
Probabilistic Blockchains: A Blockchain Paradigm 
for Collaborative Decision-Making 

Tara Salman 
Dept. Of Computer Science & Engineering 

 Washington University in St. Louis 
St. Louis, USA 

tara.salman@wustl.edu 

Raj Jain 
Dept. of Computer Science & Engineering 

Washington University in St. Louis 
St. Louis, USA 

jain@cse.wustl.edu 

Lav Gupta  
Dept. of Computer Science & Engineering 

Washington University in St. Louis 
St. Louis, USA 

lavgupta@wustl.edu 

Abstract— A blockchain provides a secured paradigm to 
achieve consensus using a distributed and peer-to-peer network 
in which no trusted central party is required. As a result, it has 
the potential to resolve many challenges that are faced with 
current centralized controllers in globally distributed 
applications. To date, the blockchain technology has been used 
for recording transactions and tracking objects in which multiple 
participants reach a consensus on whether a transaction is valid 
or not. This paper introduces the novel paradigm of probabilistic 
blockchains, an extension of the current blockchains that allows 
building efficient and distributed risk assessment and decision-
making applications in which multiple untrusting parties 
collaborate but may not completely agree on the outcome. The 
paradigm is particularly useful for risk assessment, where a 
group of decision-makers needs to decide or analyze an event 
based on imperfect information. The proposed approach can be 
used in applications like intrusion detections, stock market 
predictions, insurance, and recommendation systems. The paper 
presents and analyzes the application of probabilistic blockchains 
for intrusion detection systems for computer networks. The 
results show the feasibility and efficiency of the proposed 
paradigm in making such decisions. 

Keywords— blockchain technology; Probabilistic blockchains;, 
Risk assessment; Intrusion detection systems; IDS. 

I. INTRODUCTION 
There are several massively collaborative applications 

where the participating entities do not necessarily trust each 
other and may be competitive. These are called multi-trust 
domain applications. An example of a multi-trust domain is the 
current banking systems. The banks do not necessarily trust 
each other and, therefore, need the services of a centralized 
trustworthy organization, called SWIFT (Society for 
Worldwide Interbank Financial Telecommunication), to 
transact. This centralized solution introduces delays and 
additional costs. 

An alternative solution, in a multi-trust domain system, is 
to distribute the decision-making process. Blockchains meet 
this objective efficiently and securely. They allow the parties to 
collaborate and achieve consensus without mediation by a 
centralized trusted authority. The distributed architecture and 
the continuous updates make the blockchains solutions 
provably secure against attackers, who may otherwise succeed 
in taking control of decision making in centralized solutions. 
The technology started with Bitcoin, the first digital payment 
system used mainly for financial applications [1]. Now it is 

used in many other applications including logistics, assess 
tracking, management, and events recording [2]. 

Currently, the blockchain technology is not usable for 
decision making in multi-trust domains where each participant 
has a different view of the transaction or event. The extensions 
to the blockchains that we propose in this paper can be 
significantly useful in making consensus decisions in risk 
assessments for multi-trust domain applications. With our 
proposed approach, an individual decision made by an agent, 
or a participant can be deterministic, as for a yes or a no, or it 
can be probabilistic, i.e., assessing that an event would happen 
with a certain probability. Our proposal would allow 
blockchain to connect these participants and process their 
decisions to achieve a group decision, or a “consensus.” The 
consensus can also be deterministic or probabilistic where all 
members would agree to a decision or some would agree, and 
others would disagree. 

Note that we will be using the term “decision” to represent 
an agent's individual decision while the term “consensus” will 
be used to represent a group decision made by more than one 
party. 

As defined in Wikipedia, “consensus decision-making” is a 
group decision-making process in which group members 
develop, and agree to support a decision in the best interest of 
the whole. Consensus may be defined professionally as an 
acceptable resolution, one that can be supported, even if not 
the "favorite" of each individual [3]. To make blockchains 
suitable for such applications, the paradigm needs to be 
extended such that it can process differing decisions and 
achieve a probabilistic “consensus” about events. 

This extension to the blockchain paradigm leads to what we 
refer to as “probabilistic blockchains.” Probabilistic 
blockchains assess events, to which it is applied, and return a 
probabilistic consensus evaluation of their occurrence. The 
proposed paradigm would be suitable for many applications, 
including the ones that currently use traditional blockchains. 

An example application that could benefit from the 
probabilistic blockchains is Intrusion Detection Systems (IDS). 
Different algorithms or different IDS products or different 
agents will give a differing opinion (decision) about whether a 
particular packet or sequence of packets represents an attack. In 
this case, a group consensus is essential even when the agents 
have differing “decisions” for the particular packet inspected. 
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A. Paper’s Contributions and Organization 
Risk assessment and decision making in multi-trust domain 

applications pose considerable research challenges. Consensus 
decisions need to be made continuously about resource 
distribution, security, and several other application aspects. 
Decision makers need to have a global view of the system and 
sometimes require access to even private information. This is 
currently done by semi-distributed decision-making platforms 
such as Adaptive Decision Making Broker (ADMB) [4]. These 
platforms are geographically distributed and managed. 
However, critical decisions are made at a centralized global 
controller (also known as a broker) that is trusted by all system 
entities. The centralized controller, however, introduces a 
single point of failure, which is vulnerable to many security 
risks. 

The main contribution of this paper is to introduce the 
probabilistic blockchain paradigm to resolve problems with 
centralization in multi-trust domain systems. We begin with a 
brief background of the blockchain technology in Section II. 
The extension of current blockchains to probabilistic 
blockchains is introduced in Section III. In Section IV, the 
security and benefits of the proposed concept are analyzed. We 
discuss the results of the experimental evaluation of 
probabilistic blockchain-based IDS in Section V. Other 
decision-making applications that may benefit from 
blockchain-based solutions are discussed in Section VI. 
Finally, Section VII provides the conclusions of the paper. 

II. BLOCKCHAIN BACKGROUND AND RELATED WORKS 
This section presents a brief overview of blockchain 

technology. It also reviews some of the work related to 
blockchain-based decision making. 

A. Blockchain Technology Overview 
A blockchain consists of two main components: a database 

and a network of nodes, as illustrated in Fig. 1. A blockchain’s 
database is a distributed, shared, tamper-aware and fault-
tolerant store that keeps track of records in the form of 
transactions. Blocks are formed by bundling together a number 
of transactions and each block is linked to its predecessor by a 
hash. A hash is a fixed-length numeric value that relates to the 
previous block data. In addition, each block has a timestamp 
indicating when it was created, a signature proving its 
correctness and integrity, and a random number (nonce) for 
cryptographic operations. The signature and nonce allow 
blocks to be immutable even if they are publicly accessible. 
The blockchain’s network consists of many distributed nodes 
that maintain the database in a peer-to-peer network. Nodes 
have access to the blocks; however, they cannot change them 
[2]. 

The blockchain technology allows nodes to communicate 
without a trusted broker or a trusted third party. When a node 
wants to interact with another, it sends its interaction in the 
form of a transaction. Many such transactions are collected to 
form a block. A block is verified by everyone and is added to 
the chain if it is valid. Otherwise, it is dropped, and the 
transactions will be recorded in another block. Both 
transactions and blocks are signed; hence, they cannot be 
changed or denied in the future. 

 

 
Fig. 1. Blockchain architecture 

 

This novel architecture of the blockchain technology yields 
many appealing characteristics, including distributed 
management, decentralized consensus, trustless partners, 
provable security, immutability, and non-repudiation 
guarantees. Each term is briefly described here. The 
management is distributed as the blockchain database is 
maintained by many “blockchain nodes” and no party has full 
control over the system. The consensus is decentralized as 
there is no centralized authority and decisions can only be 
made by majority agreement. The trustless partners feature is 
added as the trust is imposed by a majority rather than by a 
single controller. Blockchains use sophisticated cryptographic 
techniques, resulting in guaranteed security by signature 
schemes and possible encryption schemes. They are immutable 
as no one can change, delete, or tamper transactions. Finally, 
they provide non-repudiation guarantees due to transactions 
and blocks being signed using elegant signature schemes. 

B. Related Work 
The use of the blockchains in multi-trust domain systems, 

or the distributed architectures in risk assessment applications, 
have been investigated by several researchers. The most 
remarkable research related to this paper is blockchain-based 
IDS presented in [5] and [6]. In [5], Meng et al. discuss the 
applicability of, and challenges in, using the blockchains for 
intrusion detection. In [6], Golomb et al. explore an intrusion 
detection framework that utilizes blockchain to gather 
information from Internet of Things (IoT) devices and update 
local intrusion detection models. The work proposed in this 
paper provides an improvement over other works by achieving 
the consensus within the blockchain architecture. Furthermore, 
the proposed paradigm suits many other decision-making 
applications. 

Blockchain-based voting systems constitute another 
research area that relates to this work. Such systems are 
typically multi-trust domains, as voters, candidates, and vote 
casters do not necessarily trust each other. Blockchain 



technology can help to track the votes and possibly to cast 
them at the end of the process. McCorry et al., [7], discuss the 
implementation of their proposed approach in the Ethereum 
blockchain platform and evaluate the system by the time and 
cost analysis. The work proposed in this paper is similar to the 
voting systems, as in a way the agents “vote” on the decisions 
made. However, it differs from the current blockchain-based 
voting systems in proposing a prompt and probabilistic 
consensus within the blockchain, making it possible to extend 
the concept to other decision-making applications. 

Other researchers have proposed distributed architectures 
for management and decision making in distributed 
environments. For example, Han et al., [8], introduce a peer-to-
peer recommendation system where decisions are made 
without any centralized controller. While their method does not 
require a centralized controller in the absence of any protection 
against it, false information could propagate in the hierarchy. 
The blockchain-based approach advances these works in 
providing resilient security features and inheriting blockchain 
characteristics discussed in the previous subsection. 

The decision-making problem is an active research area in 
multi-agent systems. Several approaches have been proposed 
to achieve a consensus in such systems. For example, Li et al. 
[9], propose a group decision-making algorithm for 
heterogeneous agents, i.e., agents with different decisions. 
Similar to our approach, their approach achieves a consensus 
decision even if individual decisions are different. However, 
such approaches assume that agents are trustworthy and update 
their decisions to achieve consensus. Thus, many iterations 
may be involved to achieve consensus. In our approach, using 
a blockchain, agents can have an easy global view of the 
system, making it possible to achieve a consensus decision in 
one iteration. In addition, trust among agents is not mandatory, 
as the blockchains are trustless partner systems. 

III. THE PROPOSED PROBABILISTIC BLOCKCHAIN 
This section describes the proposed probabilistic approach 

for blockchain-based decision making in multi-trust domain 
applications. We first explain the need to extend blockchain 
concepts to probabilistic blockchains. Then, we discuss the 
proposed metrics and the design to meet the requirements of 
our targeted applications. Finally, we discuss the mining 
technique used and present a workflow to illustrating how the 
proposed blockchain will work. 

Saito and Yamada [10] describe how blockchain can be 
considered a probabilistic state machine. However, their 
discussion is about modeling current blockchains. It is not 
related to our work here on the utilization of blockchain 
technology to achieve a consensus decision even if different 
participants have differing decisions. 

During our discussion, we assume three types of nodes: 
miners, blockchain nodes, and blockchain users. Miners are 
nodes that construct blocks and who compete to be the first to 
form a new block. Blockchain nodes store the chain, validate 
new blocks, and add these blocks to the chain. Blockchain 
users are nodes that use the blockchain. In our case, we 
classify the users that supply decisions as “agents” and those 

that inquire about the consensus (“inquirers”). Note that these 
are simply functions and a physical node can implement more 
than one function. For example, a miner may also be a 
blockchain node. An inquirer may also be an agent. 

A. The Need to Extend Blockchains to Probabilistic 
Blockchains 

To meet the requirements of blockchain-based decision 
making in multi-trust domains, the technology needs to be 
extended to reflect local and global decisions precisely. The 
objectives of the current blockchain mechanisms are to verify 
transactions and blocks and check for simple local decisions, 
such as whether a transaction is in the database or not. In other 
words, processing of transaction data, when the blocks are 
created, is not offered by the current blockchain 
implementations. Moreover, the blockchain conclusions are a 
deterministic ‘yes’ or ’no’ without assurance or confidence 
guarantees. However, for most risk assessment applications, 
the inquirer needs to know the accuracy and confidence level 
of the returned results. For example, in IDS, the network 
administrators need to know how precise the returned value is, 
how many agents participated in the prediction, and so on.  

To extend blockchains for decision making, we extend 
blockchains’ transactions and blocks structure to include more 
precise information that reflects the probabilities and the level 
of uncertainty of the information enclosed. Additionally, the 
consensus to achieve decisions is introduced. 

B. Proposed Metrics for Probabilistic Blockchains 
We extend the traditional blockchain to a probabilistic 

blockchain, reflecting the probability and confidence of agents 
that participated in a particular consensus decision. The 
probabilistic result is produced instantaneously when the block 
is created rather than when requested. Further, uncertainty 
measures can be added to reflect the results’ variability. 

Transactions, blocks, and consensus should be modified to 
reflect extensions to the traditional blockchains mentioned 
above. Transactions submitted by agents, i.e., blockchain users 
that make decisions, have a decision variable reflecting the 
agent’s local decision about a certain event. This variable can 
be probabilistic, where an agent returns a probabilistic decision 
value between [0,1], or deterministic, where an agent returns 0 
or 1 with full confidence. Different agents may inspect the 
same event and may return differing local decisions. Then, 
miners form a block summarizing the decisions from multiple 
transactions and create a consensus decision about the 
inspected event. For example, in an intrusion detection 
application, different agents decide if a flow with certain 
features is malicious or not. Mining nodes would summarize 
agents’ decisions for each flow. This summary represents an 
interpretation of the system about that flow. Hence, the 
summary can be considered as the consensus value of the 
system and can be formulated as follows: 

Summary(eventi)= G(Pj(eventi))  

Where eventi is the inspected event, j is a participating 
agent, Pj(eventi) is an individual probabilistic decision made by 
an agent and G is a function that summarizes all the decisions 



made by agents for the targeted event. We allow G to be any 
appropriate function with the following two properties: 

1. G should not be easy to manipulate such that it changes the 
consensus interpretation. Specifically, manipulating a few 
decisions by some malicious agents should not affect G in 
a way that changes the consensus interpretation. Examples 
of a bad G would be taking the minimum or the maximum 
of the decisions involved. These examples are easy to 
manipulate as a malicious node can use a 0 or 1 decision to 
manipulate the consensus value. However, taking the 
mean or the mode would be a sufficient G since it is hard 
to change the interpretation of the consensus when more 
than half of the nodes are honest nodes. 

2. G should be easy to calculate. Since the number of 
transactions is large and the process of mining is already 
complicated, achieving the consensus value should be 
simple, computationally efficient, and time constrained. A 
complicated recursive function could delay the process of 
block creation even more which is not desirable. 

We allow any function that satisfies these two conditions to 
summarize the consensus and be used as G, the consensus 
function. It can be as simple as taking the mean or the mode, or 
as complex as a moving average, a weighted average, or the 
result of a sophisticated machine learning algorithm. A more 
elegant summary can also be taken from social science 
literature, e.g., the social choice theory [11]. 

A consensus function does not have to return a single 
number. It can return a vector or even multidimensional matrix. 
For example, one may summarize with a vector with mean, 
standard deviation, confidence interval, skewness, kurtosis, and 
higher order moments and other probability measures as its 
elements [12]. It can also include the number of agents that 
participated in achieving consensus. As a matter of fact, the 
consensus function is application dependent which calls for 
flexibility in choosing a function appropriate for the 
application. 

In this way, all transactions, blocks, and consensus returned 
by the blockchain can be probabilistic. Further, a summary of 
the transactions can be presented in each block for fast 
recovery of any consensus decision required. 

C. Block Design in Probabilistic Blockchains 
To maintain consistency, we propose an architecture for the 

probabilistic blockchain which is similar to the traditional 
blockchains where blocks contain transactions and are linked 
in a chain. Fig. 2 shows a simplified architecture of the 
probabilistic blockchain for the intrusion detection use case. It 
may be noted that the hash and the timestamp are inherited 
from traditional blockchains. Each transaction has a variable, 
Pj(eventi), that represents the agent j’s decision for a specific 
flow i being malicious or not. The agent identity, AgentID, 
(e.g., the public key of the agent) is included in every 
transaction. The features that led the agent to his/her decision 
are added to each transaction. Sample features of intrusion 
detection application include network delay, packet rate, and 
packet sizes. Several such transactions are present in a block. 
Miners will summarize the decisions for each event included in 

the block by the consensus function, or the G function 
discussed earlier. 

The summary of each block contains the transactions in that 
block. The blocks are of variable length. Also, multiple events 
can be predicted in the same block. Therefore, a block can 
include the consensus of variable length made for several 
events. That is, a block may have a summary of one or many 
events depending on the transactions available at the time. 

D. Challenges in Achieving Probabilistic Consensus 
One of the challenges in achieving a group consensus is 

that the transactions for the same event may arrive at different 
miners at different times. This results in these transactions 
being distributed over multiple blocks. Therefore, updating the 
consensus value and reaching a finalized consensus are 
challenging. 

To resolve the first challenge, i.e., updating the consensus 
value, it is helpful if the consensus function is such that it can 
be incrementally computed. That is, given the summary of one 
set of transactions and summary of another set of transactions 
the summary of the combined set can be computed directly 
from the two summaries. Mean is an example of such a 
summary, but there are many other functions. For functions 
not satisfying this property, the miner will need to collect all 
the transactions related to the event from previous blocks and 
adds the new transactions to compute the summary. If the 
transactions for an event are spread over multiple blocks, then 
the block may have a pointer to the previous block with that 
event and an indication whether the summary includes all past 
transactions for that event. This will make consensus inquiries 
fast since the users will not have to traverse the blockchain. 
However, the search for the last block that included the target 
event may require fast search algorithms. 

The second challenge, reaching a finalized consensus, is 
harder to resolve as agents could be sending their transactions 
for a specific event at different times. We provide two 
alternatives to resolve this. In the first alternative, we assume 
that the decisions are final after a certain number of blocks 
have been constructed. This could be imperfect if the 

 
Fig. 2. The proposed transactions and blocks architecture 



difference in time for the transactions of the same event is too 
long. The other alternative is to give the latest consensus value 
which can be updated as the system progresses in time. The 
specific decision among the alternatives is application 
dependent, and different decisions can be made by the 
application developer to resolve this issue. 

E. Mining Technique Used 
Mining techniques have minimal effect on our blockchain-

based decision making. The primary requirement is to be able 
to summarize the results without controlling the system. Thus, 
any mining technique that is justifiable can be used. Several 
mining techniques have been proposed in the literature; 
readers may refer to [13] for a comparative analysis of 
different mining techniques. In this work, we follow the proof 
of work (PoW) technique as it is the most famous and widely 
adopted by the blockchain implementations [14]. A detailed 
discussion of PoW is out of the scope of this paper. However, 
readers can refer to [14] for further information.  

We must emphasize that the use of any particular mining 
technique is not central to our work. It is neither required or 
recommended. We use it only as an example.  

F. Probabilistic Blockchain Workflow 
The probabilistic blockchain works just like the traditional 

blockchains. However, there are some differences that need to 
be taken care off. Namely, how the system would work given 
that the workflow is different for decision-making 
applications. Thus, in this subsection, we provide an example 
workflow illustrating how the system should work.  

The workflow, as illustrated in Fig. 3, is composed of 
4 stages: transactions’ collection, block proposal, block 
approval, and block commitment. 

 
Fig. 3. The workflow for the proposed probabilistic blockchains 

In the first stage, Transaction Collection, an event is 
initiated by an inquirer node that requires a global consensus 
on a particular event, e.g., a specific intrusion prediction. In 
response, many agents will broadcast their decisions in the 
form of transactions to the blockchain network. Miners will 

collect these decisions/transactions to form the block in the 
next stage.  

In the second stage, Block Proposal, the miners construct 
the block following the architecture discussed in Section III 
(C). Block construction in most blockchain’s implementations 
is time triggered, and so we assume it is time triggered, for 
example, a block is formed every 2 minutes. The miner should 
check recent past blocks to verify if the event is present in 
them. This ensures that all decisions made for a certain event 
are included in the consensus value. This block is submitted to 
the blockchain.  

In the third stage, Block Approval, blockchain nodes in the 
network validate the proposed block to make sure that no 
invalid transaction is included and that the consensus value is 
correct. If the block is approved, it will be added to the local 
chain. However, it is not yet committed. 

At the block approval stage, many valid blocks may be 
added to the chain. This happens when multiple received 
blocks point to the same previous block. Most mining nodes 
will be following a particular branch causing it to be longer 
than others. After some time, short branches get pruned since 
most mining nodes did not follow them. This step is inherited 
from traditional blockchains, e.g., Bitcoin blockchain, and this 
is what we refer to as Block Commitment stage.  

By committing the block to the blockchain, the inquirers 
can check the summary, i.e., the consensus made for the 
requested event. Further, the consensus can be accessed by any 
other blockchain users for future use or consultancy. Future 
events that are submitted to the blockchain should have a 
unique ID to distinguish them from the previously submitted 
events. 

IV. SECURITY ANALYSIS OF THE PROPOSED APPROACH 
The proposed approach does not add to the security of 

traditional blockchains, however, it extends their application 
domain to decision making and risk assessment applications. 
Compared to traditional decision-making solutions, our 
proposed probabilistic blockchain-based approach provides 
several security benefits which are discussed in this section. 
These include resiliency to malicious agents, resiliency to 
malicious miners, Distributed Denial of Service (DDoS) 
protection, and fraud mitigation. 

A. Resiliency to Malicious or Bad Agents 
Our blockchain-based solution is resilient against malicious 

agents that try to take control over the application. In a 
centralized solution, compromising the trusted centralized 
agent leads to the decision process failure. For example, in 
stock market predictions, if one centralized agent is providing 
the predictions, then controlling that agent will control the 
decision. Similarly, in a semi-distributed management 
architecture, compromising the centralized controller or 
broker will break the whole system. In contrast, with an 
appropriate consensus function that satisfies the discussed 
properties, a blockchain-based design is hard to break and is 
resilient against malicious agents. In the following, we sketch 
the proof of this resiliency. 

Stage 2: Block Proposal 
The miner constructs a proposed block including all 
transactions and calculating the consensus of files

Stage 3: Block Approval
The blockchain nodes validate the proposed block by verifying 

the consensus and add it to the blockchain

Stage 4: Block Commitment 
Once a certain number of blocks have been added following a 
particular block, the block is considered committed and can be 

used for decision making.

Stage 1: Transactions’ Collection
Collect transactions that represent decisions from several 

agents for several files



Analysis 1: With a function that satisfies the required 
consensus function properties, the probabilistic blockchain is 
resilient against malicious agents that try to manipulate the 
consensus such that the interpretation is changed. The 
constraint is that the number of malicious agents should be 
less than 50% of the total number of agents. 

Note that the manipulation of the consensus value by a 
small amount cannot be prevented, however, the consensus 
value cannot drastically change such that the decision is 
flipped. The analysis is based on the choice of the consensus 
function that satisfies the consensus function properties 
discussed earlier. We sketch the proof of the analysis with the 
simplest consensus function, the arithmetic mean. 

Consider a Consensus function that is simply the mean (first 
moment) of the individual decisions made by agents. That is: 

Summary(eventi)= 1
𝑚𝑚
∑𝑃𝑃𝑗𝑗 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖) 

Event i was inspected by an agent j which broadcasts a 
transaction Tj as follows: 

Tj: { agentID: j, eventID: i, features: [], P(eventi): 1} 

Here, m is the number of transactions included in the 
summary. Assuming that we have m agents forecasting the 
same event, transactions {T1, …, Tm} will be sent to the 
blockchain. Let’s assume that node l is the miner at this point. 

As one example, consider the case in which all agents state 
that the event will happen with certainty and send a 
deterministic 1 as their decision. The miner l will construct the 
block with eventi consensus as follows: 

{EventID: i, #agents: m, mean:1, stdv: 0} 

This indicates that the blockchain concluded that eventi is 
happening with certainty. 

Now, assuming that we have n malicious agents, where 
n<m/2, e.g., n=0.2m. This means that 20% of the agents are 
malicious and send transactions with flipped decisions. That 
is, if agent g is malicious, the following transaction Tg will be 
sent: 

Tg: {agentID: g, eventID: i, features: [], P(eventi): 0} 

In the above transaction, we assume that P(eventi) is 
manipulated to the fullest possible extent, to have the most 
effect on the consensus value. 

Now, miner l will have m agents participating in the 
consensus: 80% of them are giving correct decisions “1” while 
20% are giving wrong decisions “0”. Consequently, the block 
summary: 

{EventID: i, #agents: m, mean:0.8, stdv: non-zero value} 

The stdv (standard deviation) here is dependent on how 
many agents are involved, but it is known to be a non-zero 
value. 

This indicates that the blockchain concluded that eventi will 
happen with 80% probability instead of 100% in the no-
adversary case. This is still a high probability value. Thus, the 
interpretation may not have changed if the application allows 
this level of uncertainty. 

Assuming that the system has 1000 agents participating in 
the decision, this 20% will map to 200 faulty or malicious 
agents. It is difficult to compromise these many agents, 
compared to compromising the one party that is done in 
traditional centralized systems. 

Actually, by taking the first moment as the consensus 
function, the probabilistic consensus effect has a linear 
relationship with the number of malicious nodes and the 
adverse impact is felt after 50% or more nodes become 
malicious. A more sophisticated consensus function should be 
more resilient to malicious nodes trying to flip the consensus 
interpretation. 

B. Resilience to Malicious Miners 
Mining techniques are resilient against malicious miners 

that try to control the decision process or manipulate 
decisions. This is true as each generated block is first 
validated for correct consensus. In addition, even if a 
malicious block is verified that block will be different from 
other computed blocks. In this case, malicious blocks will not 
be followed, thus, pruned from the blockchain. This feature is 
inherited from the traditional blockchains. 

C. DDoS Protection 
Our blockchain-based solution can protect decision systems 

from Distributed Denial of Service (DDoS) attacks, which are 
considered the most threatening attacks on the Internet [25]. In 
these attacks, a set of attackers targets the availability of the 
system by sending too many requests to be processed. In a 
centralized or semi-distributed architecture, this can be done 
by targeting the centralized controller. However, in a 
blockchain distributed design, the DDoS attack is made harder 
as there is no single point of vulnerability. DDoS attacks can 
cause the loss of billions of dollars in applications such as 
stock market predictions or other financial applications. Put 
another way, the protection provided by our approach can 
guarantee the availability of the system and prevent losses 
worth billions of dollars. 

D. Fraud Mitigation 
Our blockchain architecture can prevent fraudulent attacks; 

hence, help applications in keeping the integrity and the 
correctness of current and prior information. A fraudulent 
attack tries to manipulate the individual decisions, that is, 
break the integrity of the decisions and prevent the detection 
of such infringement. This is done by compromising and 
manipulating the data storage. Blockchains offer fraud 
mitigation guarantees since blocks and transactions in the 
chain are signed and replicated in many nodes. This leads to 



immutability in blockchain-based solutions, which makes it 
extremely difficult to alter or manipulate the decisions. 

V. EXPERIMENTAL SETUP AND EVALUATION 
This section reports the experiment settings and evaluation 

of the proposed approach applied to IDS. It first discusses the 
choice of consensus function. Then, it presents the blockchain 
setup, the dataset and the evaluation cases, the evaluation 
metric and the experimental results of two evaluation cases. 

A. The Consensus Function 
IDS predict if a network flow is malicious or normal and, in 

some case, the percentage or certainty of such prediction. The 
agents will individually make their predictions which will be 
shared over the blockchain as was discussed in 
Subsection III (C). For simplicity, we assume agents would 
make binary decisions as malicious flow (“1”) or normal flow 
(“0”.) 

We use the first moment as a simplified consensus function. 
Formally, given many returned decisions from different agents 
and considering that we have two possible choices per flow, 
e.g., malicious or normal, blocks will have a consensus 
function of the results as follows: 

𝐺𝐺 = 𝑃𝑃 (𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑖𝑖  𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠) =
1
𝑚𝑚�𝑃𝑃𝑗𝑗 (𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑖𝑖  𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

Here m is the number of participating agents and flowi is 
the inspected flow and the jth agent decides whether flowi is 
malicious or not by its prediction function Pj. Pj can be a result 
of a machine learning algorithm, a rule-based output or a 
signature-based prediction. Note that Pj in this specific case is 
‘0’ or ‘1’ but generally can be any probabilistic value or vector. 
Also, this is a simplified case which involves two decision 
options only, but can be extended to any number of choices 
and applied to other applications. 

In some applications of high risk, the summary function 
may be changed so that the consensus G is one if the mean is 
0.001 or higher. That is, even if 0.1% of the agents believe that 
the flow is malicious, the flow is denied. 

B. Experiment Setup 
To build probabilistic blockchains, we simulated 1000 

agents, one inquiring node, five blockchain node, and five 
miners to form a blockchain network. Agents make decisions 
that are submitted to the blockchain as transactions. As 
discussed, a positive decision (“1”) indicates that the flow has 
been classified as malicious (an attack is detected) while a 
negative decision (“0”) implies normal traffic. Then, the 
miners calculate the probabilistic consensus and form the 
blocks as was illustrated in Fig. 3. A mapping of the 
probabilistic consensus to malicious or normal flow is needed 
to evaluate the system. To do so, we use a simple mapping 
which states that a flow is malicious if more than 50% of the 
agents say so. That is, if the probabilistic consensus is more 
than 0.5, then the flow is declared malicious. Otherwise, the 
flow is normal. 

We have considered a simplified example here. However, a 
more sophisticated decision-making process may be used in 

actual deployments. This may involve taking the standard 
deviation or even the second or third moment into 
consideration when making decisions. Also, the value of 
threshold (taken as 0.5 here) is application and attack type 
dependent. As an example, real-time applications may not 
tolerate attacks that affect their availability. They may accept 
some false alarms, but they need a very low DoS attack 
detection misses. Hence, the threshold, as indicated earlier 
could be as low as 1% or 0.1% in this case. 

C. Accuracy as an Evaluation Metric 
We will consider accuracy as the only evaluation metric 

used. Other metrics such as false alarm rate and attack not 
detected rate can be considered. However, our objective here is 
to show the feasibility of the method and the accuracy is 
sufficient to show that. 

Accuracy is the most frequently used metric for evaluation. 
It measures the degree of correctness of the predicted values to 
the overall number of samples. That is, 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 % =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 100% 

A correct prediction is achieved if the algorithm prediction 
matches the ground truth when compared offline. Here, both 
the numerator and the dominator represent the number of 
samples. The numerator is the number of samples that are 
correctly predicted while dominator is the overall number of 
samples.  

D. Experimental Results 
We have used the UNSW-NB15 publicly available dataset, 

made possible by the University of New South Wales (UNSW) 
in 2015 [15], to predict attacks at local agents. The dataset is 
composed of 9 types of attacks in addition to standard flows. 
The details of the dataset are out of the scope of this paper but 
can be read at [15] and [16]. 

To testify probabilistic blockchain performance, two 
evaluation cases are used. In the first evaluation, a few machine 
learning models are trained with different algorithms and the 
same dataset. Namely, we use Logistic Regression (LR) [17], 
Random Forest (RF) [18], and Decision Tree (DT) [19] to 
build three learning models that detect only DoS attacks from 
the targeted dataset. The models are distributed randomly 
among the 1000 agents, who use them to make decisions about 
the received flows. The probabilistic consensus values, as 
discussed in Subsections V (A) and V (B), is used to decide if 
there is an attack. Then, the consensus along with the decisions 
made by the machine learning models are used to evaluate the 
proposed approach. 

The results of the above evaluation are shown in Fig. 4 
where the three machine learning models along with 
probabilistic blockchain are compared. A higher accuracy 
indicates a better prediction. As can be seen, the proposed 
probabilistic blockchain (PB in Fig. 4) approach shows a 
performance similar to the best used machine learning model. 
The RF model, the DT model, and the PB have a high accuracy 
while the LR model has a relatively bad performance. PB has 
the highest accuracy compared to other models which shows 
the feasibility of the proposed approach. This also shows the 



resilience against bad behaving agents, i.e., agents with the LR 
model, as long as they are less than 50% of the agents. 

 
Fig. 4: Accuracy results of the first experimental setup 

For the second evaluation, the training dataset is varied, and 
the same algorithm is used to build the learning models. 
Namely, we build models that use RF algorithm to detect DoS 
and Reconnaissance attacks. In this way, the training data 
differ for both models, while the test data will be the same. 
Similar to the first experiment, the two models have been 
distributed among the 1000 agents who predict the same testing 
sample flow and the blockchain achieves a consensus about 
that flow. The probabilistic consensus values, as discussed in 
Subsections V(A) and V(B), is used to decide if there is an 
attack. The consensus along with the decisions made by the 
machine learning models are used to evaluate the proposed 
approach. 

The results of the second experiment are shown in Fig. 5 
where the DoS model, the reconnaissance model, and the PB 
model are compared. As can be seen, the PB model performs 
the same as the DoS model which does better than 
Reconnaissance (Recon in Fig. 5) model. This shows that 
probabilistic blockchain will have a similar result to the best 
performing model even if only two models were involved. 

 
Fig. 5: Accuracy results of the second experimental setup 

These evaluations demonstrate the feasibility and 
performance of the proposed probabilistic blockchains with 
simplified IDS evaluations. Results also show that the 
probabilistic consensus model has a performance that is 
comparable to the best performing machine-learning models 
used by agents. It should be noted that with the consensus 
function used here, the proposed algorithm would fail to give 
correct results if more than half of the agents give wrong 
predictions. However, even with this drawback, the results are 

still good, considering the added security and distribution 
features provided by the proposed approach. 

VI. APPLICATION OF PROBABILISTIC BLOCKCHAINS 
In addition to the IDS, there are several risk assessments 

and decision-making applications that can benefit from the 
proposed probabilistic blockchain paradigm. For example, the 
stock market prediction is a multi-trust domain application 
where agents compete with each other. In this application, 
agents predict whether the stock would rise or decline and the 
value by which the stock will change. Different agents give 
their decisions (predictions), and the blockchain achieves its 
consensus about the stock. The consensus function, for 
example, could be the weighted average, where agents are 
weighted based on their past performance. 

Blockchain-based approaches can help build better 
recommendation systems for any asset, such as hotels or 
products. Different agents would give their decisions about 
how good/bad a particular asset is and the blockchain would 
achieve a consensus about that asset. A weighted average 
function, where agents are weighted based on their past 
predictions and reputation, would be suitable as a consensus 
function used in this application. 

In addition to decision making, probabilistic blockchains 
can act as systematic feedback for reinforcement learning 
applications. Reinforcement learning is a type of machine 
learning that builds models by taking action and receiving 
feedback from the system. Probabilistic blockchains can be 
used to provide this feedback and update the learned models 
accordingly. If the decision made by the agent is extremely 
different from the consensus, the model should be updated. If 
the decisions match, the model is updated to reflect this new 
knowledge and the reward function is applied. 

VII. CONCLUSION 
Blockchain technology provides a secure, consensus-based 

distributed platform with a large number of potential 
applications. However, extensions are required to make them 
suitable for different applications. In this paper, we introduced 
probabilistic blockchains, an extended blockchain paradigm, 
designed for decision-making and risk assessment applications 
in multi-trust domains. First, we gave a brief background of 
the blockchain concepts, including its architecture, properties, 
and mining techniques. Following that, we discussed the need 
for probabilistic blockchains and the metric that can be used to 
evaluate it. We also discussed the block architecture, mining 
technique, and the proposed workflow. The proposed 
approach has been shown to be more secure than centralized 
approaches because of the inherent resilience to malicious 
nodes and miners. It additionally provides DDoS protection 
and fraud mitigation. An experimental evaluation involving 
blockchain-based IDS was presented to show the feasibility of 
the proposed approach along with its limitations. The 
proposed work is still evolving, and, when fully developed, it 
is expected to be suitable for many risk assessment 
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applications, especially those in multi-trust domains. Some 
future work ideas include extending a popular public 
blockchain with the proposed concept and building an online 
blockchain-based IDS. Further, testifying the concept for other 
financial and network applications is also planned as future 
work. 
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