
 
 

  
Abstract— Application Service Providers (ASPs) may obtain 

resources from a number of cloud service providers (CSPs) in an 
attempt to improve latency and minimize operational expenses 
(OpEx). The CSPs may use management and control platforms, 
such as OpenStack and EC2 and the network service providers 
(NSPs) may use network management platforms, such as, 
OpenDaylight. However, today the ASPs do not have a common 
management and control platform that would present to them a 
converged view of all the cloud and network resources. 
OpenADN being developed at Washington University in Saint 
Louis aims to allow the ASPs dynamic and real time control of 
virtual resources across multiple clouds and networks to provide 
efficient application delivery. The OpenADN platform itself is a 
complex distributed and multi-threaded system. Performance 
evaluation and assessment of need for optimization of such a 
complex platform requires precise and fine-grained behavioral 
data. In this paper we establish the need for profiling OpenADN 
like platforms so that the ASPs can optimize its behavior and 
control their cost, performance (latency) and energy 
consumption.1 

Index Terms—Software defined infrastructure, profiling, 
multi-cloud, cloud services, network services, application service 
providers, OpenADN, distributed systems, optimization 

I. INTRODUCTION 
Software-defined infrastructure (SDI) is a generic term that is 
used to refer to virtual infrastructures with software-based 
control and management systems. The physical devices on 
which these virtual infrastructures are created could 
themselves be spread over a number of datacenters or cloud 
platforms, each controlling a number of datacenters. Some 
examples of software that enable SDI implementations include 
OpenStack, EC2 and OpenDaylight. SDI allows application 
specific virtual clouds to be carved out of physical resources 
from multiple clouds and to dynamically control and manage 
them. Through SDI, businesses and enterprises, which we call, 
the Application Service Providers (ASPs), get a converged 
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view of resources provided by the Cloud Service Providers 
(CSPs) and the Network Service Providers (NSPs). This 
allows them to use resources available from many providers, 
through their APIs, in a manner that enables optimization of 
flexibility, reliability, latency and operational expenses 
(OpEx).  

Software presenting virtualized environment of distributed 
physical resources under disparate management tend to be 
complex systems. They generally use multithreading 
technique of software modularization and concurrent 
execution. If the modules, of such a system, do not work in 
harmony, performance suffers resulting in inefficient resource 
utilization and greater energy consumption [1]. Responding 
reactively to performance degradation for optimization results 
in higher expenses being incurred during operation of the 
existing system and its modification during its lifetime. At the 
same time, understanding the performance of the software 
platform through profiling should invariably precede 
optimization. Using well-known techniques software 
engineers are able isolate hot spots that consume 
disproportionate share of resources. Multithreaded systems 
become difficult to profile because characterizing the effects 
of interactions between threads is difficult [16]. Efficient 
abstractions need to be developed to capture this behavior 
without resulting in exponential analysis times. 

OpenADN, being developed at Washington University in St 
Louis, is an application delivery platform that creates 
application clouds employing, controlling and managing 
resources across multiple CSP clouds. OpenADN functions as 
an interface between the applications and the SDI layer. It 
allows ASPs to dynamically acquire and manage resources 
from multiple CSPs and optimize operational expenses. In 
principle one would expect these benefits from any such 
platform that might be developed in future. However, if the 
platform software has not been optimized from the ASPs point 
of view, then the resources would be inefficiently utilized 
resulting in sub-optimal system behavior and increase in 
operational expenditure. Such systems also lead to higher 
energy consumption and are contradictory to the notion of 
reducing the carbon footprint. Taking advantage of the first 
such system being available to us we have attempted to 
characterize the behavior of such a platform under operation 
and used several profiling techniques to see what could cause 
the system to behave sub-optimally. This should spur the 
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developers of such systems to fine-tune their platforms saving 
money for the users and the planet from harmful effects of 
higher energy consumption. Section II describes the 
OpenADN platform highlighting its distributed and multi-
threaded nature. Section III deals with profiling approaches 
that can be used for platforms like OpenADN dealing with 
resources spread across multiple clouds. Section IV takes up 
the discussion on profiling OpenADN and directions for 
optimization. We conclude our results in Section V. 

II. MULTI-CLOUD SDI - OPENADN 

A. OpenADN Architecture 
OpenADN is a multi-cloud management system. As shown 

in Fig 1, on the north side, it offers interfaces for application 
developers, application architects, and application deployment 
administrators to define the application resource requirements 
and deployment policies. On the south side it has many 
modules, one for each of the cloud/network management 
systems. 

 

 
Fig. 1. OpenADN Multi-Cloud Management System 

 
Notice that the OpenADN architecture has a modular 

structure similar to the OpenDaylight SDN controller [2] with 
many southbound interfaces. The northbound interfaces of 
OpenStack/ OpenDaylight become one of the southbound 
interfaces of OpenADN. While OpenStack allows 
implementing client policies in one cloud, OpenADN allows 
implementing client policies uniformly among all the clouds. 

OpenADN does not directly manipulate the resources inside 
the clouds; it simply requests the respective cloud manager to 
create those resources. The Application Deployment Manager 
specifies the policies regarding when and where to create the 
resources. 

Most contemporary and future application deployments like 
Internet-of-Things (IOT), Cyber-Physical Systems, mobile 
apps, massively parallel gaming and virtual reality tend to be 
distributed and need to use multiple clouds primarily due to 
cost and latency considerations and can use OpenADN to 
manage the entire application as if it was in one cloud. 

OpenADN is an integrated infrastructure comprising both, 
message-level devices and packet-level devices, hosting 
application-layer services as well as network-layer services. It 
consists of a central global manager and a set of local 

managers - one per cloud or network. The administrator starts 
only the global manager manually and the rest of the process 
is bootstrapped by it. For massively distributed applications, 
OpenADN allows multiple zones with each zone consisting of 
multiple clouds [14]. 

B. OpenADN As A Massively Distributed System 
 OpenADN has a distributed data plane to optimize 
application service deployment. Considering the geographical 
spread of resources, a part of control activities are centralized 
in the global controller making it easy to introduce new 
service, propagate new polities and troubleshoot problems. 
However, keeping view the latencies of a highly distributed 
data plane, tasks relating to a data center are controlled by a 
local controller. The management plane is completely 
centralized and ensures that the policies are being enforced 
properly and record non-compliance. The system as a whole 
can perform many different tasks at the same time leading to 
better utilization of the hardware resources and ensuring that 
the system as a whole makes progress all the time. OpenADN 
is essentially a multi-threaded system where performance is 
determined by the execution environment. 

III. Profiling Multi-cloud Delivery Platform 
In this section we discuss the techniques that we have 

selected from in profiling OpenADN. 

A. Profiling and optimization 
Profiling gives insight into program performance. Program 

analysis tools are extremely important for understanding 
program behavior. Most software has code that consumes 
disproportionate amount of resources and produces higher 
CPU loads. Reading of code does not provide reliable 
information about program behavior under execution. Using 
intuition on multi-threaded programs does not usually give 
right results. 

B. Profiling techniques for Application Delivery Platforms 
New profiling, characterization, and modeling 

methodologies are required to understand the nature 
of architectural behavior under full system virtualization. In 
order to pinpoint the sections of code that should be 
optimized, a programmer needs detailed data on how that 
program behaves [3]. We shall see here the techniques that can 
be applied to distributed, multi-threaded systems [16]. We’ll 
divide these techniques into static, dynamic and concurrency 
profiling 
1) Static Profiling  

Static analysis is the formal construction of program 
execution models [4]. Model checking is a static analysis 
technique that is often applied to multi-threaded programs to 
explore all feasible inter-leavings exhaustively to ensure 
correctness properties [5]. Model checking becomes 
computationally expensive due to a vast number of feasible 
inter-leavings in a large multi-threaded system. Static-analysis 
techniques give assessment of relative time and temporal 
ordering and do not give absolute time [6]. For assessment of 
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absolute times dynamic we applied dynamic profiling [15]. 
2) Dynamic Profiling 

Dynamic profiling is the only practical approach to 
behavioral analysis that can incorporate aspects of absolute 
time by inspecting behavior of a running system. It is an active 
form of profiling in which the system being measured 
explicitly generates information about its execution 
parameters. Conversely, passive profiling relies on explicit 
inspection of control flow and execution state through an 
external entity, such as a probe or modified runtime 
environment. Three main families of dynamic profiling 
techniques code instrumentation, statistical sampling and 
concurrent profiling.  

 
a) Code Instrumentation: An instrument is a set of additional 
instructions injected into the target program to generate the 
required information. Instrumenting a program can cause 
changes in the performance of the program, potentially 
causing inaccurate results and has to be carried out carefully in 
a controlled manner. These instructions count how many times 
various parts of a program get executed. Some instrumentation 
systems [5] count function activations while others [7] count 
more fine-grained control flow transitions. 

 
b) Statistical Profiling: randomly samples the effective 
instruction pointer/program counter, and deduces where time 
is being spent. They are not as intrusive to the target program. 
They can show the relative amount of time spent in user mode 
versus interruptible kernel mode such as system call 
processing and also the user time out of the total execution 
time [17,18]. In OpenADN environment this could, for 
example, provide valuable information on whether 
optimization should at all be attempted.  

 
c) Deterministic profiling refers to all function calls, function 
returns, and exception events being monitored and precise 
timings made for the intervals between these events. In 
Python, since there is an interpreter active during execution, 
the presence of instrumented code is not required to do 
deterministic profiling. Python automatically provides 
a hook (optional callback) for each event. Call count statistics 
can be used to identify bugs in code and to identify possible 
inline-expansion points. Internal time statistics can be used to 
identify ``hot loops'' that should be carefully optimized.  
 
3) Concurrency Profiling 

Concurrency profiling can be additionally used for 
multithreaded applications. Resource contention profiling 
collects detailed call stack information every time that 
competing threads are forced to wait for access to a shared 
resource. Concurrency visualization also collects more general 
information about how multithreaded application interacts 
with itself, the hardware, the operating system, and other 
processes on the hosts. It can help locate performance 
bottlenecks, CPU underutilization and synchronization delays 
[8,9] 

IV. OPENADN PROFILING 
The complexity of the multi-threaded OpenADN platform 

required precise and fine-grained behavioral data while in 
execution, coupled with off-line analysis to help characterize 
the performance of the platform and possible need for 
optimization. Profiling of OpenADN was, therefore, carried 
out at multiple levels. To validate the functionality, we ran 
OpenADN in a virtual environment created by Mininet [10]. 
Mininet allows emulating a whole virtual network running real 
kernel, switch and application code, on shared physical 
resources of a machine. The following virtual resources were 
created for profiling OpenADN: One zone consisting of a 
global controller, two data center sites with a local controller 
each, a name-server, 7 hosts per site and client host with 
10000 users. The selection of stimuli (set-up and input data) 
and multiple runs of the platform ensured that behavioral data 
for most control paths are collected. 

To recapitulate the virtual network bootstrap process, the 
resource manager adds resources from different sites to the 
global resource pool. It then assigns a role to each virtual node 
that is started. The client host simulates around 10,000 users, 
each starting a separate user session with the application. The 
global controller (GC) initializes a workflow manager (WFM). 
The WFM spawns an initial workflow thread (WFT) for an 
application, say ABC, in the only zone, say US-E. The WFT 
registers this application instance with the name server. The 
name server advertises this mapping when the WFT explicitly 
activates the mapping entry. WFT also gets a proxy node 
allocated to it that will be the interface between the workflow 
services and the external users. The WFM is responsible for 
allocating a proxy node to each WFT. However, the WFM can 
do so only when it has the resources. WFM does not keep the 
state so WFT has to retry. The WFT runs an exponential back-
off mechanism to repeat its request instead of flooding the 
system with useless request messages. The WFM on the other 
hand independently attempts to get the resources required to 
allocate a proxy node. While this happens, each datacenter 
controller boots up independently and tries to register itself 
with the GC. 

The WFM makes a resource request to site 1 that offers 
resources to the WFM only after its data plane nodes have 
registered their resources with it and so it does not have any 
available resources. The WFM would try other sites and repeat 
these requests till it gets the required resources. In the 
meantime, the WFT thread keeps on polling the WFM for a 
proxy node. Eventually WFM is flooded with resource updates 
from the different sites. Each data plane node in our 
experiment reports 1000 units of resources and hence the total 
resource available per-site is 5000. WFM sends the request to 
allocate a data plane node to run the proxy service to the first 
site that reports enough available resource. The proxy node is 
initialized and the WFM starts gathering the resources to 
deploy the other services within the workflow. 

Once the required data plane nodes with enough resources to 
run the workflow have been identified, the next step is to 
actually start the application services on these nodes and setup 
the message and packet routing services. WFT gets to the job 
of starting the services for the workflow after the WFM has 
allocated it the required resources. After each service is 
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initialized it connects to the OpenADN socket that opens a 
communication channel between the service and the platform. 
The OpenADN socket also starts a heartbeat reply service to 
reply to aliveness queries from the platform. The WFT 
attaches itself to one of the ports of the shared proxy service. 
This concludes the bootstrap process. 

�� �����	
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�

To get the broad idea of the efficiency of the platform code 

executing in a virtualized environment, the Unix time utility 
was used. The platform software “driver_mininet” created 
virtual hosts over which the platform modules – global 
controller, local controller, name server, node controller and 
clients ran. The program was run to bootstrap the process and 
run it till all the modules were added and services started 
running. The Unix built-in time command was invoked with: 
/usr/bin/time -f "\n%E elapsed,\n%U user,\n%S system,\n%M 
memory\n%x status" driver_mininet.py. A number of runs 
were performed for the same virtual environment and data 
from five of them are given in Table I. 

The elapsed time is the total platform run time for booting 
and starting new services, user-space time is for non-system 
calls or CPU time spend outside the kernel and system-calls is 
time spent in kernel specific functions. 

Table I
Run time used for user and system activities 

(time unit: seconds) 

Runs I II III IV V Averages % Run 
time 

User Space 0.53 0.55 0.62 0.6 0.61 0.58 1.65
System 
Calls 0.76 0.75 0.65 0.67 0.68 0.7 1.99 

Run time 35.82 35.6 34.65 34.8 35.06 35.19 100 
Res Memory 
Block(kB) 19216 19216 19232 19216 19232 19222 - 

Of the average total elapsed time of 35.19 seconds for which 
the platform software was executed, the time spent in user 
functions and kernel space was 1.65% and 1.99%, 
respectively. This gives a sense that a large part of the time is 
spent in I/O waits and sleep times for dealing with dependent 
asynchronous concurrent processes. However, it cannot be yet 
said whether this time relates to unavoidable delays and the 
situation can be improved through optimization. This called 
for the next level of profiling, i.e., at module/function level to 
see which of the modules are more CPU intensive. 

The same modules were also run on separate physical 
machines for comparison and the results obtained are given in 
Table II.  

Table II 
Time used for user and system activities on physical machines 

Function User Space 
System 
Calls Run Time User(%) 

Name Server 14.161 5.072 229.438 6.17 

Global Controller 83.637 15.797 200.835 41.64 

Local Controller 18.549 7.16 175.57 10.57

Node Controller 19.95 8.86 156.99 12.71 

Client 0.428 0.036 18.855 2.27 

136.725 36.925 781.688 17.49 
 

On physical machines, the platform does not have to spend 
time creating virtual machines for its own modules as well as 
for running services. Even in this case the overall user-space 
time is 17.49% and even lesser for kernel calls. Among these 
the global controller used the time more effectively with user 
functions taking up to 41.64% of run time on an average. 
However, in the actual operational environment, these 
modules will be hosted on VMs that will take finite amount of 
time to create, start and augment. 

This simple profiling indicates the possibility of higher load 
on the CPU because of potentially wasteful activities like 
waiting on I/O calls and sleep functions. While in many cases 
where asynchronous linking of threads are used some waiting 
would be unavoidable. However, one needs to see whether 
these could be optimized for 1) making the platform more 
efficient 2) correctly dimensioning the resources leased, and 3) 
distributing the workload properly. 

B. Deterministic Profiling of OpenADN 
Deterministic profiling of OpenADN programs was carried 

out to see execution pattern and the resultant CPU loads of 
various functions. This was done through cProfile provided by 
the Python library. The profile of these programs gives a set of 
statistics that describes how many times different functions are 
called and how much time the CPU is spending in various 
modules. The module ‘pstats’ [11] was used to format these 
statistics to make them amenable to analysis. Fig 2 gives a 
sample output. 

It can be seen that the total time that the driver_mininet.py 
was executed in the run above was 166.870 seconds. Out of 
this the simulator module took 166.106 seconds.  

Fig. 2. Sample Deterministic Profile Run 
Legend: ncalls: the total number of calls, tottime: total time spent in the 
given function (excluding sub functions) seconds, percall: tottime divided 
by ncalls, cumtime: total time in this and all sub-functions seconds, Percall: 
cumtime divided by primitive calls, filename: data for each function 

It was initially suspected that the Zeromq messaging library 
[12] poller takes up a lot of CPU time. A cursory analysis of 
the output shows that the poller is called 46914 times and the 
total time spent is 117.168 seconds, which is 70.21% of the 
total time. However, these calls are distributed and on each 
call the time spent is just 0.002 seconds. Creation of the virtual 
network topology takes 37.856 seconds and starting the virtual 
network takes another 6.151 seconds. It was also thought that 
the sleep module might also be wasting a lot of CPU time. It 
took 15.016 seconds of the total time. Different important 
modules take up the times given in Table III. 
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Table III 

Time for different functional modules 

Module 
 
CPU time taken 
(seconds) 

Name server 5.009 

Global controller 5.008 
Local controller 0.014 

Hosts 6.013 

Client host 0.065 
 

We would see later that the Name Server and the Global 
Controller sleep through most of the time. Their job is largely 
reactive in nature, getting activated when other modules need 
their services. 

C. Detailed Line-by-line Analysis 
Profiling at the platform and function levels gives a good 

idea of the time spent by the CPU in kernel space calls, user 
space calls and waiting for I/O and in various modules of 
OpenADN. It was observed that a large proportion (96.36%) 
time was spent in waiting for I/O. Polling operations took 
about 70% of the execution time. The program spent 15 
seconds of the total 166.87 seconds in sleep mode. OpenADN 
functional modules took up to about 6 seconds each. 

Profiling at this level gave a good indication of overall 
execution times and of the functions that were consuming 
unduly large amount of CPU time. It was not enough to tell us 
which modules to look into to locate the potential hot spots 
and optimize the software. As is often the case, the reason for 
a particular module or functionality taking a large amount of 
time could be pin-pointed to some small part which may seem 
to be innocuous on simple reading of the code. Some 
statements could trigger a library function or call to a special 
method that may not be so obvious. The function level 
profiling only times the explicit function calls and not the 
special methods called. Such profiling would not identify a 
slow operation in the library function like Zeromq. If a 
statement triggers computation when using libraries, when 
there is no explicit call, function profiler will not usually break 
it down. 

A more detailed line-by-line analysis of the program was 
undertaken to find out which parts of the program take more 
CPU time. A more intrusive line profiler that could go into 
each function and time execution of each statement was used 
for this purpose. The Kernprof python script and the @profile 
decorator used in a judicious manner allow this kind of 
analysis [13]. This profiler keeps track of multiple statement 
executions, sums up the total time each statement takes in 
multiple passes and avoids profiling overheads. The profiling 
result is a binary file that could be deciphered with ‘pstats’ or 
a similar function. The output consists of the following: 
a) Hits: Number of times that line was executed. 
b) Time: Total execution time 
c) Per Hit: Average amount of execution time 
d) % Time: Percentage of time spent on that line relative to the 

total amount of recorded time spent in the function. 
e) Line Contents: Actual source code. 

We give snapshots of some sample outputs in Fig. 3 (a) 
through (d) and then discuss some important aspects revealed 
by these. 

Fig. 3 is part of a typical profiling run. However, the 
averages of multiple runs were quite close to individual runs 
and so this figure provides sound grounds for discussion. The 
overall execution times for different functions are given in 
Table IV. 

The illustrations in Fig. 3 show some of the portions of 
profiling data that indicate possible need for optimization. Fig. 
3a and 3b show linking to the switch takes up a major 
percentage of the execution time. The name-server takes 6.8% 
while the global controller takes 4.2%(not shown). The hosts 
take the longest accounting for 68.5% of the time. 

 

(a) Profile run for creation of topology 
 

(b) Profile run for linking hosts to a switch 
 

(c) Start of global controller 
 

 
(d) Simulation run of the platform 

Fig. 3. Results of Line by Line Analysis  

Fig. 3c and 3d indicate large amount of times taken up by 
the sleep function and the polling function. The global 
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controller sleeps most of its execution time and similar is the 
case with the name-server. This could mean that these 
functions are demanding more virtual resources than necessary 
and are leading to higher OpEx. Also the function to check the 
ports for inter-process messages takes up 87.2% of the entire 
simulation time. 

 
Table IV 

Overall function execution times 
Function Execution time  

in seconds 
Creation of virtual topology 10.174 
Starting the virtual network 2.032 
Starting global controller 5.007  
Starting local controllers 0.014 
Starting name server 0.012 
Starting client host 0.025 
Starting hosts 5.334 
Simulation 238.897 
Total 261.495 

V. DISCUSSION, CONCLUSIONS AND FUTURE WORK 
Multi-cloud management systems, like OpenADN, have 

parts of the code that account for unduly bigger share of time 
elapsed during execution. This could lead to suboptimal 
application delivery, increased resource usage and operational 
expenses. ASPs who would use such systems would like to 
optimize their platforms to control their expenses and for other 
desirable features like reduced latency and reduced energy 
consumption.  

Visual examination of the code does not provide reliable 
information about what could be wrong with it. Using 
intuition on multi-threaded programs is still worse. It becomes 
necessary to generate program profile with data collected at 
various levels-platform, functions and statements.  

For OpenADN, the top level analysis reveals that the overall 
execution time has a large component of non-user, non-kernel 
time that could be explained by I/O waits. A concern that 
arises is that some part of this time could be spent 
unproductively using up resources and contributing to energy 
consumption. A function level analysis makes apparent the 
functions that have potential hot spots. Line profiling on all of 
the modules simultaneously allows interplay of threads and 
reveals the parts of the functions that could be helped with 
optimization efforts.  

In our experiments the detailed profiling points to the parts 
where processes wait for other processes to finish their jobs 
and provide inputs and polling of ports to see if any inter-
process messages have arrived as taking a large amount of 
time. 

Optimization could simply mean fine-tuning the sleep/wait 
times of processes built into the platform. On the other hand 
there could be more serious issues and optimization would 
involve changing of code to do something differently. 

Based on the profiling data, optimization could involve the 
following: 

1. Critically examine the time spent in I/O waits and take 
remedial measures wherever possible 

2. Examine the use of sleep statements and fine-tune their 
durations 

3. Examine the use of heartbeat and ways to make it 
efficient 

4. Optimize the time take to dynamically create and destroy 
virtual resources 

 
Profile-led optimization makes use of the results generated 

by deterministic, functional and line-by-line profiling to get 
optimized code. If the execution environment fairly represents 
the usage scenario then profile guided feedback benefits 
optimization. Future work will involve demonstrating 
usefulness of the approach in carrying out optimization of 
OpenADN. 

The scope of the problem at hand, however, was to see 
whether a combination of carefully selected profiling tools, 
working at different levels of the OpenADN program 
hierarchy (and by extension other similar platforms), would be 
able to pin-point the bottlenecks that could cause higher 
consumption of virtual resources. From the results discussed 
above it is clear that it would be in the interest of reduced cost 
and increased agility of doing the ASP business to carry out 
profiling at different levels as a precursor to optimization. 
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