

PETS: Persistent TCP using Simple Freeze*

Chakchai So-In1, Student Member, IEEE, Raj Jain1, Fellow, IEEE, Gopal Dommety2, Member, IEEE

1Department of Computer Science & Engineering, Washington University in St. Louis, MO 63130 USA

2IP Mobility Group, Internet Technologies Division, Cisco Systems, CA 95134 USA

Mobile applications often get disconnected because TCP times out when a user moves from one location and reconnects at another
location. This happens even with the use of Mobile IP since the Mobile IP hides the IP address change from TCP but does nothing to
prevent it from timing out. TCP freeze is a technique that is already part of TCP implementations and allows a receiver to stop the
transmitter from sending further data when the receiver’s buffers are full. In our proposed PErsistent TCP using Simple freeze
(PETS) framework, we combine the TCP freeze and Mobile IP to prevent TCP from disconnecting during mobile operations. No
modifications of the TCP or IP protocol are needed. The required PETS module can be implemented in mobile agents which are part
of the Mobile IP or in IP routers. This flexibility allows our technique to be deployed incrementally with PETS-aware hosts or PETS-
aware routers intermixed with legacy hosts and legacy routers with or without the Mobile IP.

Index Terms—TCP Persistence, Persistent Connection, PETS, TCP Freeze, Mobile IP, Mobility, Connection Reliability.

I. INTRODUCTION

obile users lose their TCP connections when they
move or their IP addresses change or any nodes along

the routing path fails. Also, variability in the quality of the
wireless medium may cause temporary loss of connectivity
resulting in TCP connection terminations. This can be very
inconvenient. For example, after downloading for 20 minutes,
the users would prefer having a FTP client continue to
download after a temporary disconnection rather than starting
the download at the beginning of the file. Another example is
that if the users are making a banking deposit or withdrawal,
and the modem line is interrupted for a few seconds, or the
users need to change rooms immediately and then reconnect in
different locations, during the incomplete transactions, it
would be preferable if the users continue the transaction or
processes without the loss of. Thus, there is a need for TCP
connections to be maintained in a simple and efficient way.

A. Mobility in Protocol Layers

Mobility can be classified according to the layers of an
Open System Interconnection (OSI) reference model, that is,
from layer 1 mobility to layer 7 mobility [1]. Layer 1 is the
physical layer. An auto-dial to select the best connection or to
connect to a protection path would be an example of layer 1
mobility. Forward Error Control (FEC) and Automatic Repeat
reQuest (ARQ) are techniques for layer 2 or the link layer
mobility. The network layer concerns the change of IP
address. Mobile IP [2] is a very good example of layer 3
mobility. A similar concept is Virtual Private Network.
Modifying Internet Key Exchange (IKE) Keep-alive timer or
IP Security (IPsec) Re-keying are examples of VPN mobility
techniques.

Layers 1 through 3 are generally connectionless and,
therefore, mobility at these layers does not involve
connections. The concept of a connection is first introduced in

layer 4 (transport layer) and above. TCP, one of the transport
layer protocols, is the main focus of this paper since most of
the Internet traffic uses connection-oriented TCP [3].

Mobile IP allows a user to be reached even when she is in a
foreign network. However, the Mobile IP does not solve the
problem of TCP persistence. During a mobile handoff, TCP
connections can get disconnected. Also, the Mobile IP does
not solve the problem of TCP disconnection when the IP
address does not change but there is a temporary
disconnection. From here on, we will use the term connection
and TCP connection interchangeably. Our goal is to maintain
the TCP connection.

B. Why TCP Disconnects?

The first question about TCP persistence is what causes
TCP disconnection? Basically, a TCP connection is broken if
there is no TCP keep-alive response back from the other end
within some threshold. An experimental study of various
factors affecting different commercial TCP implementations is
presented in [4]. The results show that Retransmission
TimeOut (RTO) is the primary factor causing TCP
disconnections. For example, under Windows 95, TCP
retransmits the dropped segments up to five times. RTO is
increased exponentially up to the upper bound of 260 seconds.
After that, the connection is terminated.

Keep-alive timeout is the second factor affecting TCP
disconnections. Keep-alive timeout is an optional parameter
[5]. Browsers, e.g., Internet Explorer, often set it to 1 second.
If a response is not received within this interval, the
connection is closed. The third factor is the connection
timeout. Typically, this factor is defined by the vendor; there
is no standard. This factor is based on the predefined time
units or the number of retransmissions.

One way to resolve the problem of disconnection is to
modify TCP stack directly. Making the TCP connection active
indefinitely is good only in a very few cases. In fact, it is
impractical and also breaks the design purpose of TCP timers,
such as to distinguish network congestion from link failure.
Therefore, we propose to use TCP Freeze to maintain the TCP
connection during the short term disconnection on top of

M

Manuscript received April 25, 2009, revised July 30, 2009. *This work
was partly done as a summer intern program at Cisco Systems, 2006.

Corresponding authors: C. So-In and R. Jain (e-mail: cs5 and
jain@cse.wustl.edu), G. Dommetry (gdommety@cisco.com).

2009 First International Conference on Future Information Networks

U.S. Government work not protected by U.S. copyright

Raj Jain
Text Box
, October 14-17, Beijing, China

Mobile IP. Our goal is to come up with an easy algorithm with
small modifications. Moreover, we do not consider the
concept of socket migration or TCP stack modification.

The rest of this paper is organized as follows: Section II
gives a brief survey of related work. TCP Freeze technique is
described in Section III along with the details of the protocol
design and architecture. The connection persistence schemes
in mobile scenarios are discussed in Section IV. Experimental
results are presented in Section V. Finally, conclusions are
summarized in the last section, Section VI.

II. RELATED WORK

The first work relating to the problem of persistent
connection was presented by Yongguang Zhang and Son Dao
[6]. They suggested mapping between logical and physical
endpoints in terms of a virtual address. This address is
composed of 3-tuples: socket descriptor, IP address, and TCP
port number. However, this paper does not describe the
implementation details. Similar to the virtual address concept,
the Connection Identifier (CID) was introduced to uniquely
identify the connection. The CID may be composed of many
components such as random number, socket state information,
IP address, and TCP port number. Another technique is to
insert a new layer on top of the transport layer to hide the
disconnection directly from application [7, 8]. Instead of
inserting a new layer above the transport layer, a special layer
called a Mobile Socket Layer (MSL) [9] can be inserted below
the TCP socket layer as well.

The techniques described above, all modify either a client
or a server or both in order to insert the extra layer that hides
the disconnection from TCP or the application. However, it
may be impractical to modify all nodes. In [10], the
indirection concept, called MSOCK, was introduced to
redirect all traffic through an extra proxy server. That proxy
server maintains all TCP connection states for both ends. The
proxy server can transparently splice the connection to
alternate servers while ensuring the connection consistency.

TCP freeze modification, called rack, was first used in [11]
to prevent the local TCP socket from aborting due to a
connection failure. It is also used in wireless networks for the
purpose of loss and congestion indication [12].

Another technique is to introduce an extra TCP state, called
MIGRATE_WAIT state [13], which is basically the waiting
state. When a link is disconnected, the TCP state is changed to
the waiting state (there is no data sent or received). The
general idea is similar to that in TCP Redirection (TCP-R) [8].
When a client changes an IP address or a link is broken, the
extra layer hides the broken link from the transport layer. It
stops data transmission (by going to MIGRATE_WAIT state)
and freezes the application data or buffers the application data.
Bytes sent and received numbers are stored. It also buffers the
intermediate data received while the link is broken.

Our scheme, PETS, is very simple and easy to implement.
There is no concept of CID as that in [6, 7, 9]. With the
Mobile IP agent built in at the client, a PETS module can be
added to the agent. There is no extra proxy server. Also, no
TCP protocol modification is required. The PETS is similar to

rack [11] with the use of TCP freeze, but we provide the
details of the trade-off in order to retrieve the correct
acknowledgement information. We also discuss the issues of
link failure detection. In addition, we have specifically applied
the use of TCP freeze in the Mobile IP environment.

III. TCP FREEZE TECHNIQUE

The TCP Freeze technique has already been implemented in
standard TCP implementations in that when the receiving end
host does not have enough buffer space left, it informs the
sender to stop sending more packets. The basic idea is to
freeze all TCP timers when the receiving window is full. Figs.
1 and 2 show an example of TCP Freeze operations.

In Fig. 1, the sender transmits a packet. The receiver sends
back an acknowledgement of the packet along with an
updated window of four packets (TCP window is in bytes but
here we use packets for simplicity). The sender transmits four
more packets as allowed by the window size. When the
receiver has received all four packets, but for some reasons, it
does not want the sender to transmit any more packets, it
sends the acknowledgement of the last received packet with a
window size of zero. Such an acknowledgement is called Zero
Window Advertisement (ZWA). After receiving the ZWA, the
sender knows it cannot send any more packets.

Instead of terminating the connection, the sender enters a
“persistence” mode and periodically sends a probe packet to
the receiver. This packet is called Zero Window Probe (ZWP).
After receiving the ZWP, the receiver sends the ZWA to the
sender with the same acknowledgement number and still
window size of zero. As shown in Fig. 2, this process keeps
on repeating and the connection is not terminated. When the
receiver wants to continue the transmission, it sends the
acknowledgement with a non-zero window. After that, the
normal operation continues.

A. Protocol Design

To make use of TCP Freeze technique, we make use of
“PETS modules” of the two sides of TCP connections. These
modules snoop on the TCP connection and observe the
acknowledgements and windows. The modules consist of a
software code inserted between layer 3 and 4 (IP and TCP).
This service can be provided by the routers, and the PETS
modules can be in the routers adjacent to the end nodes as
shown in Fig 3. It is also possible to have the PETS modules
in the router on one side and in the end-host on the other side.
This flexibility allows our scheme to work with unmodified
end-hosts with modified routers, or modified end-hosts with
legacy routers.

ZWA

ZWP ZWP
ZWA

Client
Server

P1 P2

10.0.3.3 10.0.3.1 10.0.2.1 10.0.2.2 3.3.3.1 3.3.3.2

Fig. 3. Setup with PETS implementation in Routers

Ack2, Win=4

1

100 Ack2 win4 len0

2 3 4 5
Data2 to 5, Win=4

Data1, Win=4

Ack6, Win=0

Ack6, Win=4

6 7 8 9
Data6 to 9, Win=4

ZWA

ZWPs

Probe
Ack

Win
Update

100 Ack6 win0 len0

100 Ack6 win4 len0

Fig. 1. TCP Freeze Operation

Ack6, Win=0

6 7 8 9

Data6 to 9, Win=4

ZWP:
6Ack101, len=1

Win Update:
100Ack6,
Win=4, len=0

Original Ack

100 Ack6,
Win=0, len=0

Probe Ack:
100Ack6,
Win=0, len=0.

.

.

Fig. 2. TCP Freeze diagram

The PETS modules act as proxies for the TCP hosts when
any links on the path between the two PETS modules fail.
During the failed state, the PETS modules send ZWA or ZWP
to the local host TCP as required to keep the TCP connection
alive. In the following discussion we use the term “link” to
mean any links on the path between the two PETS modules. If
the PETS modules reside in the routers, failure of the link
between the end-host and the router is not covered by our
scheme.

The main issue for the PETS modules is to find the correct
acknowledgement number. To retrieve that number, there are
three techniques: stateful approach, iterative approach and
best-guess approach [14]. In the stateful approach, all states
are stored in the PETS module. Although we can acquire the
real acknowledgement number, we have to keep many states
during the normal operation (when the link is not broken). It
also increases the delay and latency during normal operation.

In the iteration approach, the real acknowledgement number
can be obtained from three duplication acknowledgement
packets, when a link is disconnected. In this approach, number
of states kept is less than that in the stateful approach;
however, we may spend too much time in getting the real
acknowledgement number. In some cases, the application idle
timer may expire and consequently the connection may be
terminated by the application.

In the best-guess approach, the PETS modules track the
retransmission packets for each connection. Whenever the
second retransmission packet is received, it is assumed that a
link is disconnected. The local PETS module immediately
sends ZWA back to the TCP layer in the local host based on
the least sequence number seen (if there are many in-flight
packets). When the link is disconnected and retransmission
timeout (RTO) expires, TCP congestion window (CWND) is
normally reduced to one (which means that the TCP can send
out at most one packet). The sender can retransmit only the
first unacknowledged packet. That number is used as an
acknowledgement number for ZWA.

To make use of TCP Freeze, we also need a link state
detection mechanism. For this, we chose a heartbeat
mechanism in our design. The flow chart of PETS algorithm is
illustrated in Fig. 4. In the figure, there are two parts: link
state detection (above dashed line) and connection persistence
mechanism (below dashed line). The algorithm uses three

timer parameters: keep-alive timer, inactivity timer, and fault
indication timer.

For link state detection, the PETS modules keep watching
all TCP flows. If there is any data flowing through the
module, it indicates that the link is not disconnected. Then, the
PETS modules just forward the packets out (normal state). If
there is no data for some pre-defined time and the inactivity
timer expires, the PETS modules send a keep-alive packet
consisting of an Internet Control Message Protocol (ICMP)
message to check if the link is disconnected or it is just idle.
The time interval and the number of ICMP messages are set as
a function of Round Trip Time (RTT). If the keep-alive time
is too small, it will slow down the overall operation. However,
if it is too large, it may take too long to detect the
disconnection and it may cause termination of TCP
connections.

The ICMP messages are replied by the PETS modules on
the other side. If the PETS modules do not receive the ICMP
reply within some threshold, the assumption is that the link is
disconnected and the state operation is moved to a
disconnection state. A flag Wf is used to indicate the state of
the link. The flag Wf is zero during normal operation and is set
to one if the link is disconnected. On sensing disconnection,
the PETS modules set Wf flag to one and start a fault
indication timer. After that, each connection’ socket state is
hashed. The socket states are defined by the 4-tuples: source
IP address, destination IP address, source port number, and
destination port number. The sequence number is stored in the
hash entry although it is not used to compute the hash index.
The hash table design is a dynamic hash with a standard
hashing algorithm. The size of the table can be updated
dynamically based on the number of connections.

After hashing, a socket state is stored in the table if it is not
a duplicated socket state. This indicates that this is a new
packet since the disconnection occurred. However, if it is a
duplicated socket state, the algorithm compares the sequence
numbers and updates that number in the table. This is done
until the fault indication timer expires. If the fault indication
timer expires or the stored sequence number is same as that in
the table, a ZWA packet is sent to the local TCP. The first
condition ensures that the ZWA packet is sent in a timely
manner. The second condition implies that the received packet
is a “second retransmission” and, therefore, the ZWA packet
needs to be sent.

Link is disconnected

No

Send Keep alive

ICMP (#number, RTT)

Yes

NoYes

Resume Operation

Hash Stored

No

Hash<SIP, DIP, Sport, Dport>

Yes

Update Hash Entry

old<new

old>new

old==new

Set flag Wf to 1

Wf = 0: Link is connected
Wf = 1: Link is disconnected

(Initial Wf = 0)

Keep Alive Response?

Hash entry
is in Table?

Yes

No:

Any packet received
within inactivity timer?

Normal Operation

Check Flag Wf == 1

Forward Packets

Yes

No

Start Fault
Indication Timer

TCP Persistence (ZWA)

Link State Detection

For each entry in hash table

Clear hash entry

Set flag Wf to 0
Clear fault. timer

Send update window packet

Fault. Timer Expired?

SEQ Compare

Send ZWA Ignore

Fig. 4. Link detection and PETS algorithms

On the other hand, if the PETS modules receive the ICMP
reply, it is obvious that the link is in operation -either normal
operation or the link has just resumed after a failure. We can
determine this based on the flag Wf. If the flag Wf is zero, the
link continues to be in a normal state and the packet is
forwarded as usual.

However, if the flag Wf is one, the link was disconnected
and has just resumed. Therefore, updated window packets are
sent back to the local TCP of each connection whose state is
stored in hash table. Then, the hash table is destroyed. Also,
the flag Wf is cleared to zero. The hash table is initialized
again when the PETS modules sense a link disconnection.

The fault indication timer helps prevent the situation in
which the PETS modules keep receiving sequence numbers
different from the stored sequence number. The equality of
stored and received sequence numbers indicates a “second
retransmission” and provides a good sequence number for
ZWA. Without a sequence match, the ZWA will not be sent.
This may happen for a long time and TCP may disconnect.

This situation is avoided by the fault indication timer. When
the fault indication timer expires, the ZWA is sent regardless
of the sequence numbers. This is also shown in Fig. 4.

Intuitively the best-guess approach outperforms the stateful

and iteration techniques since there are fewer states, especially
since no state information is kept during the normal operation.
However, there are a few issues with this algorithm in some
cases. The probability of these cases is extremely low. For
example, if RTO expires for some reason other than a real
disconnection; the TCP congestion window (CWND) is
increased from one to two. If this happens just after a
disconnection, TCP sends out two more packets instead of just
one. Then, the PETS modules may send the ZWA with a
wrong acknowledgement number. Consequently, the
application loses data. One way to avoid this is to use three
retransmissions as the indication of the disconnection.
However, since the retransmission timer is increased
exponentially, the longer the algorithm is delayed the chances
of application idle timer expiring also increases.

IV. PETS IN MOBILE SCENARIOS

Mobile IP helps ensure that the mobile host can still be
reached at the old IP address (e.g., home address) regardless
of the actual location of the host, but it does not ensure the
connectivity if any links get disconnected. By combining
PETS with Mobile IP, we can handle both disconnections and
mobility.

TCP Freeze

Probe

Probe Ack

Update Window
Update WindowProbe Ack

Probe

Mobility Agent
TCP Freeze

Resume Connection

. . .

. . .

HA ServerClient

Fig. 5. Connection disconnection with HA

Mobility Agent
Resume Connection

Mobility Agent
Update WindowProbe Ack

Probe

TCP Freeze

. . .

Update WindowProbe Ack

Probe

TCP Freeze

. . .

Client Client

Fig. 6. Connection disconnection without HA

SUSPEND request

SUSPEND grant

RESUME request
RESUME grant

Mobility Agent
Save all TCP connection state

Suspend the mobile node

Resume the mobile node
Restore all TCP connection state

Mobility Agent

Update WindowProbe Ack

Probe

TCP Freeze

. . .

Update WindowProbe Ack

Probe

TCP Freeze

. . .

Client Client

Fig. 7. Mobile node suspension with HA

SUSPEND request

SUSPEND grant

RESUME request
RESUME grant

Mobility Agent
Save all TCP connection state

Suspend the mobile node

Resume the mobile node
Restore all TCP connection state

Update WindowProbe Ack

Probe

TCP Freeze

. . .

TCP Freeze

Probe

Probe Ack

Update Window

. . .

HA ServerClient

Fig. 8. Mobile node suspension without HA

With Mobile IP, PETS can be optionally implemented in
Home Agent (HA). This helps provide TCP persistence
service for PETS-aware hosts. Fig. 5 shows how the TCP
persistence is achieved with the HA that has an internal PETS
implementation. The server in Fig. 5 is PETS unaware. The
client has a local PETS module. When the client’s PETS
module and HA detect the disconnection, they each send a
ZWA packet to their TCP hosts.

Fig. 6 shows TCP persistence between two PETS-aware
Mobile IP hosts. In this case, we do not need to implement
PETS in the HA.

A related issue is that when the mobile host goes into a
suspended state (“sleep” or “hibernation” mode). The PETS
technique can still be applied. However, the PETS module has
to store the TCP connection states which basically are IP
address, port number, bytes-received/sent, SYN, and
acknowledgement number before going to the suspended
state. Figs. 7 and 8 show the use of the PETS technique with
mobile host suspension. In Fig. 7, the HA has an internal
PETS implementation. The process is almost the same as that
in Fig. 5. However, before going to a suspension mode, the
PETS module in the client sends a “SUSPENSION request” to
the HA to inform about the suspension. After the request is
granted, the PETS module saves all TCP connection states and
the client goes into the suspension mode. After the HA grants
the suspension, it keeps the other end host connection open by
the request. It also sends the window update packet to the
other end host.

Fig. 8 shows mobile host operations if both end hosts are
PETS aware. In this case, HA does not need to have an
internal PETS implementation. It should be mentioned that the
link between the HA and PETS-unaware host is not protected
by this technique.

V. EXPERIMENTAL RESULTS

In this section, we describe the experiments with the PETS
technique for two different commercial applications: FTP and
Telnet. We used a testbed setup similar to that shown earlier
in Fig. 3. We have not yet developed the host-based PETS
modules. Instead, we used router-based PETS modules.
Traffic generator node (TGN) and Packet Count and Capture
(PKTS) [15] are the router software packages that were used
to capture all traffic and generate the TCP packets in these
experiments.

Basically, a TCP connection is setup between a client and a
server through routers P1 and P2. The disconnection occurs at
a link between the two routers. FileZilla FTP server and
BFTelnet server were installed at Windows 2000 Server.
These two server programs, unlike Window’s FTP and Telnet
servers, allow us to configure the connection idle timeout and
a few other parameters. The clients are standard Windows
Telnet client, standard Windows FTP client, and FileZilla FTP
client running on Windows XP Professional.

The TCP connection is started with either Telnet or FTP
from the client to the server. At both routers, their PETS
modules snoop the last acknowledgement packet for the
connection. With a preconfigured application idle timeout, the
link is disconnected between routers P1 and P2. Then, using
the TGN and PKTS tools, the routers send ZWA packets.
After the end hosts receive the ZWA, they basically do not
send any more packets, but instead send the ZWP packets.
Once the routers receive these packets, they send the ZWA
packets back to the end hosts. These operations continue until
the link resumes. When the link resumes and the updated
window packets are sent back to the end hosts, the connection
continues normal operation.

With Telnet experiments, we found that without PETS, the

connection terminates in about twenty seconds. On the other
hand, if with PETS, the connection can be kept active until the
application idle timeout timer expires (about 1 minute in our
experiment). Of course, if the application timeout timer can be
changed, the persistence for longer interval can be achieved.

With FTP experiments, by tuning the application idle
timeout option called “how long the client will disconnect
regarding the received zero window packet”, which is
applicable only for Filezilla FTP client, with PETS, the
connection remains active until the application idle timeout
timer expires (more than five minutes). Without PETS the
TCP connection terminates in about two minutes.

With Windows FTP client, we cannot find a way to modify
the application idle timeout timer. As a result, the connection
is terminated at around one minute with or without PETS.

VI. CONCLUSIONS

PETS allows preserving the TCP connections during
temporary link disconnections. It does not handle the change
of IP address. Thus, it complements the Mobile IP very well,
which handles IP address change but does not handle link
disconnections. By combining the PETS and Mobile IP, we
can support both disconnection operation and mobility.

PETS uses the standard TCP Freeze technique to keep the
connections alive. Since TCP Freeze is already implemented
in standard TCP stacks, the one change required is to
implement “PETS modules” that act as proxies for the other
side. These agents can be implemented either in the hosts (as
part of the Mobile IP’s mobile agents) or in the routers. Thus,
our technique works with legacy hosts (and PETS-aware
routers) or legacy routers (and PETS-aware hosts). This
flexibility allows our scheme to be incrementally
implemented.

PETS is a very simple technique. There is no concept of
process checkpoint or migration [16] and no need to change
TCP protocol or its implementation. In addition, PETS allows
the TCP connection to be preserved indefinitely or until the
application timeouts due to inactivity.

REFERENCES
[1] W-E. Eddy and J. Ishac, “Location Management in a Transport Layer

Mobility Architecture,” NASA/TM-2005-213844., Aug. 2005.
[2] C-E. Perkins, “Mobile IP,” IEEE Commun. Mag., vol. 40, no. 5, pp. 66-

82, May 2002.
[3] K. Thompson, G. Miller, and R. Wilder, “Wide Area Internet Traffic

Patterns and Characteristics,” IEEE Networks., vol. 11, no. 6, pp. 10-23,
Dec. 1997.

[4] S. Dawson, F. Jahanian, and T. Mitton, “Experiments on Six
Commercial TCP Implementations Using a Software Fault Injection
Tool,” Software-Practice and Experience., vol. 27, no. 12, pp. 1385-
1410, Oct. 1997.

[5] J. Postel, “Transmission control protocol,” Request for Comments: 793,
Internet Engineering Task Force (IETF), 1981.

[6] Y. Zhang and S. Dao, “A Persistent Connection Model for Mobile and
Distributed Systems,” in Proc. Int. Conf. on Computer Communications
and Networks., 1995, p. 300.

[7] R. Ekwall, P. Urban, and A. Schiper, “Robust TCP Connections for
Fault Tolerant Computing,” in Proc. Int. Conf. on Parallel and
Distributed Systems., 2003, pp. 501-508.

[8] D. Funato, K. Yasuda, and H. Tokuda, “TCP-R: TCP mobility support
for continuous operation,” in Proc. IEEE Int. Conf. on Network
Protocols., 1997, pp. 229-236.

[9] X. Qu, J-X. Yu, and R-P. Brent, “A mobile TCP socket,” Technical
report TR-CS-97-08., Computer Sciences Laboratory, RSISE, The
Australian National University, Canberra, ACT 0200, Australia, Apr.
1997.

[10] D-A. Maltz and P. Bhagwat, “MSOCKS: An Architecture for Transport
Layer Mobility,” in Proc. IEEE Conf. on Computer Communications.,
1998, vol. 3, pp. 1037-1045.

[11] V-C. Zandy and B-P. Miller, “Reliable network connections,” in Proc.
Mobile Computing and Networking., 2002, pp.95-106.

[12] T. Goff, J. Moronski, and D-S. Phatak, “Freeze-TCP: A true end-to-end
TCP enhancement mechanism for mobile environments,” in Proc. IEEE
Conf. on Computer Communication., 2000, vol. 3, pp. 1537-1545.

[13] A-C. Snoeren and H. Balakrishnan, “An End-to-End Approach to Host
Mobility,” in Proc. Mobile Computing and Networking., 2000, pp. 155-
166.

[14] Cisco Systems, “TGN: traffic generator node and PKTS: Packet Count
and Capture”.

[15] C. So-In, “Session Persistence,” Technical report (Cisco Systems), 2006
(unpublished).

