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Mobile applications often get disconnected because TCP times out when a user moves from one location and reconnects at another 
location. This happens even with the use of Mobile IP since the Mobile IP hides the IP address change from TCP but does nothing to 
prevent it from timing out. TCP freeze is a technique that is already part of TCP implementations and allows a receiver to stop the 
transmitter from sending further data when the receiver’s buffers are full. In our proposed PErsistent TCP using Simple freeze 
(PETS) framework, we combine the TCP freeze and Mobile IP to prevent TCP from disconnecting during mobile operations. No 
modifications of the TCP or IP protocol are needed. The required PETS module can be implemented in mobile agents which are part 
of the Mobile IP or in IP routers. This flexibility allows our technique to be deployed incrementally with PETS-aware hosts or PETS-
aware routers intermixed with legacy hosts and legacy routers with or without the Mobile IP. 
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I. INTRODUCTION 

obile users lose their TCP connections when they 
move or their IP addresses change or any nodes along 

the routing path fails. Also, variability in the quality of the 
wireless medium may cause temporary loss of connectivity 
resulting in TCP connection terminations. This can be very 
inconvenient. For example, after downloading for 20 minutes, 
the users would prefer having a FTP client continue to 
download after a temporary disconnection rather than starting 
the download at the beginning of the file. Another example is 
that if the users are making a banking deposit or withdrawal, 
and the modem line is interrupted for a few seconds, or the 
users need to change rooms immediately and then reconnect in 
different locations, during the incomplete transactions, it 
would be preferable if the users continue the transaction or 
processes without the loss of. Thus, there is a need for TCP 
connections to be maintained in a simple and efficient way.  

A. Mobility in Protocol Layers 

Mobility can be classified according to the layers of an 
Open System Interconnection (OSI) reference model, that is, 
from layer 1 mobility to layer 7 mobility [1]. Layer 1 is the 
physical layer. An auto-dial to select the best connection or to 
connect to a protection path would be an example of layer 1 
mobility. Forward Error Control (FEC) and Automatic Repeat 
reQuest (ARQ) are techniques for layer 2 or the link layer 
mobility. The network layer concerns the change of IP 
address. Mobile IP [2] is a very good example of layer 3 
mobility. A similar concept is Virtual Private Network. 
Modifying Internet Key Exchange (IKE) Keep-alive timer or 
IP Security (IPsec) Re-keying are examples of VPN mobility 
techniques. 

Layers 1 through 3 are generally connectionless and, 
therefore, mobility at these layers does not involve 
connections. The concept of a connection is first introduced in 

layer 4 (transport layer) and above. TCP, one of the transport 
layer protocols, is the main focus of this paper since most of 
the Internet traffic uses connection-oriented TCP [3]. 

Mobile IP allows a user to be reached even when she is in a 
foreign network. However, the Mobile IP does not solve the 
problem of TCP persistence. During a mobile handoff, TCP 
connections can get disconnected. Also, the Mobile IP does 
not solve the problem of TCP disconnection when the IP 
address does not change but there is a temporary 
disconnection. From here on, we will use the term connection 
and TCP connection interchangeably. Our goal is to maintain 
the TCP connection.  

B. Why TCP Disconnects? 

The first question about TCP persistence is what causes 
TCP disconnection? Basically, a TCP connection is broken if 
there is no TCP keep-alive response back from the other end 
within some threshold. An experimental study of various 
factors affecting different commercial TCP implementations is 
presented in [4]. The results show that Retransmission 
TimeOut (RTO) is the primary factor causing TCP 
disconnections. For example, under Windows 95, TCP 
retransmits the dropped segments up to five times. RTO is 
increased exponentially up to the upper bound of 260 seconds. 
After that, the connection is terminated. 

Keep-alive timeout is the second factor affecting TCP 
disconnections. Keep-alive timeout is an optional parameter 
[5]. Browsers, e.g., Internet Explorer, often set it to 1 second. 
If a response is not received within this interval, the 
connection is closed. The third factor is the connection 
timeout. Typically, this factor is defined by the vendor; there 
is no standard. This factor is based on the predefined time 
units or the number of retransmissions. 

One way to resolve the problem of disconnection is to 
modify TCP stack directly. Making the TCP connection active 
indefinitely is good only in a very few cases. In fact, it is 
impractical and also breaks the design purpose of TCP timers, 
such as to distinguish network congestion from link failure. 
Therefore, we propose to use TCP Freeze to maintain the TCP 
connection during the short term disconnection on top of 
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Mobile IP. Our goal is to come up with an easy algorithm with 
small modifications. Moreover, we do not consider the 
concept of socket migration or TCP stack modification. 

The rest of this paper is organized as follows: Section II 
gives a brief survey of related work. TCP Freeze technique is 
described in Section III along with the details of the protocol 
design and architecture. The connection persistence schemes 
in mobile scenarios are discussed in Section IV. Experimental 
results are presented in Section V. Finally, conclusions are 
summarized in the last section, Section VI. 

II. RELATED WORK 

The first work relating to the problem of persistent 
connection was presented by Yongguang Zhang and Son Dao 
[6]. They suggested mapping between logical and physical 
endpoints in terms of a virtual address. This address is 
composed of 3-tuples: socket descriptor, IP address, and TCP 
port number. However, this paper does not describe the 
implementation details. Similar to the virtual address concept, 
the Connection Identifier (CID) was introduced to uniquely 
identify the connection. The CID may be composed of many 
components such as random number, socket state information, 
IP address, and TCP port number. Another technique is to 
insert a new layer on top of the transport layer to hide the 
disconnection directly from application [7, 8]. Instead of 
inserting a new layer above the transport layer, a special layer 
called a Mobile Socket Layer (MSL) [9] can be inserted below 
the TCP socket layer as well. 

The techniques described above, all modify either a client 
or a server or both in order to insert the extra layer that hides 
the disconnection from TCP or the application. However, it 
may be impractical to modify all nodes. In [10], the 
indirection concept, called MSOCK, was introduced to 
redirect all traffic through an extra proxy server. That proxy 
server maintains all TCP connection states for both ends. The 
proxy server can transparently splice the connection to 
alternate servers while ensuring the connection consistency. 

TCP freeze modification, called rack, was first used in [11] 
to prevent the local TCP socket from aborting due to a 
connection failure. It is also used in wireless networks for the 
purpose of loss and congestion indication [12]. 

Another technique is to introduce an extra TCP state, called 
MIGRATE_WAIT state [13], which is basically the waiting 
state. When a link is disconnected, the TCP state is changed to 
the waiting state (there is no data sent or received). The 
general idea is similar to that in TCP Redirection (TCP-R) [8]. 
When a client changes an IP address or a link is broken, the 
extra layer hides the broken link from the transport layer. It 
stops data transmission (by going to MIGRATE_WAIT state) 
and freezes the application data or buffers the application data. 
Bytes sent and received numbers are stored. It also buffers the 
intermediate data received while the link is broken. 

Our scheme, PETS, is very simple and easy to implement. 
There is no concept of CID as that in [6, 7, 9]. With the 
Mobile IP agent built in at the client, a PETS module can be 
added to the agent. There is no extra proxy server. Also, no 
TCP protocol modification is required. The PETS is similar to 

rack [11] with the use of TCP freeze, but we provide the 
details of the trade-off in order to retrieve the correct 
acknowledgement information. We also discuss the issues of 
link failure detection. In addition, we have specifically applied 
the use of TCP freeze in the Mobile IP environment. 

III.  TCP FREEZE TECHNIQUE 

The TCP Freeze technique has already been implemented in 
standard TCP implementations in that when the receiving end 
host does not have enough buffer space left, it informs the 
sender to stop sending more packets. The basic idea is to 
freeze all TCP timers when the receiving window is full. Figs. 
1 and 2 show an example of TCP Freeze operations. 

In Fig. 1, the sender transmits a packet. The receiver sends 
back an acknowledgement of the packet along with an 
updated window of four packets (TCP window is in bytes but 
here we use packets for simplicity). The sender transmits four 
more packets as allowed by the window size. When the 
receiver has received all four packets, but for some reasons, it 
does not want the sender to transmit any more packets, it 
sends the acknowledgement of the last received packet with a 
window size of zero. Such an acknowledgement is called Zero 
Window Advertisement (ZWA). After receiving the ZWA, the 
sender knows it cannot send any more packets.  

Instead of terminating the connection, the sender enters a 
“persistence” mode and periodically sends a probe packet to 
the receiver. This packet is called Zero Window Probe (ZWP). 
After receiving the ZWP, the receiver sends the ZWA to the 
sender with the same acknowledgement number and still 
window size of zero. As shown in Fig. 2, this process keeps 
on repeating and the connection is not terminated. When the 
receiver wants to continue the transmission, it sends the 
acknowledgement with a non-zero window. After that, the 
normal operation continues.  

A. Protocol Design 

To make use of TCP Freeze technique, we make use of 
“PETS modules” of the two sides of TCP connections. These 
modules snoop on the TCP connection and observe the 
acknowledgements and windows. The modules consist of a 
software code inserted between layer 3 and 4 (IP and TCP). 
This service can be provided by the routers, and the PETS 
modules can be in the routers adjacent to the end nodes as 
shown in Fig 3. It is also possible to have the PETS modules 
in the router on one side and in the end-host on the other side. 
This flexibility allows our scheme to work with unmodified 
end-hosts with modified routers, or modified end-hosts with 
legacy routers. 
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Fig. 3.  Setup with PETS implementation in Routers 
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Fig. 1.  TCP Freeze Operation 
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Fig. 2.  TCP Freeze diagram

 

The PETS modules act as proxies for the TCP hosts when 
any links on the path between the two PETS modules fail. 
During the failed state, the PETS modules send ZWA or ZWP 
to the local host TCP as required to keep the TCP connection 
alive. In the following discussion we use the term “link” to 
mean any links on the path between the two PETS modules. If 
the PETS modules reside in the routers, failure of the link 
between the end-host and the router is not covered by our 
scheme. 

The main issue for the PETS modules is to find the correct 
acknowledgement number. To retrieve that number, there are 
three techniques: stateful approach, iterative approach and 
best-guess approach [14]. In the stateful approach, all states 
are stored in the PETS module. Although we can acquire the 
real acknowledgement number, we have to keep many states 
during the normal operation (when the link is not broken). It 
also increases the delay and latency during normal operation. 

In the iteration approach, the real acknowledgement number 
can be obtained from three duplication acknowledgement 
packets, when a link is disconnected. In this approach, number 
of states kept is less than that in the stateful approach; 
however, we may spend too much time in getting the real 
acknowledgement number. In some cases, the application idle 
timer may expire and consequently the connection may be 
terminated by the application. 

In the best-guess approach, the PETS modules track the 
retransmission packets for each connection. Whenever the 
second retransmission packet is received, it is assumed that a 
link is disconnected. The local PETS module immediately 
sends ZWA back to the TCP layer in the local host based on 
the least sequence number seen (if there are many in-flight 
packets). When the link is disconnected and retransmission 
timeout (RTO) expires, TCP congestion window (CWND) is 
normally reduced to one (which means that the TCP can send 
out at most one packet). The sender can retransmit only the 
first unacknowledged packet. That number is used as an 
acknowledgement number for ZWA. 

To make use of TCP Freeze, we also need a link state 
detection mechanism. For this, we chose a heartbeat 
mechanism in our design. The flow chart of PETS algorithm is 
illustrated in Fig. 4. In the figure, there are two parts: link 
state detection (above dashed line) and connection persistence 
mechanism (below dashed line). The algorithm uses three 

timer parameters: keep-alive timer, inactivity timer, and fault 
indication timer. 

For link state detection, the PETS modules keep watching 
all TCP flows. If there is any data flowing through the 
module, it indicates that the link is not disconnected. Then, the 
PETS modules just forward the packets out (normal state). If 
there is no data for some pre-defined time and the inactivity 
timer expires, the PETS modules send a keep-alive packet 
consisting of an Internet Control Message Protocol (ICMP) 
message to check if the link is disconnected or it is just idle. 
The time interval and the number of ICMP messages are set as 
a function of Round Trip Time (RTT). If the keep-alive time 
is too small, it will slow down the overall operation. However, 
if it is too large, it may take too long to detect the 
disconnection and it may cause termination of TCP 
connections. 

The ICMP messages are replied by the PETS modules on 
the other side. If the PETS modules do not receive the ICMP 
reply within some threshold, the assumption is that the link is 
disconnected and the state operation is moved to a 
disconnection state. A flag Wf is used to indicate the state of 
the link. The flag Wf is zero during normal operation and is set 
to one if the link is disconnected. On sensing disconnection, 
the PETS modules set Wf flag to one and start a fault 
indication timer. After that, each connection’ socket state is 
hashed. The socket states are defined by the 4-tuples: source 
IP address, destination IP address, source port number, and 
destination port number. The sequence number is stored in the 
hash entry although it is not used to compute the hash index. 
The hash table design is a dynamic hash with a standard 
hashing algorithm. The size of the table can be updated 
dynamically based on the number of connections. 

After hashing, a socket state is stored in the table if it is not 
a duplicated socket state. This indicates that this is a new 
packet since the disconnection occurred. However, if it is a 
duplicated socket state, the algorithm compares the sequence 
numbers and updates that number in the table. This is done 
until the fault indication timer expires. If the fault indication 
timer expires or the stored sequence number is same as that in 
the table, a ZWA packet is sent to the local TCP. The first 
condition ensures that the ZWA packet is sent in a timely 
manner. The second condition implies that the received packet 
is a “second retransmission” and, therefore, the ZWA packet 
needs to be sent. 
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Fig. 4.  Link detection and PETS algorithms 

 

On the other hand, if the PETS modules receive the ICMP 
reply, it is obvious that the link is in operation -either normal 
operation or the link has just resumed after a failure. We can 
determine this based on the flag Wf. If the flag Wf is zero, the 
link continues to be in a normal state and the packet is 
forwarded as usual.  

However, if the flag Wf is one, the link was disconnected 
and has just resumed. Therefore, updated window packets are 
sent back to the local TCP of each connection whose state is 
stored in hash table. Then, the hash table is destroyed. Also, 
the flag Wf is cleared to zero. The hash table is initialized 
again when the PETS modules sense a link disconnection. 

The fault indication timer helps prevent the situation in 
which the PETS modules keep receiving sequence numbers 
different from the stored sequence number. The equality of 
stored and received sequence numbers indicates a “second 
retransmission” and provides a good sequence number for 
ZWA. Without a sequence match, the ZWA will not be sent. 
This may happen for a long time and TCP may disconnect. 

This situation is avoided by the fault indication timer. When 
the fault indication timer expires, the ZWA is sent regardless 
of the sequence numbers. This is also shown in Fig. 4. 

Intuitively the best-guess approach outperforms the stateful 

and iteration techniques since there are fewer states, especially 
since no state information is kept during the normal operation. 
However, there are a few issues with this algorithm in some 
cases. The probability of these cases is extremely low. For 
example, if RTO expires for some reason other than a real 
disconnection; the TCP congestion window (CWND) is 
increased from one to two. If this happens just after a 
disconnection, TCP sends out two more packets instead of just 
one. Then, the PETS modules may send the ZWA with a 
wrong acknowledgement number. Consequently, the 
application loses data. One way to avoid this is to use three 
retransmissions as the indication of the disconnection. 
However, since the retransmission timer is increased 
exponentially, the longer the algorithm is delayed the chances 
of application idle timer expiring also increases. 

IV. PETS IN MOBILE SCENARIOS 

Mobile IP helps ensure that the mobile host can still be 
reached at the old IP address (e.g., home address) regardless 
of the actual location of the host, but it does  not ensure the 
connectivity if any links get disconnected. By combining 
PETS with Mobile IP, we can handle both disconnections and 
mobility. 
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Fig. 5.  Connection disconnection with HA 
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Fig. 6.  Connection disconnection without HA 
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Fig. 7. Mobile node suspension with HA 
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Fig. 8. Mobile node suspension without HA 

 

With Mobile IP, PETS can be optionally implemented in 
Home Agent (HA). This helps provide TCP persistence 
service for PETS-aware hosts. Fig. 5 shows how the TCP 
persistence is achieved with the HA that has an internal PETS 
implementation. The server in Fig. 5 is PETS unaware. The 
client has a local PETS module. When the client’s PETS 
module and HA detect the disconnection, they each send a 
ZWA packet to their TCP hosts. 

Fig. 6 shows TCP persistence between two PETS-aware 
Mobile IP hosts. In this case, we do not need to implement 
PETS in the HA.  

A related issue is that when the mobile host goes into a 
suspended state (“sleep” or “hibernation” mode). The PETS 
technique can still be applied. However, the PETS module has 
to store the TCP connection states which basically are IP 
address, port number, bytes-received/sent, SYN, and 
acknowledgement number before going to the suspended 
state. Figs. 7 and 8 show the use of the PETS technique with 
mobile host suspension. In Fig. 7, the HA has an internal 
PETS implementation. The process is almost the same as that 
in Fig. 5. However, before going to a suspension mode, the 
PETS module in the client sends a “SUSPENSION request” to 
the HA to inform about the suspension. After the request is 
granted, the PETS module saves all TCP connection states and 
the client goes into the suspension mode. After the HA grants 
the suspension, it keeps the other end host connection open by 
the request. It also sends the window update packet to the 
other end host. 

Fig. 8 shows mobile host operations if both end hosts are 
PETS aware. In this case, HA does not need to have an 
internal PETS implementation. It should be mentioned that the 
link between the HA and PETS-unaware host is not protected 
by this technique. 

V. EXPERIMENTAL RESULTS 

In this section, we describe the experiments with the PETS 
technique for two different commercial applications: FTP and 
Telnet. We used a testbed setup similar to that shown earlier 
in Fig. 3. We have not yet developed the host-based PETS 
modules. Instead, we used router-based PETS modules. 
Traffic generator node (TGN) and Packet Count and Capture 
(PKTS) [15] are the router software packages that were used 
to capture all traffic and generate the TCP packets in these 
experiments. 

Basically, a TCP connection is setup between a client and a 
server through routers P1 and P2. The disconnection occurs at 
a link between the two routers. FileZilla FTP server and 
BFTelnet server were installed at Windows 2000 Server. 
These two server programs, unlike Window’s FTP and Telnet 
servers, allow us to configure the connection idle timeout and 
a few other parameters. The clients are standard Windows 
Telnet client, standard Windows FTP client, and FileZilla FTP 
client running on Windows XP Professional. 

The TCP connection is started with either Telnet or FTP 
from the client to the server. At both routers, their PETS 
modules snoop the last acknowledgement packet for the 
connection. With a preconfigured application idle timeout, the 
link is disconnected between routers P1 and P2. Then, using 
the TGN and PKTS tools, the routers send ZWA packets. 
After the end hosts receive the ZWA, they basically do not 
send any more packets, but instead send the ZWP packets. 
Once the routers receive these packets, they send the ZWA 
packets back to the end hosts. These operations continue until 
the link resumes. When the link resumes and the updated 
window packets are sent back to the end hosts, the connection 
continues normal operation. 

With Telnet experiments, we found that without PETS, the 



 

connection terminates in about twenty seconds. On the other 
hand, if with PETS, the connection can be kept active until the 
application idle timeout timer expires (about 1 minute in our 
experiment). Of course, if the application timeout timer can be 
changed, the persistence for longer interval can be achieved. 

With FTP experiments, by tuning the application idle 
timeout option called “how long the client will disconnect 
regarding the received zero window packet”, which is 
applicable only for Filezilla FTP client, with PETS, the 
connection remains active until the application idle timeout 
timer expires (more than five minutes). Without PETS the 
TCP connection terminates in about two minutes. 

With Windows FTP client, we cannot find a way to modify 
the application idle timeout timer. As a result, the connection 
is terminated at around one minute with or without PETS. 

VI. CONCLUSIONS 

PETS allows preserving the TCP connections during 
temporary link disconnections. It does not handle the change 
of IP address. Thus, it complements the Mobile IP very well, 
which handles IP address change but does not handle link 
disconnections. By combining the PETS and Mobile IP, we 
can support both disconnection operation and mobility. 

PETS uses the standard TCP Freeze technique to keep the 
connections alive. Since TCP Freeze is already implemented 
in standard TCP stacks, the one change required is to 
implement “PETS modules” that act as proxies for the other 
side. These agents can be implemented either in the hosts (as 
part of the Mobile IP’s mobile agents) or in the routers. Thus, 
our technique works with legacy hosts (and PETS-aware 
routers) or legacy routers (and PETS-aware hosts). This 
flexibility allows our scheme to be incrementally 
implemented. 

PETS is a very simple technique. There is no concept of 
process checkpoint or migration [16] and no need to change 
TCP protocol or its implementation. In addition, PETS allows 
the TCP connection to be preserved indefinitely or until the 
application timeouts due to inactivity. 
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