resources to host 
network functions and booting them up takes time [28]. Loading 
the network function software for various VNFs, chaining, 
acceptance testing, and commissioning need additional time. 
Initial placements and reconfigurations planned based on calcu-

lations at time t, and the state St, are actually carried out at a time 
t1. In due course, parameters may change and require fresh re-
configuration [29].  

Figure 4 shows the SFC to be placed and the available 
clouds. Used and installed compute capacities (in integrated 
units) are shown within the clouds, and so are the used and in-
stalled link capacities in M (Megabits) or G (Gigabits) per sec-
ond. At time t, the assessed end-to-end latency is 20ms. When 
the actual placement and activation takes place at time t1, the 
latency turns out to be 50ms. This may cause SLA violation right 
at the inception and trigger reconfiguration of the chain. When 
this happens for several service chains, it may lead to a heavy 
penalty to be paid by the CSP and a loss of customers and reve-
nue for the carrier. When the states of the target clouds are 
known, the set of least-cost clouds, which give cost and latency 
below the stated thresholds, can be determined.  

Thus, if the state St1 at the time t1 can be predicted and the 
placement is carried out based on this state then the placement 
remains consistent with the requirements. This is demonstrated 
by our empirical study given in Section 6.  

How is the placement carried out: In an operational CSP set-
up as well as the carrier network, a large amount of useful la-
beled data is available, which can be curated for use with super-
vised machine learning techniques. As the speed, simplicity, and 
accuracy are of concern, we worked on a prediction technique 
that could be applied repeatedly for cloud set selection consistent 
with the objectives of the framework. A review of the literature 
shows that many supervised machine-learning techniques have 
been used in cloud computing settings, such as Artificial Neural 
Networks (ANNs), Bayesian networks, Ensemble classifiers and 
Support Vector Machines (SVMs). We worked with a number of 
methods and found interesting results using a well trained and 
tuned support vector regression (SVR). We discuss the results 
given by some well-known stock algorithms to show the reason 
for our choice in Section 6.4. SVR offers the advantage of a 
unique global minimum as it solves a convex optimization prob-
lem. Also, it is amenable to incremental learning. We found that 
it adapts well to multi-modal cases where the latency is time 
variant and needs multiple models to fully capture the actual 
situation. Well-tuned and trained models generalized well from 
training to the production environment. The results of our exper-
imental evaluation are given in Section 6. For a thorough expo-
sure of SVR, readers are referred to [30]. 

 
Fig. 4. Need for predictive placement 



  

 

5.2.2 Time Adaptive Placement - Incorporating Temporal 
Variation of Traffic in the Model 
We show through our empirical analysis that taking diurnal 

traffic variations into account will improve prediction of laten-
cies. In carrier networks, there is temporal and spatial variation 
in traffic demand because of time differences and patterns of use. 
The amount of traffic flowing through the virtual devices and 
links varies from place to place and hour to hour. This affects the 
latency experienced by the subscribers of the carrier’s VNS. If 
the provider over provisions the resources, to meet the surge in 
traffic in the busy hour, then resources may lie unused most of 
the time. On the other hand, if enough resources are not provi-
sioned fully in order to reduce the cost of the deployment, then 
traffic may be lost along with the associated revenue. Fig-
ures 5 (a) and 5 (b) show an hourly variation of the actual traffic 
on a 100 Gbps link from Chicago to Seattle and 10 Gbps link 
from Los Angeles to San Jose [31]. 
 

  Fig. 5. (a) Traffic variation on Chicago-Seattle link 

 
Fig. 5. (b) Traffic variation on Los Angeles-San Jose Link 

The traffic that a carrier routes through the VNFs consists of 
streams of voice, video, and data with different probability dis-
tributions. Each of this traffic varies independently in the time 
domain. The aggregate traffic in the CSP’s network is a compo-
site of all the tenants’ traffic and has a complex distribution. The 
traffic flows continuously as data streams and has properties of 
big data [32]. In such a dynamically changing and non-stationary 
environment, the data distribution changes over time, causing 
the phenomenon of concept drift [33]. The drift is characterized 
by the change in the density function that is, in turn, reflected by 
the change in the shape of the traffic distribution or its statistical 
properties like mean and variance. Thus, the joint distribution pt 
of the predictor variables (X) and the labels (y) would change 
dynamically over time such that at time t0, t1, …, tn the following 
relationship (2) holds for all X. 

pt0(X, y) ≠ pt1(X, y) ≠ … ≠ ptn(X, y)     (2) 

How do we propose to solve the diurnal traffic variation 
problem?: The solution that we propose takes care of the con-
cept drift to ensure more accurate traffic predictions. While a 
single SVR model works well in situations where there is no 
sizable ambient traffic from other applications and network 
services. However, SVR by itself does not take care of the time-
varying nature of the traffic present on the links from other 
voice, data, and video applications. To handle this, we incorpo-
rate time as a feature by allocating numerical codes to windows. 

Researchers have experimented with both fixed and adaptive 
window methods to handle concept drift in real time situation. In 
the case of fixed windows, the data is segregated into many small 
windows to have lower overall generalization errors as com-
pared to a single window situation [33]. The utility of fixed 
window sizes under certain conditions for topological data 
analysis has been shown by the authors in [34]. A window of a 
certain minimal fixed size allows learning concepts because the 
extent of drift is appropriately limited [35]. In Adaptive Win-
dows [36], the window size is changed so that the difference in 
errors (ϵ), given by a point in two neighboring windows, is 
bounded by a small value δ such that ϵt –ϵt-1 < δ. 

To achieve a good compromise between prediction accuracy 
and complexity, we propose a method that has the simplicity of a 
fixed number of windows and is also flexible to include a varia-
ble number of traffic data points depending on the frequency of 
variations in different windows. Consequently, we call this 
method fixed-time variable-points (FTVP) window. SVR models 
are trained, one for each window, to tackle the effect of the con-
cept drift. While even as few as two windows give an 
improvement in prediction, finding the right number and sizes is 
a matter of optimization. A larger number of small windows may 
give more accuracy, but would produce a larger number of mod-
els and would necessitate maintenance of all of them. Using this 
concept, time is incorporated as one of the features in the train-
ing examples. In a sense, each example carries a time-stamp, 
which makes it a member of a particular FTVP window. When a 
prediction for a new point is made, the time feature will cause 
the framework to use the model appropriate for the correspond-
ing time window. In our experiments, this method gives far low-
er prediction root mean squared error (RMSE) and absolute error 
ratio (AER) than a single integrated windowless model. 

To validate the FTVP concept, we created a trained SVR 
model using a single window (full integrated dataset) and sepa-

 
Fig. 6. Comparison of generalization error with an integrated model 

and FPTV model 



  

 

rately for each of the four selected FTVP windows. In Figure 6, 
we show a plot of the absolute error rate versus the latency for 
both cases. The motivation for using multiple training datasets, 
using time as one of the predictors, becomes amply clear. The 
errors, in general, remain more controlled in the FTVP case.  

5.2.3 Corrections for Short-Term Traffic Variations – 
Incremental Learning from New Data 
In an operational network, the dynamicity of the environment 

would render the trained predictive models obsolete if the effect 
of the short-term changes in the traffic is not accounted for. 
Short-term variations are caused by events like festivals, game 
tournaments, or rallies. If the effect of short-term changes in 
traffic is not taken care of, latency prediction and consequent 
placement decisions may not be correct. Since retraining of all 
the models would entail prohibitive time and cost, we have used 
an incremental update of the models. The authors in [33] con-
firm that the online method can adapt to sudden changes. 

Choice of SVR for prediction makes incremental learning 
easier to understand. In SVR, the support vectors are the only 
points that determine the decision surface. They also satisfy the 
Karush-Kuhn-Tucker (KKT) conditions [30]. Each new point 
generated because of the change in traffic is checked for being a 
support vector. If it is a support vector and improves the overall 
model for future predictions, then it is included. If this becomes 
time-consuming, due to continuously generated traffic data, 
training in small batches speeds up the process. Support vectors 
can be separately found for each batch of fresh points, and they 
can be included in the model only if they improve it. Algorithm 
2 gives the incremental training algorithm. We see in the next 
section that this contributes positively to the model empirically. 

The initial training process creates a set S = {xs, ys} of sup-
port vectors that decide the decision surface. Algorithm 2 starts 
with the solution function f(t) at time t in terms of the initial 
training dataset T = {(xi, yi), i = 1, …, n} xi ∈ Rn and yi ∈ R. 
The set of support vectors at this time are S(t). For the time t+1 
for which the model needs to be incrementally updated each of 
the new example {xnew(t), ynew(t)} is received in the time window 
(t, t+1), the algorithm checks if the new point is a support vector. 
The new support vectors are incorporated in the set S(t+1) if 
they improve the performance of the model as indicated by re-
duced mean squared error. Our simulations given in Section 6.6 
also support this argument. The simplified algorithm is given 
below: 

Algorithm 2: TRAIN_REAL_TIME (T, xnew, ynew) 
1: //Initial training set T = ((x1, y1)…(xn, yn)) 
2: f (t) = A(T) //Training done at time t 
3: f(t) : S(t) //S(t) is the set of support vectors at time t 
4: Initialize S(t+1) to S(t) 
5:for all {xnew, ynew} in the window (t, t+1) 
6: if xnew(t) : xs and ynew(t) : ys   // new point is a support vector 
7:       S(t+1) = S(t+1) ) ∪ (xnew, ynew) 
8: endif 
9: endfor 
10: output f(t+1) : S(t+1) //updated model at t+1 

The removal of support vectors when the short-term traffic 
condition that created them has passed will be taken up as future 
work. 

5.3 Cost optimization 

5.3.1 Random Optimization for Cloud Selection 
An important part of the solution is to select the set of clouds 

that would be used for placing the VNFs of an SFC such that the 
total placement cost is the lowest possible, within the budget CB 
specified by the carrier, and is consistent with the latency 
constraints, i.e., ∑i li ≤ Lth where li is the latency within ith cloud, 
and its link to the next cloud and Lth is the threshold given in the 
SLA. Following Occam’s razor, we looked for an algorithm that 
would be simple and yet effective in meeting the real-time re-
quirements. Algorithms like A-Star are efficient in finding a low-
cost walking path from one node to another. Even with one pa-
rameter, i.e., the length of the path, its time complexity can de-
generate to exponential. 

A naïve approach is to search m lowest cost clouds (enough 
to meet the capacity requirements), one at a time out of total n 
(m ≤ n) such that the total cost (in terms of cloud resources and 
links) is minimized and the latency remains below the given 
threshold. In large networks, a systematic search like this for the 
global minimum becomes impractical [37]. The worst case time 
complexity of this algorithm can be assessed as follows: the 
search for each next lowest cost cloud requires approximately n 
lookups, searching m clouds would have the complexity O (mn). 
Again in the worst case, we would need to look through all the 
remaining (n-m) clouds to make sure the latency is below the 
threshold. Thus the complexity is O((n-m).mn) or O(n2m – nm2). 
Selecting just five clouds out of a hundred would require 47,500 
iterations. In Section 6.8 we compare the randomized cloud 
search with a modified sequential baseline method to show the 
usefulness of the adopted technique. 

We find that the application of the general theory of optimi-
zation by random search gives us good results in the multi-cloud 
environment. The mathematical treatment of this technique is 
given in [38]. We have adapted this model to multimodal cases 
in the presence of constraints [37]. The random search algorithm 
pursued in this work belongs to the category of Global Optimi-
zation. This category of algorithms is useful and efficient for 
large-scale ill-structured global optimization problems. In con-
trast with the deterministic methods like branch and bound 
which guarantee asymptotic convergence to the optimum at the 
high computational effort, random search algorithms find a rela-
tively good solution quickly and easily. It has been shown that a 
global optimum can be found with random optimization even if 
the objective function is multi-modal [39]. Deterministic meth-
ods for global optimization are NP-hard, a random search meth-
od may be executed in polynomial time [40]. Many of the global 
random search (GRS) algorithms have the following desirable 
features because of which they are popular (i) the algorithms are 
usually easy to construct with guarantee of convergence, even if 
the objective function is multi-modal [40]; ii) they are insensi-
tive to noise in the objective function; iii) they are insensitive to 
the shape of the feasible reason; (iv) they are insensitive to the 
growth in the dimensionality of the feature set (c). In these cases, 
it is relatively easier to construct GRS algorithms guaranteeing 
theoretical convergence. The theoretical basis of general random 
search is given below. The implementation is shown in Algo-
rithm 3, and the convergence is proven empirically in Section 
6.8. 



  

 

According to [41], the general problem of minimization can 
be stated in terms of minimization of the objective function f(x) 
in the feasible region x∈X, if x* is the global minimizer of f(x) 
or f(x*) =  minx∈X f(x). A global minimization algorithm con-
structs a set of points xi i=1…n, in X. A global minimization 
algorithm is a rule for constructing a sequence of points x1, x2, . . 
. from the region X, such that the sequence of labels yi=1…n = 
mini=1...n f(xi) approaches the minimum f(x*) as n increases.  

To establish the convergence of a global random search, we 
assume that if x is randomly chosen from within the region X, 
then f(x*) is a result of some stochastic process. We are presum-
ing a generalized construction of the algorithm where the next 
point can be chosen from the entire space. Thus, if X⊆ Rd  and 
0<X<∞, ∑j=1…∞ inf Pj(B(x, ε )) = ∞ for all all x ∈ X and ε > 0, 
where B(x, ε) = {y∈X : ||y−x||2 ≤ ε} and the infimum is over all 
possible previous points x1…(j-1) and the result of the evaluation 
of the objective function at these points. Pj are the probability 
distribution of xj. Then with probability one, the sequence of 
points x1, x2, ... falls infinitely often into any fixed neighborhood 
of any global minimizer. In other words, if the algorithm is al-
lowed to converge to a global optimum in a finite number of 
iterations within an acceptance probability, then it will converge 
with probability one [41] [42]. The authors in [38] prove that as 
long as random sampling does not ignore any region, then the 
algorithm converges with probability one. 

As even for large chains, the number of clouds from which 
resources are to be taken is not very large; we apply random 
selection to our problem by selecting at each step a unique set of 
the desired number of clouds randomly. Accordingly, we repeat-
edly choose, with replacement, a set M of m clouds from a space 
N of n clouds (such that m ≤ n) with replacement. If the total 
cost of the last set is less than the set examined in the last itera-
tion, and the latency is still less than the prescribed threshold, 
then the algorithm remembers this set. The cost includes that of 
cloud resources and inter-cloud links. The link costs are usually 
much larger and ensure locality of clouds while selecting clouds 
for placement. When the random selection no longer changes the 
achieved least cost, the process terminates, and the resulting 
least cost cloud-set is used for placement of the SFC in Algo-
rithm 1. Alternatively, to ensure graceful stop, if the difference 
between the last two costs falls below a given value, the process 
can be terminated. 

It is appropriate to mention that the total cost and latency of 
the selected cloud-set places an upper bound on the final figures 
as eventually more than one VNF may be placed on the same 
cloud, and all the clouds in the selected set may not be used. As 
the algorithm iterates over the available clouds, the set M clus-
ters around the minimum. The algorithm converges to the global 
minimum, with probability one, even in a multimodal case, as 
long as it does not consistently ignore any of the clouds in the 
space N. These conditions are met in our implementation. Algo-
rithm 3 gives the details of random selection. The procedure 
PREDICT_LATENCY has not been separately elaborated as it is 
based on the SVR model(s) refined for concept drift and short-
term changes in traffic as already discussed above. 

Algorithm 3: RANDOM_SELECTION (C, Lth, cv_model, r_clouds ) 
1: //C: a set of available clouds, cv_model: trained model 
2: init small //contains the sum of costs of the current smallest     cost 

clouds 
3: init lat  // lat: latency 
4: init iter  //set iterations large enough for convergence 
5: while (iter) 
6: init r_clouds // r-cloud array holds final min cost set of clouds 
7: //find a set of m unique clouds 
8: while (m_clouds not unique) 
9:  m_clouds a random set of m clouds from set C 
10: end while 
11: //test set r_clouds still has the lowest cost and lat ≤ threshold 
12: call PREDICT_LATENCY //uses trained and refined models 
13: for k = 1, m 
14:  lat = lat + latk  //initial assessment of total latency 
15:  cost = cost + costk 
16: end for 
17: if cost < small and lat ≤ Lth 
18:  small = cost 
19:  r_clouds  m_clouds 
20: end if 
21: end while 

Algorithm 3 expects CSP data like the available clouds C 
and a trained prediction model cv_model and produces a set of 
'm' minimum cost clouds to be used for placement by Algorithm 
1. The variable small represents the smallest total cost of the 
selected clouds. In line 8-10 a set of m unique clouds is selected. 
Line 12 calls the procedure that predicts latencies for the selected 
set of clouds. The total cost of the selected clouds is checked 
against the current minimum cost, and if found to be lower then 
the vector r_clouds is updated with the new set of clouds and 
small with the new lower cost.  

5.4 Increasing Speed and Acceptance Ratio of Placement 

These requirements arise from the dual necessity of real-time 
usage and agility of the service deployment. 

a) Speed for real-time usage 
In an operational virtual network service, the cloud service 

provider needs to monitor latency continuously for avoiding a 
breach of SLA requirements. Not only the latency and other QoS 
requirements should be met on initial placement, but also during 
operation of the service. If the end-to-end latency goes over the 
stipulated threshold, then the change of placement of VNFs and 
reconfiguration of the SFC is required. This necessitates the 
algorithm to be fast in giving optimum SFC placement, 
migration, and scaling (increasing or reducing the number of 
instances) decisions so that the network can be dynamically 
managed. As reported in the literature, ILP based solutions for 
the placement problem may take a long time (of the order of 
hours) to converge to the optimum solution [43] making them 
unsuitable in many situations of dynamic placement. 

b) Efficiency of placement 
The efficiency of placement refers to successful placement 

rate (also called the acceptance rate) and reconfiguration of 
chains consistent with SLA requirements. It is important for this 
rate to be high since frequent failure to place and reconfigure 
chains according to the requirement may lead to the carrier not 
being able to handle customer requests. 



  

 

5.5 Combining the Elements of the Framework 

The placement strategy described above has been implemented 
in a placement framework called the P-ART framework. The main 
modules of P-ART are as shown in Figure 7 along with the 

relationship with the algorithms discussed. 

 
 
 

 

 
Fig. 7. The P-ART placement framework 

 
The framework allows CSP and carrier policies to be stored as 

well as the means for them to communicate with the framework. 
The instant state of a cloud consists of the used capacities of virtual 
compute, storage and networking resources. For each placement 
request, the management and monitoring module produces a 
success or a failure report. A brief description of the modules is as 
follows: 

SVR Training and Windowing: This part takes the integrated dataset 
and breaks it into a separate dataset for the specified number of 
windows. It then trains one model for each window applying the 
FTVP methodology discussed above. Short-term changes are 
incorporated through incremental training. These predictions are 
used by the prediction module to give an assessment of latencies at 
the time of placement. 
CSP Policies: Through this module, the cloud service provider (or a 
multi-cloud broker) enters the cloud configuration data, installed 
and used cloud capacities, installed and used link capacities as well 
as tariffs for resources. 
Carrier Policies: This module accepts client’s requests for changes 
in service chain placements, types of virtual functions and inter-
function traffic rates. Operative parts of the tenants’ SLAs, including 
latency, threshold, and cost budgets are also stored. Carrier 
privileges are also recorded in the database. 
Prediction module: The prediction module uses the correct model 
for prediction of latencies at the time of activation of the chain. It 
predicts the latencies among clouds at the time an SFC would be 
actually placed and activated. 

Placement and Reconfiguration Module: This module carries out 
placement, scaling, and adaptation to the changed State of the 
environment. Heuristics for placement has been devised to work fast 
and converge to a set of clouds close to the minimum cost and 

latency below the threshold. If a placement is successful, it gives the 
end-to-end latency and cost. 
Monitoring and Management Module: This module keeps an 
inventory of the resources used, the status of performance 
parameters and the state of the cloud environment. If placement is 
successful, it gives the end-to-end latency and the cost. Online 
monitoring reports are part of the future extension. 

6. EVALUATION OF THE FRAMEWORK 
We evaluated the P-ART framework to confirm the validity of 

all the sub-systems incorporated, viz., model training and 
generalization, prediction and its refinement, cloud selection for 
placement, speed and acceptance ratio of placement. To keep 
evaluation close to reality and to cross-verify results, datasets 
used for training and testing were generated in two ways: 
simulation using a queuing-theoretic model and an actual 
implementation on CloudLab [9]. 

6.1 The Experimental Set-up for Evaluation 

In our experiments, we use multiple instances of the VNS 
using one SFC with 5 VNFs introduced in Section 5 (Figure 3). 
As we shall see in Section 6.8, the method scales well for bigger 
chains with thousands of virtual functions. The traffic entering 
the aggregation switch (VNF1) is divided into two streams, one 
going to one of the Provider Edge (PE)-routers (VNF2 or VNF3) 
depending on the carrier’s traffic routing policies. For instance, 
the policy may route traffic from different geographical areas 
through different paths. All the traffic passes through one of the 
instances of BNG (VNF4) where in practice, the flow 
accounting will take place for billing purposes. The traffic is 
then routed to P-Router on route to the destination. The end-to-
end latency of the chain would be the greater of the latencies of 
the two paths VNF1-VNF2-VNF4-VNF5 and VNF1-VNF3-



  

 

VNF4-VNF5. 

In the experiments reported here, the CSP domain consists of 
10 clouds. However, we also tested the random selection algo-
rithm for a larger number of clouds, and the results have been 
discussed in Section 6.6. Without the loss of generality, we gen-
erate the link capacities randomly from the chosen set of realistic 
capacities. In our experiments, we choose from the set L= 
[0.016, 0.064, 0.100, 0.155, 0.622, 2.5] (in Gbps). All links are 
presumed to be bi-directional. The compute capacities of the 
VMs hosting VNFs have been taken as a single consolidated 
figure for processor, memory, and storage. An example of such a 
usage is Amazon EC2 where, for instance, t2, the medium virtual 
machine provides two virtual CPUs, 4 GB storage and elastic 
storage. In our experiments, the categories defined are as shown 
in Table 2. 

TABLE 2 
CATEGORIZATION OF SERVER RESOURCES 

 
Integrated 
capacity 

vCPUs Memory Storage 

1 1 1GB Flexible 
2 2 2GB Flexible 
4 4 4GB Flexible 
6 4 8GB Flexible 
8 8 8GB Flexible 
10 8 16GB Flexible 

 

6.2 Selection of Features for Training the Prediction Models 
Considering the importance of the selection of predictor 

variables, due attention was given to this aspect. Too many 
features can make prediction models complex, increase the 
training time and make test errors worse. Further, selecting a 
good set of features, out of all the features generated, improves 
the accuracy of prediction and speed of processing. Cross-
validation error has been used to guide feature selection for our 
prediction models in SVR. Features that do not give an 
improvement in terms of lower overall errors (indicating better 
prediction) were removed from the initial feature set. We settled on 
the set of features given in Table 3. Further analysis, to include other 
variables that are not highly correlated with the existing ones, but 
may reduce the cross-validation error, is left as future work.  

As seen in Table 3, the feature space is represented by X = [x1, 
x2, x3, x4, x6, x7, x8]T and corresponding labels y. The equipped 
physical compute, and storage capacities of a server govern the 
number of VMs that can be created on it and correspondingly the 
number VNFs that can be hosted. VMs on the same PM may cause 
interference in each other’s operation because of shared 
resources which may lead to delays. As far as the links are 
concerned, each additional Gbps of equipped capacity does not 
give the same increase in traffic carrying capacity. The amount 
of traffic that can actually be carried depends on the grade of 
service required. Total ingress traffic depends on the number of 
served subscriber clusters. The end-to-end latency depends on 
the traffic, requiring this feature to be included. We have seen in 
Section 5 that traffic is dependent on the time of the day. We 
discussed the number of windows and its relationship with the 
complexity of the model. The increasing window number is 
indicative of the increasing time of the day. While the number of 

windows is a parameter in the evaluation, we obtained good 
compensation of concept drift with four windows as indicated by 
the results. 

6.3 Obtaining Training Datasets 

We were cognizant of the fact that if a model has been trained 
with the adequate, realistic dataset, it will generalize well in the 
production environment. For a more thorough evaluation of the 
model, we use two methods for generating datasets. One dataset 
was obtained through simulation of inter-VNF traffic flows and 
the other through actual implementation of the service chain on 
CloudLab. The details are as follows. 

6.3.1 Inter-VNF Traffic Flow Simulation 
Carrier networks carry all kinds of traffic: voice, data, and 

video. Some of these applications are real-time, and their packets 
have higher priorities. When queues build up at link or router 
buffers, the higher priority traffic may pre-empt lower priority 
traffic. It follows that different types of traffic will experience 
different delays. The delay model shown in Figure 8 takes care 
of all the important delays. Queuing delay in the links is the 
variable part of the end-to-end delay and depends on the network 
load. Propagation delay is the time required by the signal to 
travel on the link from one VNF to another. This delay depends 
on the media and is proportional to the length of the link, 
approximated by the distance between clouds. The other 
prominent delays are processing delay in the clouds, queueing 
delay in the virtual machines, and transmission queueing delays 
on the link. Intercloud simulation was carried out covering all 
significant delays. 

The total time spent by voice and data packets in the 
network can follow any distribution. Following the conclusion in 
[44] [45], we have assumed an M/G/1 queueing system of 
infinite capacity with non-preemptive priority. The traffic load is 
varied to imitate the pattern of the actual traffic. A C++ routine 
generates the dataset that incorporates all the parameters 
described above. The dataset was normalized to keep the 
numbers comparable. This will prevent any feature from 
overpowering others in the model and avoid biases. 

TABLE 3 
PREDICTOR VARIABLES AND OUTPUT LABEL 

Predictor variables Label 
(output) 

x
1
 Origin cloud compute installed 

capacity 
y: Latency 
(ms) 

x
2
 Destination cloud compute installed 

capacity 
  

x
3
 Link installed capacity (Gbps)  

x
4
 Link used capacity (Gbps)  

x
5
 Origin cloud compute capacity used  

x
6
 Destination cloud compute used 

capacity 
 

x
7
 Window #  

x
8
 The distance between the origin and 

destination clouds 
 



  

 

6.3.2 CloudLab Implementation 
CloudLab is a “meta-cloud” that has been implemented by the 

University of Utah, Clemson University, the University of Wiscon-
sin, Madison, the University of Massachusetts Amherst, Raytheon 
BBN Technologies, and the US Ignite for researchers to build their 
own clouds for experimentation [45]. The software stack that man-
ages CloudLab is based on Emulab. The infrastructure at Utah, Wis-
consin and South Carolina is interconnected with nationwide and 
international infrastructure from Internet2, so it has been possible to 
extend, software-defined networks right to every host. The Cloud-
Lab set up created for this study is shown in Figure 9. 

 
Fig. 9. The CloudLab Implementation 

 
The data collection process involves traffic being routed from 

a host on the WUSTL (Washington University in St. Louis) LAN 
through the Internet to the CloudLab nodes. Thus the test traffic 
goes with the live traffic on the Internet and provides real-life 
traffic conditions. Nodes 0, 7 and 10 are the transit points for 
traffic at APT Utah, Clemson University and IG Utah DDC (In-
staGENI Rack in Downtown Data Center) clouds, respectively. 
The distance from the host at Washington University in St Louis 
to each of these were IG Utah DDC (800 miles), Clemson Uni-
versity (1950 miles) and APT Utah (800 miles). The VNFs are 
presumed to be hosted as follows: VNF1 on node11, VNF2, and 
VNF3 on Node 10, VNF4 on Node 7 and VNF5 on Node 9. De-
lays on the link from WUSTL to the CloudLab depended on the 
traffic on the Internet. Within CloudLab the delays were varied 
by loading the links with different amounts of traffic. Various 
delays were recorded as part of the training data. A snapshot of 
part of one of the training sets is shown in Table 4. 

 

6.4 Selection of the Machine Learning Model 

There are quite a few AI techniques, involving machine learn-
ing, that are potentially applicable to the problem of detection 
and localization of fault and performance anomalies. Models 
with a single layer of non-linearity, e.g., a neural network with 
one hidden layer, are referred to as shallow structures or shallow 
machine learning architectures and those with more than one 
layer of non-linearity as deep structures or deep learning archi-
tectures. Shallow models with linear hypothesis may have O(n) 
prediction time complexity and training time of O(l2+n3) where l 
denotes the size and n the degree of the dataset, but approxima-
tion errors are large for the high dimensional and large volume of 
data that are usually associated with FP problem. With non-linear 
hypothesis space and kernel trick, the approximation errors may 
be smaller at the cost of higher complexity of the training time 
which is O(l3 + l2n) and prediction speed of O(ln). Of the preva-
lent shallow machine learning architectures, Support Vector Ma-
chines (SVM) and Random Forest (RF) are considered useful for 
diagnostic applications [46]. Another supervisory technique, 
Bayesian Network (BN), has been applied to fault management 
in the industrial settings. We will discuss below the analysis that 
was carried out to finalize the model [47]. 

Size of Training Dataset: The size of the available training 
dataset governs the choice of the machine-learning algorithm. 
How much data is enough depends on the number of features and 
the non-linearity in the relationship of features and labels among 
others. If the dataset is small, one may choose high bias and low 
variance classifiers like Naïve Bayes as compared to the low bias 
and high variance classifies like kNN to avoid overfitting. When 
the training dataset size is large, low bias and high variance clas-
sifiers give a lower asymptotic error. 

Number of Parameters: Most machine learning algorithms 
are associated with some parameters and hyperparameters. Pa-
rameters of an algorithm are internal to it and their values affect 
how the algorithm behaves. They are usually learned at the time 
of training of the model. The value chosen for these parameters 
may affect the accuracy with which the model predicts. Support 
vectors of the SVM algorithm are an example of a model pa-
rameter. Hyperparameters are normally external to the algorithm. 
They need careful tuning to get good accuracy from the model. 
An example is the C hyperparameter in SVM. Even though hav-
ing many parameters or hyperparameters typically provides 
greater flexibility, training time and accuracy of the algorithm 

 

Fig. 8. Traffic Delay Model for Data Generation 

TABLE 4 
AN EXTRACT OF THE INTEGRATED TRAINING DATASET 

 



  

 

can sometimes be quite sensitive to getting just the right settings. 

Number of Features: If the number of features is large then 
the dataset is said to be high dimensional. With high dimensional 
dataset, we need more data to train the model. Increase in size of 
the dataset affects different algorithms differently. The complexi-
ty of some machine learning algorithms may rise exponentially in 
such cases. The training time may become too long for the model 
to be used in real-time applications. 

Learning Process: The learning process of a model may be 
supervised or unsupervised based on whether labels are available 
or not. Since the labels indicate the ground truth, we know how 
our trained model should behave. In unsupervised learning, the 
data is unlabeled, so the model learns the inherent structure in the 
data. If there is some labeled data and a lot of unlabeled data, 
then we may use semi-supervised learning in which the labeled 
data can be used to improve the accuracy of the model built using 
unlabeled data . Another thing to note is that we are predicting 
latency values which vary in a continuous range. This would, 
therefore, call for a regression model as against a classification 
model.  

We need to understand the requirements of the problem to 
pick the right algorithm for the application. In our case, it is im-
portant that the model works in real-time or near real-time. This 
is possible if the placements and reconfigurations are fast. The 
model should be fast to train and update with real-time infor-
mation. This requires models to be generally simple, with con-
trolled dimensionality and a manageable number of hyperparam-
eters to tune. Additionally, some models may not be suitable for 
online training. 

Keeping the above in view, we compared a few suitable 
stock methods to decide on the one that we would include in our 
model. The models were created and tested on Weka [49]. In each 
case, the models were tuned for good parameter values, and a 13-
fold cross validation was used. We discuss the methods briefly 
followed by a comparison of their performance in Table 5. 

Random Forest is a supervised method which is robust yet 
simple to use. It provides good results in many situations. It does 
not have many hyperparameters to tune, the useful ones being the 
number of trees and the maximum number of features to be tried 
in each tree. Despite their flexibility, random forest does not 
support online learning. Retraining by rebuilding the trees when 
new examples are introduced takes time. The maximum depth of 
each tree has been set at unlimited. The number of iterations or 
number of trees is set as 100. 

Support Vector Machine (SVM) is a supervised learning al-
gorithm. The regression version of SVM, which is designated 
SVR or Support Vector Machine for Regression (SMOReg), 
gives good accuracy and can work with high dimensional data, 
which is not linearly separable. Parameter values that obtained 
for good results are C=200, γ=0.01, ∈= 10E-8, RBF Kernel. 

K-Means is an unsupervised model and has been included 
for comparison here. In this, k data points are chosen, and data is 
divided into clusters with each example going with the nearest 
data-point. Then, centers of the clusters are converted, and the 
process repeats until convergence. The result depends on the 
initial choice of the points, and the global minimum is not guar-
anteed.  

Multi-layer Perceptron (MLP) are neural networks with at 
least three layers of neurons – an input, a hidden and an output 
layer. These layers are connected in the form of a directed graph 
between the input and the output layers. It is also called a feed 
forward network. An MLP uses backpropagation as a supervised 
learning technique. Some of the parameters include N (the num-
ber of epochs for training) taken as 500, E (the number of con-
secutive increases of errors allowed for validation before termi-
nating the training) fixed at the default of 20 and L(the learning 
rate)  taken as 0.3. 

Gaussian processes are a supervised learning technique and 
generalization of Gaussian probability distribution. Gaussian 
distributions are governed by stochastic processes and describe 
random variables. 
A Gaussian distribution is fully specified by its mean and covar-
iance matrix. In a similar manner, a Gaussian process 
is specified by a mean and a covariance function. Some of the 
parameters are L (the level of Gaussian noise) taken at the de-
fault value of 1 and K (the Kernel to use) taken as PolyKernel. 

Using the root mean square error as a good indication of the 
appropriateness of the algorithm for the datasets used we see that 
Random Forest gives the lower error followed by SVR. Taking 
into account our requirement of online updates, we chose to im-
plement SVR.  

6.5 Prediction Model Tuning and Testing 

In the SVR models, three hyper-parameters, viz., ∈, C, ϒ 
need attention. Tuning these hyper-parameters is one of the main 
challenges in improving the predictive accuracy of an SVR 
model. The ϒ parameter can be seen as the inverse of the radius 
of influence of samples selected by the model as support vectors. 
With a small ϒ, the model cannot capture the complexity or 
“shape” of the data. If ϒ is too large, the radius of the area of 
influence of the support vectors only includes the support vector 
itself, and no amount of regularization with C will be able to 
prevent overfitting. The constant C determines the tradeoff 
between the flatness of f and the amount of error allowed above 
ϵ. A low C makes the decision surface smooth; a high C aims at 
classifying all training examples correctly by giving the model 
freedom to select more samples as support vectors. Most 
researchers have followed a standard procedure in using a grid 
search [9] to determine the appropriate values. Some of the re-
sults are given in Table 5. A number of runs narrowed down the 
parameters to C = 1×10-2 and ϒ = 1. The cross-validation error 

TABLE 5 
COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS 

 Corr. 
Coeff. 

Mean 
Absolute 
Error 

RMS 
Error 

Relative 
absolute 
error  (%) 

Root rela-
tive 
squared 
error (%) 

Random 
Forest 

0.8639 1.1881 2.4219 33.6077 50.3668 

SVR 0.8610 1.2426 2.5048 35.4465 52.8385 
KNN 0.8007 1.469 2.9681 41.9043 61.7248 
MLP 0.8015 1.9317 2.9405 55.103 61.1514 
Gaussian 0.5714 2.7523 3.9340 78.5130 81.8128 



  

 

for this combination was the lowest at 7.84295×103. It is worth 
mentioning that with system decided settings when the built-in 
tuning feature is allowed to choose the parameters; the loss is 
higher at 2.21345×104. The grid search has, in this case, resulted 
in better hyper-parameter values. 

The basic idea of using latency prediction is to improve the 
placement of virtual functions at a future time. This will only work 
if the predictive model produces good predictions of latency. With 
the Weka tool, SVR with RBF Kernel with the hyper-parameters set 
at C=10, ∈=0.4 and 20% hold-out for cross-validation, we get the 
errors shown in Tables 6 and 7. It can be seen that both the training 
and test RMSEs are low indicating good performance. In the classi-
cal case, test errors would be slightly higher than the training errors. 
A lower test error may indicate overfitting or biases in the dataset. 
These can be overcome by curating the training dataset. 
 

TABLE 6 
TRAINING ERROR 

=== Evaluation on training set ===  
=== Summary ===  
  
Correlation coefficient 0.861 
Mean absolute error 1.2426 
Root mean square error 2.5408 
Relative absolute error 35.4465% 
Root relative squared error 52.8385% 

 
TABLE 7 

TEST ERROR 
=== Evaluation on training set ===  
=== Summary ===  
  
Correlation coefficient 0.7304 
Mean absolute error 1.8895 
Root mean squared error 2.5469 
Relative absolute error 63.5334 % 
Root relative squared error 71.5849 % 
Total Number of Instances 56 

 
A comparative plot of training and test error ratios (defined 

as prediction_error/acutal_latency) is given in Figure 10. It can 
be seen that the model training errors are low and generalize 
well with the test data.  

 
Fig. 10 Training and test error ratios (with standard error bars) 

 
 

6.6 Refinement of Latency Prediction by Compensating 
Concept Drift 

The FTVP method for handling the concept drift in telecommunica-
tion traffic was presented in Section 5.2. This method brings in the 
sense of time in the datasets. Most researchers working with predictive 
model do not include time as a feature. In our experience, including 
time as a feature affects the predictions positively. We divided the data 
into windows of equal time blocks, which give variable data ranges. 
The window# is the feature (x7) in the training dataset and has a direct 
relation with the time as increasing number relates to increasing time. 
All the time-related observations were divided into four windows. A 
sample from each of these is given in Figure 11. 

 

 
The data in different windows have different characteristics as 

shown by the mean and standard deviation in Table 8: 
TABLE 8 

PROBABILITY DISTRIBUTION PARAMETERS IN DIFFERENT WINDOWS 
Window 1 2 3 4 

Latency range (1.824-0.422) (27.683-7.452) (7.317-4.131) (4.216-1.869) 

Mean 1.083 11.834 5.366 2.773 
Standard devia-
tion 

0.425 4.848 0.797 0.588 

 
SVR with separate window models gives much better predic-

tions on new data-points falling in those windows. Comparison of 
latency prediction and error ratios for each window and full dataset 
is given in Figure 12 (a) through (h). 
 

TABLE 9 
ERRORS WITH INTEGRATED AND MULTIPLE MODELS 

 Full 
dataset 

Window 
1 

Window 
2 

Window 
3 

Window 
4 

Mean abso-
lute error 3.2279 0.3698 0.4613 0.7342 2.5248 

Root mean 
squared error 4.5869 0.4283 0.5515 0.9102 2.9353 

Table 9 summarizes the mean absolute errors and RMSE for 
the full (integrated) dataset and the window-based model. In the 
integrated model validation was done with 20% of the data 
points separated as a test set. For each window model also cross-

 

   

Fig. 11 Extract of FTVP windows 



  

 

validation was done with separate test sets. It can be seen that 
errors are less in a separate model for each widow compared to 
predictions made using integrated dataset. 

  

(a) Comparative Window 1 and full 
dataset performance 

(b) Error ratios for Window 1 and 
the full dataset  

Window 1 RMSE =0.06, full model RMSE =0.47 

  

(c) Comparative Window 2 and full 
dataset performance 

(d) Error ratios for Window 2 and the 
full dataset 

Window 2 prediction RMSE=1.27, full model prediction RMSE = 1.62 

  

(e) Comparative Window 3 and full 
dataset performance 

(f) Error ratios for Window 3 and the 
full dataset 

Window 3 prediction RMSE=0.36 full model prediction RMSE = 0.74 

  

(g) Latency prediction by a model 
trained for Window 4 and that by full 
dataset 

(h) Error ratios for prediction by the 
model trained for Window 4 and with 
the full dataset 

Window 4 model prediction RMSE = 0.042 Full model RMSE =1.01 

Fig. 12. Comparison of performance window-based integrated models 

6.7 Incremental Update of Models to Compensate for Short-
Term Variations in Traffic 

We tested an incremental update of the trained models, with 
support vectors generated during VNS operation, while the 
trained model was in use. The result of initial training is given in 
Table 10, and after the introduction of separately generated sup-
port vectors, the results improved as shown in Table 11. We can 
see that both the mean absolute error and the RMSE decrease 

when new support vector points are learned online. Before the 
addition of new support vectors, the RMSE was 1.74; while after 
addition, it reduced to 1.68, which along with other measures of 
errors show an improved model. 

TABLE 10 PERFORMANCE OF SVR BEFORE ADDING NEW SUPPORT 

VECTORS 

SUPPORT VECTORS BEFORE 

ONLINE UPDATE 

 PERFORMANCE BEFORE ONLINE 

UPDATE 

SV# Actual 
Latency 

Predicted 
Latency 

Error === Evaluation on test set === 

50 5.713 5.379 -0.334 Correlation coefficient 0.8742 

51 7.452 5.233 -2.219 Mean absolute error 1.2677 

52 3.111 3.152 0.041 Root mean squared error 1.7366 

53 1.531 2.785 1.254 Relative absolute error 47.3488 

54 5.572 4.625 -0.947 Root relative squared error 49.2994 

55 5.771 5.298 -0.473 Total Number of Instances 55 

 

TABLE 11 PERFORMANCE OF SVR AFTER ADDING NEW SUPPORT 

VECTORS 

SUPPORT VECTORS AFTER 

ONLINE UPDATION 

 PERFORMANCE AFTER ONLINE 

UPDATION 
SV# Actual 

Latency 
Predicted 
Latency 

Error === Evaluation on test set === 

50 5.713 5.379 -0.334 Correlation coefficient 0.8816 

51 7.452 5.233 -2.219 Mean absolute error 1.2014 

52 3.111 3.152 0.041 Root mean squared error 1.6797 

53 1.531 2.785 1.254 Relative absolute error 44.5651 

54 5.572 4.625 -0.947 Root relative squared error 47.9109 

55 5.771 5.298 -0.473 Total Number of Instances 60 

56 3.111 3.374 0.264   

57 0.605 2.424 1.820   

58 3.345 3.190 -0.155   

59 3.315 3.579 0.064   

60 10.259 10.199 -0.060   

 

6.8 Cloud Optimization with Iterative Random Selection 
The principle and methodology of random selection of clouds 

for placement of VNFs have been discussed in Section 5.3 In 
one trial, a total of 50 experiments were conducted with 1500 
and 1700 iterations each. The minimum possible cost was 
51 units, and latency threshold was set at 150 ms. In the former 
case, 98% of times the minimum cost of 51 units was reached 
(Figure 13 (a)) with a latency of 137 ms. In the 1700 iteration 
case, the minimum cost clouds were selected with the latency 
below the threshold in all cases (Figure 13 (b)). 

 
 



  

 

 Fig. 13. (a) 50 experiments with1500 iterations each 
 

 
Fig. 13. (b) 50 experiments with1700 iterations each 

 
In another trial of 5000 experiments, 50 each with the number 

of clouds increasing from 10 to 100 in steps of 10 and iterations 
from 500 to 2000, the convergence rate is as shown in Figure 14. 
Somewhere between 1500 and 2000 iterations, the algorithm 
converges to the minimum cost in 100% cases. This is an order 
of magnitude improvement over the exhaustive search described 
above. 
 

 

Fig. 14. Number of convergences in 50 experiments 
 
We implemented as the baseline a variation of the sequential 

method, which we call modified-sequential (M-sequential). In 
this method, the first set of lowest cost clouds were sequentially 
selected from a set of 100 clouds without replacement. This en-
sures the lowest cost. However, if the total latency of the select-
ed cloud was more than the given latency threshold, then the 
highest latency cloud was removed from the selected set, and a 

search was made for the next lowest cost cloud. The search 
stopped when a set of lowest cost with latency below the given 
threshold was found.  

Fig. 15 shows the number of iterations required to achieve the 
target latencies (from 100 to 160ms) for both the randomized and 
M-sequential algorithms. We see that the M-Sequential takes from 
34% to about 67% more iterations than randomized. Fig. 16 gives 
the final latencies achieved in the number of iterations for which the 
algorithm was run (as shown in Fig. 15). From these, we can con-
clude that the randomized algorithm performs better than the base-
line both in terms of the number of iterations and latencies achieved 
in selecting the required set of clouds for placement. 

 

 
Fig 15. Number of iterations required by randomized and M-

Sequential to achieve latency below the threshold 
 

 
Fig. 16. Latencies achieved by randomized and M-Sequential in the 

number of iterations shown in Fig. 15 
 

6.9 Speed and Efficiency 

It is important for dynamic rescaling that the designed place-
ment strategy is able to carry out a large number of placements 
within an acceptable time period. A slow placement algorithm 
would not be able to respond fast to the changing network situa-
tion or a tenant’s new request. Changes made too late may not be 
suitable, and may actually be detrimental to the health of the 
network, as by that time the situation would have changed. On 
the other hand, if at a future time, maintaining the required per-
formance does not need all the resources that have been 
deployed, then not descaling would use up a higher amount of 
resources leading to higher expenses. For the training time of 
SVR, various assessments of complexity in the range O(n2) to 



  

 

O(n3) are available in the literature. According to [29] the com-
plexity is O(max(n, d) min(n, d)2) where d is the size of the fea-
ture set. If n is much larger than d, then it can be approximated 
to O(nd2). However, the time complexity of the search is linear. 
It took about 1.19 s to train with 2720 examples in Weka and 
0.76 s in MATLAB. For speed of placement, we tested with 10 
clusters, each requesting 10 to 100 SFCs of 5 VNFs each. Thus, 
the number of VNFs was varied from 500 to 5,000. We observe 
that the algorithm is able to place up to 3,000 VNFs in about 1 
minute (Figure 17). 

 

 

Fig. 17. Placement time Vs. No of SFCs 
To see how the speed of the proposed method compares with 

the placement speeds obtained in other works we see the work 
done in [50]. The two methods have been performed under dif-
ferent conditions and are thus not strictly comparable. However, 
we do get the general idea of the behavior of the methods. From 
Fig. 18, we see that in case of up to 20 SFCs the ILP solution is 
able to find a solution but the author reported average time is 8 
minutes and 41 seconds and that of heuristic 1 minute and 21 
seconds. For the case of 60 SFCs, the ILP model takes unduly 
longer times (>48 hours for ≥18 SFCs).  The heuristic was able 
to give a solution in less than 30 minutes. For small instances, 40 
SFC requests (with 75 network functions per request or a total of 
3000 functions) take about 1000 seconds. 

 

 

Fig. 18. Placement time reported in [50] 
 

A comparison has also been made with results obtained by a 

completely different technique presented in [51]. The authors 
have carried out joint optimization of resource allocation in NFV 
(JoraNFV). The authors assume that the number of VNFs can be 
3, 4 or 5. Taking the example of a 5 VNF SFC and medium 
traffic, the authors conclude that their method works faster than 
CoordVNF [52] and a simulated annealing approach [53]. 

The coordinated NFV-RA is formulated as mixed-integer 
linear programming (MILP). And we propose a heuristic based 
two-stage approach to get the near optimal solution. For ten units 
of traffic, the number of instances deployed are about 7 for 
JoraNFV, 10.5 for CoordVNF and 7 for the SA method. For a 90 
node network, the JoraNFV and CoorNFV take 10 seconds to 
place an SFC while SA takes about 2000 sec. Even if we assume 
a linear increase in time taken, for 3000 functions/instances 
JoraNFV will take 4285 seconds (Fig. 19). 

 

 Fig. 19. Average placement time reported in [51] 
 

ILP based solutions for a large number of VNFs are slow, 
even with efficient solvers. Researchers in [54] and [27] have 
carried out VNF placement of different configurations using ILP 
method. In [27], the authors have reported that ILP takes 2.3, 4.0 
and 7.2 hours for 10, 30 and 50 functions. In [54], the authors 
have tried to solve ILP for large networks (60 SFC with 4 VNFs 
and 30 instances, each, i.e., 7200 VNF instances) but for more 
than 18 SFCs the time taken is more than 48 hours. The authors 
have suggested heuristics to find an acceptable solution within 
reasonable time limits. Thus, [28] suggests using Genetic Algo-
rithm with which 200-700 functions are placed in 8-13 seconds. 
In [54], the heuristics involve guiding the ILP solution by reduc-
ing the solution search space using binary search. With this for 
7200 VNF instances, the time taken is 30 minutes. In [18], MILP 
based algorithm takes 500 s for 3,000 VNFs. We have shown 
above that with our framework we are able to place up to 3,000 
VNF instances in less than 60 s. It needs to be appreciated that 
the results are not exactly comparable because of different ex-
perimental environments, but do give a sense of improvement 
with predictive algorithms. 

The acceptance rate of the heuristic is an important parameter 
that often gets ignored. In the ongoing operations, whether we 
are looking at new placements or reconfiguration or migration of 
existing chains, it is important for the placement engine to be 
able to place SFCs every time a request is made subject to re-



  

 

sources being available. If a large number of requests cannot be 
placed despite adequate capacities being available, then the ac-
ceptance rate is low, and we do not have a good algorithm. Fail-
ure to place SFCs would mean the loss of business for cloud 
service providers and may affect the requesting carriers revenue. 
For a medium-sized placement request, viz. 100 SFCs or 500 
functions, the acceptance rate with our algorithm turns out to be 
100% (Fig. 20). 

 
 

Fig. 20. Acceptance rate Vs. Number of SFCs 

 

As the number of service chains increases, the acceptance 
rate may fall because of a lack of capacity to place the complete 
service chains. When corrected for capacity, the acceptance rate 
for our algorithm remains above 98% up to the tested configura-
tion of 500 SFCs or 2,500 VNFs. 

We compare this with the real-time placement presented in 
[55]. The authors propose an ILP model to provide an optimal 
solution for placement and chaining VNFs based on minimizing 
the resources allocation and the deployment (mapping) delay 
while meeting the real-time condition. They also propose a heu-
ristic solution named Degree Based Heuristic (DBH) to mini-
mize the end-to-end delay and resources allocation cost. A com-
parison of successful requests is given in Fig. 21. 

 
 

Fig. 21. Acceptance % reported in [55] 

The authors in [18] claim that with 500 VNFs, the acceptance 
rate is 85%. In comparison, for our solution, the acceptance rate 
is 100% for up to 100 SFCs or 500 VNFs. Above this, the ac-
ceptance rate drops to 98% for up to 2500 VNFs. 

7. SUMMARY AND FUTURE WORK 
Innovative strategies are required to extract carrier-grade per-

formance from SFCs that use resources from multiple clouds. 
Our strategy consists of techniques based on a predictive ap-

proach to performance optimization. Complex performance indi-
cators, like end-to-end latency of a service chain at activation 
time, depend on far too many deterministic and probabilistic 
factors, to be modeled accurately by deterministic techniques. 
We have shown that a carefully designed predictive approach 
combined with heuristics to select low-latency clouds can help 
us in keeping the performance consistent with the SLA and costs 
within the carrier’s budget. To make latency predictions more 
accurate, we have worked with time-based windows and an 
incremental update of the models used for prediction. Making 
use of the predicted latencies is an iteratively convergent ran-
domized search heuristic used to select low latency clouds for 
successive placement of VNFs. Not only the proposed strategy 
produces results with low error, but it also executes fast so that 
the results can be used to take corrective actions. A comprehen-
sive empirical evaluation has been carried out and reported in 
this paper. The proposed P-ART framework has been built from 
all the techniques that have been described in this paper. 

A number of research directions are foreseen in this project. 
When enough resources are not available, carriers may accept 
under-dimensioned service chains. The service has to be func-
tional, even though not meeting the performance criteria. Anoth-
er important issue to be worked upon is the security aspect of 
VNSs in the multi-cloud environment. 
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