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Abstract

ABR rate allocation schemes can achieve high link uti-
lizations by maintaining non-zero (small) queues in the
steady state, and draining queues when the sources do not
have data to send. The queue length (and queuing delays)
can be controlled if part of the available bandwidth is used
for draining queues in the event of queue build up. A sim-
ple threshold function can allocate such bandwidth to drain
queues. Better control of the queues, and hence delay, can
be achieved using more sophisticated queue control func-
tions. We study the design and analysis of several such
queue control functions: the step, linear, hyperbolic and in-
verse hyperbolic functions. Analytical explanation and sim-
ulation results consistent with analysis are presented. From
the study, we conclude that the inverse hyperbolic is the best
queue control function. To reduce complexity, the linear
function can be used since it performs satisfactorily in most
cases.

1. Introduction

Asynchronous transfer mode (ATM) is the chosen tech-
nology for implementing the broadband integrated services
digital network (B-ISDN). The available bit rate (ABR) ser-
vice provided by ATM can be used to transport data traffic
giving minimum rate guarantees. ABR uses closed loop
feedback to control the source rates. The source periodi-
cally sends a resource management (RM) cell to gather in-
formation from the network [7]. The RM cells are turned
around at the destination. The switches along the path in-
dicate the rate which they can currently support. When
the source receives the returning RM cells, it adjusts its al-
lowed cell rate based on the explicit rate indicated in the RM
cell. There are several explicit rate ABR switch schemes
(16, 2, 1, 3, 5]) that can compute appropriate explicit rates
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and indicate them in RM cells. This study uses the ERICA+
switch scheme [5], but it also examines how to use a queue
control function to improve the performance of any scheme.

The goals of rate allocation schemes include maintaining
high link utilizations, small queuing delays, low cell loss,
and fairness among competing sources. In order to sup-
port (low quality) video sources over the ABR service, it is
also desirable that, in the steady state, the rates and queu-
ing delays not be highly variable. One way to achieve high
utilization and low queuing delay is to vary the target ABR
rate as a function of the queue lengths.

In this paper, we study several queue control functions
which satisfy the above requirements. We present an ana-
lytical explanation for the performance of these functions,
and give simulation results consistent with the analysis. The
convergence time and behavior of the queues in the steady
state are used as metrics to evaluate the queue control func-
tions.

2. Queue Control Functions

In this section, the relationship between the queue length
and queue control function is derived. This section also dis-
cusses the design considerations of queue control functions.
The following terms are used in the discussion:

N number of sources.

ts averaging interval, i.e., the interval in which measure-
ments are made, and feedback to the sources is calcu-
lated at the switch (see [5] for more details).

r;(t) rate of source s.
er;(t) explicit rate of source i calculated at the switch.
t, propagation time from the source to switch.

ty feedback delay (twice tp).
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Ryiny link rate.
R, available ABR capacity.
Q(t) switch queue length (in cells).

R(t) aggregate input rate seen at switch, R(t)
21:1,N ri(t).

C(t) (conversion function) number of cells transmitted in
time ¢ at link rate. C'(t) = (R; x t)/424 if Ry is given
in Mbps.

X (t) denotes that X is a function of time. We as-
sume that the explicit rate switch scheme operates at the
output port and gives feedback to source ¢ according to
the following equation: Target rate (er;) = f(Q) X
F(ri, Riink, HPR), where HPR is the total rate of high
priority traffic such as VBR and CBR. For simplicity, we
ignore higher priority traffic such as CBR and VBR, and as-
sume that R; is same as the link rate Ry;,x. The function
f(Q) is the queue control function. The queue length in-
creases if f(Q) > 1; remains constant if f(Q) = 1; and
decreases if f(Q) < 1. Hence, by using an appropriate
function f(Q), the queue length can be controlled.

2.1. Queue Length Function

To simplify the analysis, we assume that the propagation
delay t, from source to switch switch is the same for all
sources. Due to propagation delay t,, the rate seen at the
switch at time ¢ is the same as the source rate at time £ — £,,.
The sources adjust their rates to the explicit rate indicated in
the BRM cells. Due to propagation delay, the sources adjust
their rate at time ¢ to the explicit rate indicated at time ¢ —t,.

In one averaging interval t5, Q(t) is drained by R; x
C(t) cells. The queue builds up at input rate. Hence, Q(t)
can be expressed as follows :

Qt) = Q(t — ts) + (g N1t — 1p) — R)C(ts) -
Q) = Q(t — ts) + (L oy y erilt — t7) — R)C(ts) —
Q(t) = Q(t — t;) + (R(t) — R))C(ts)

The switch scheme tries to adjust the input rate R(t) to
match the output rate depending on the current queue size,
ie., R(t) = f(Q(t)) x Available ABR Capacity. We as-
sume no higher priority traffic, so R(t) = f(Q(t)) x Ry.
Hence,

Qt) = Qt — ts) + (F(Q( — 1)) - DRC(25)

The sources adjust their rates r;(t) based on the explicit
rate feedback from the switch. The feedback reaches the
switch after time ¢,. Hence, r;(t) (source rate) can be ex-
pressed using the following equation:

ri(t) = eri(t — t,) = f(Q(t — ty)) x F(ri(t -
2tp), Riink)-

781

Since t; = 2t,, we get: r;(t) = f(Q(t—ts)) x F(ri(t—
ts), Riink).

For the ERICA+ scheme, the above function is as fol-
lows: r;(t) = f(Q(t —t5)) x maw(%, Biiniy,

For other schemes, the following modification can be
done to incorporate queue control. Let er4(t) be the ex-
plicit rate calculated by an algorithm A. Then queue control
can be incorporated by adding the following as last step in
the algorithm A: era(t) = maz(f(Q(t —t5)) x era(t —
ty), PCR), where PCR is the peak cell rate. It can be
shown that if the algorithm A converges to max-min rates,
then the modified algorithm also converges to the max-min
rate.

2.2. Design of a Queue Control Function

The design considerations for the queue control func-
tions are as follows:

1. If the queue length is very small, it should be in-
creased, so that the scheme can maintain small queues
which can drained when the link is under utilized. This im-
plies that f(Q) should be greater than one for small queue
lengths.

2. In the steady state, we want the queue length to be
almost constant, and the computed rate to be the max-min
fair rate. The function Q(t) satisfies the goal of constant
queue length if f(Q) = 1 in the steady state. If the switch
scheme is fair, the steady state rates will be max-min fair.

3. If the queue is large, then part of the link capacity
must be used to drain the queues. Hence f(Q) should be
less than one. It is desirable not to use all the capacity to
drain the queue. Therefore, there is a minimum threshold,
queue drain limit factor (QDLF), for f(Q).

4. The f(Q) function has to be continuous. Discontinu-
ities imply sudden changes which give rise to oscillations of
rates and queues.

The queue control function with above properties will be
of the form
>1 0<Q<Qo
=1 Qo<Q<
<1 1 <Q<LQ:
=QDLF @:<Q <

where Qg < Q1 < Q2 < 0. The potential candi-
dates are the step, linear, hyperbolic and inverse hyperbolic
functions (see table 1). All these functions evaluate to 1
in the range Qo < @ < @y and QDLF in the range
Q2 < @ < oo. The step function can, in general, have
n steps. We use n = 4. The linear function can be imple-
mented in an efficient manner, using shift operations, if m,
and my, are of the form 1/ 2% and the queue length is counted
in terms of Q. The hyperbolic and inverse hyperbolic func-
tions take more time to calculate, since they have a division
operation. For large values of h,, the hyperbolic function
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Name 0<Q<Q | @1<Q<LQy
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Linear 1- mng—&%)- 1- maggéfﬂ
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Inv. Hyperbolic | =htr iho=0

Table 1. Queue control functions (f(Q))

becomes similar to step function. For an h, value close to
1, the hyperbolic function approaches the linear function.
The inverse hyperbolic function is continuous and smooth
both at Qp and Q.

The curve used in the control function in the under-
load region is called the “a-curve” and the one used in the
overload region is called the “b-curve”. The parameters
used in the a-curve s,, Mg, hq, A, are called a-parameters;
Sp, My, hp, Ap are called the b-parameters. Since all the
functions are continuous, at (2 we have the equation
f(Q2) = QDLF. So, Q2 can be expressed in terms of
QDLF and a-parameters for linear, hyperbolic and inverse
hyperbolic functions.

3. Metrics

To compare the performance of the queue control func-
tions, the convergence fime metric is used. Convergence
time is defined as the time the scheme takes to converge to
steady state. To compute the convergence time, the variance
and standard deviation of the required variables are calcu-
lated between (¢ X tg,(i + 1) x ¢;) fori = 0,1,..., where
tr (100 ms) is a small time interval. Initially, the standard
deviation is large due to oscillations. The convergence time
is ¢ X tg, after which the variance is small. Also the graphs
of (mean + standard deviation) values of the variable ver-
sus time are plotted (these graphs are given in [9], which is
an extended version of this paper). From these graphs, the
convergence time can be calculated.

4. Analytical Explanation

In this section, we analyze the behavior of the proposed
queue control functions. We assume a simple configuration
in our analysis: IV persistent ABR sources (always having
data to send) are sending data to N ABR destinations (figure
1). A performance study under more strenuous conditions
is done through simulation on the Generic Fairness config-
uration - 2 {8] in section 6.

The change in queue length in an averaging interval ¢ is
given by:

AQ

(f(Q(t —t5)) = 1) x Ry x C(ts)
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uration

Source N

Initial behavior: In the beginning, the queue lengths
grow depending on the initial cell rate (ICR) value. So the
maximum queue depends on the ICR and round trip time
and is independent of the queue control function used. The
feedback information reaches the sources and the sources
adjust their rates accordingly.

Under-utilization: The switch scheme initially estimates
that the link is under utilized. The queue control function
evaluates to f(Q) > 1, during under utilization (Q < Qo).
Thus the switch gives feedback to the sources to increase
their rates, which increases queue length at the switch. The
rate of increase of the queue length is dictated by the b-
curve of the queue control function.

Overload: Either due to the increase in the source rates
or the high ICRs, an overload condition occurs and queues
at the switch grow. Initially, the feedback information is
not accurate; hence, the queue might grow beyond the Q2
threshold. In such a heavy overload condition, the queues
are quickly drained by using the (1-QDLF) fraction of link
capacity. In the meantime, the feedback control loop is
established, and the switch gives reliable feedback to the
sources. For the mild overload region, i.e., queue length in
range of @Q; < @ < Qq, the a-curve is the queue control
function. The value of f(Q) is less than one in this region,
which effectively decreases the queue length.

Steady state: The feedback tries to match the input rate
to the output rate. As the input rate approaches the output
rate, the oscillations die down and the network reaches the
steady state. In the steady state, the rates and the queue
lengths remain constant since f(Q) = 1.

For all four queue control functions, f(Q) > 1 in the
range Qo < @ < @1, and f(Q) < 1 in the range Q; <
Q@ < Q2. The change in queue length depends on the value
of f(Q) — 1. Hence, the change in the queue length is an
additive increase for the underutilized region [4]. The queue
length converges to a value in between Qg and @;. An
interesting point to note is that the amount of increase and
the amount of decrease itself is dictated by the current queue
length and the difference between the current queue length
and the steady state queue length.



4.1. Step Function

If Q(t —t5) < Qo, then f(Q(t —tf) = sp > 1, s0
the queue grows till feedback information is passed to the
sources indicating a rate decrease. The queue grows for ¢
seconds as follows:

Q) = Q(t —ts) + (so — 1) x RiC(ty)

If the condition Qo < Q(t) < @ is satisfied and the
input rate matches the output rate, then the steady state is
achieved, and the queue remains at this constant length.

If @1 < Q(t) < Q2, then Q(¢) starts decreasing with
slope —(1 — s,,). This decrease also takes place for ¢ time,
if the queue length is between @ and @)1, and if the input
rate is close to the output rate then again the steady state is
achieved.

Therefore, for the system to achieve the steady state, the
value of the queue length after one feedback interval should
be within the range Qo and ;. This requirement is satis-
fied if the condition Q1 > Qo + (sp — 1) x R;C(t) holds.
Since the step function has discontinuities, it is very sensi-
tive to the queue length value near the thresholds and the
steady state might not be reached if the parameters are not
set properly. In such a case, the queue grows from a value
below Qo for duration ¢ seconds, crosses 1 and decreases
for t5 seconds to a value less than Qo. This pattern repeats
giving rise to periodic oscillations.

4.2. Linear Function

If Q(t — t5) < Qo, then f(Q(t)) > 1. As with the step
function, the queue keeps growing for t; time with a slope
of (f(Q(t — ty)) — 1) x R;. But unlike the step function,
the slope now depends on the value of queue length. After
ts seconds, if the queue Q(t) > Q1, the queue length starts
decreasing with a slope of (f(Q(¢) — 1) x R;. The slope
now depends on the value of the queue length, so the there
are no sudden changes in the slope. Therefore, the oscilla-
tions are fewer compared to the step function. If the system
is near steady state, then the oscillations decrease, queue
length reaches a value between @y and 21, and the system
reaches steady state.

4.3. Hyperbolic Function

The analysis for this case is similar to the above. If the
hq and hy parameters are close to one (typical values are
ho = 1.15, hy = 1.05), the hyperbolic function has simi-
lar behavior to the linear function. If h, is high, then the
hyperbolic function is close to the step function. Since the
hyperbolic function has a larger curvature initially and then
smoothes out, f(Q1 + dQ) value will be smaller than the
corresponding (@1 + Q) value obtained using the linear
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function. Hence, the fluctuations in the rates are more, but
the queue draining is faster.

4.4. Inverse Hyperbolic Function

The behavior of the system is the same as in the case of
the hyperbolic function for underload and the steady state
range of queue lengths. For overload, @2 < Qoo, the queue
decreases linearly with slope QDLF. For mild overload,
Q1 < @ < @3, the queue decreases hyperbolically (inverse
function of f(Q)’s a-curve). Since the inverse hyperbolic
function is continuous and smooth near @), it gives rise to
less oscillations compared to other cases.

5. Simulation Configuration and Parameters

This section describes the two configurations used in the
simulations. In all simulations, no higher priority (CBR and
VBR) traffic is present.

5.1. Simple Configuration

In this configuration (figure 1), N infinite sources send
data to IV destinations. The traffic is unidirectional from
source to destination. The initial values of ICR are cho-
sen randomly in the range (0,R;;,x). All links are of length
1000 km, which corresponds to a propagation delay of 5 ms.
All links have a bandwidth of 149.76 Mbps (after account-
ing for SONET overhead). The sources start transmission at
arandom time between (0, tgr7), Where t g is the round
trip time. ¢ g = 30 ms for this above configuration.

5.2. Generic Fairness Configuration-2 (GFC-2)

This configuration was used to test the performance of
the queue control functions and the switch scheme under
more stressful conditions. The value of the link distance
D was chosen to be 1000 km. In this configuration the,
expected max-min fairness rate for the different VC’s are:
A VCs = 10 Mbps, B VCs = 5 Mbps, C VCs = 35 Mbps,
D VC = 35 Mbps, E VCs = 35 Mbps, F VC = 10 Mbps, G
VCs =25 Mbps, H VCs = 52.5 Mbps. This configuration is
explained in detail in [8].

6. Simulation Results

In this section, the simulation results using the above two
configurations are given. The rates and queue lengths are
shown for each configuration, and are used to study and
compare the performance of different queue control func-
tions. In the simulations for both configurations, QDLF
was chosen to be 0.5.



Table 2. Simple Configuration: Results

Queue a b Q: @2 Conv Avg
Control | val val (secs) QLen
Simple | 0.75 1.01 4 26 - 252.93
090 101 4 26 - 98.04
090 105 4 26 - 663.63
095 101 4 26 - 251.51
095 105 4 26 - 124.11
095 101 2 26 - 896.90
095 101 8 26 - 483.20
Linear | 1/16 1/16 2 26 020 311.85
1716 1/16 4 26 032 403.52
/16 1716 8 26 061 402385
Hyper- | 1.15 1.05 2 26 - 509.94
bolic 1.15 1.05 4 26 032 214.19
1.15 1.05 8 26 0.82  220.96
Inv. 36 1.05 2 26 0.22  313.17
Hyper- | 165 105 4 26 025 209.50
bolic | 675 1.05 8 26 1.12 20227

6.1. Simple Configuration

Table 2 shows the performance for different step values
of the step queue control function as the queue threshold
(21 is varied. Note that Q2 is fixed given QD LF and other
parameters of the linear and hyperbolic functions. The
number of sources is 3. The following can be observed from
table2.

e The step function never converges: the values are fluc-
tuating near the target values, so the standard deviation
after one second is lower than the standard deviation in
the first second.

The linear, hyperbolic and inverse hyperbolic func-
tions reach steady state after one second. As () in-
creases, the convergence time increases.

For Q1 = 2@, the linear function converged. The
value of f(Q) for the hyperbolic function is less than
that of the linear function, so the queue is drained faster
and @ becomes less than Q. Therefore, for the hyper-
bolic function, the queue length and rate values oscil-
late near the target value. This is mainly because the
hyperbolic function is not smooth (not differentiable)
near ;. The inverse hyperbolic is smooth at Q; so
the queue lengths do converge in this case.

For 1 = 8Q)o, the convergence time for the hyper-
bolic and inverse hyperbolic functions is more than the
linear function. This happens because both the hy-
perbolic and inverse hyperbolic functions vary slowly
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near the steady state. The queue length variance is
more for the inverse hyperbolic function.

Graphs 2(a), 2(c), 3(a), and 3(c) show the ACR rate of
the three sources using step, linear, hyperbolic and inverse
hyperbolic queue control functions respectively. Graphs
2(b), 2(d), 3(b), and 3(d) show the corresponding queue
lengths.

The mean and standard deviation of the rates and the
queue lengths are calculated for every 100 milliseconds.
In steady state, the oscillations are small, so the standard
deviation is small compared to mean. The quantity (mean
+ standard deviation) has a value close to the mean in the
steady state. The convergence time was calculated based on
the (mean + standard deviation) graphs (given in [9]).

For the step function, there is oscillation in both rates
and queue length. For linear and hyperbolic functions, the
oscillations die down and the system reaches steady state.
In steady state, the rate and queue length are constant and
utilization is 100%. Hence, the linear, hyperbolic and
inverse hyperbolic queue control functions fulfill the de-
sired goal. This is consistent with the analytical explana-
tion given in the previous section. In all the cases when
the queue length and the rates converge, the queue length is
non-zero and hence the utilization at steady state is 100%.

6.2. GFC-2 Configuration

The following parameters were used in the simulations
for this configuration. The thresholds used were Q¢ = 176,
Q1 =4 x Qo, Q2 = 26 X Qo, QDLF = 0.5. The values
of @ — param and b — param were, for the step function,
sq = 0.95, sy = 1.01; for the linear function m, = 1/16,
my = 1/16; for the hyperbolic function h, = 1.15, mp =
1.05; and for the inverse hyperbolic function A, = 16.5,
Ap = 1.05.

Table 3 shows the performance for the four queue con-
trol functions. The table shows the H(1) VC’s mean rate,
switch queue length for SW5 and its convergence time, and
standard deviation before one second and after one second.
The queue length variation is present in all the three cases.
The rate variation is much less in linear and hyperbolic
and tnversehyperbolic functions compared to step func-
tion.

Figures 4 and 5 were obtained by simulating the GFC-
2 configuration using the step, linear and hyperbolic and
inverse hyperbolic queue control functions. Graphs 4(a),
4(c), 5(a) and 5(c) show the ACR rate for one VC of each
of A through H type VCs versus time when different queue
control functions are used. From these graphs, it can be seen
that the expected rates are obtained when linear, hyperbolic
and inverse hyperbolic functions are used for queue control.
The (b) and (d) graphs have the queue length for all the
switches. The maximum queue is due to the initial overload,
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Table 3. GFC-2 Configuration: Results

Queue Quantity Convg. Mean
Control time(secs)
Step

H(1) ACR - 72.81

SW5 Queue - 284.28

Linear H(1) ACR 1.25 52.46
SW5 Queue 1.3 455.46

Hyper H(1) ACR 1.45 52.77
SWS5 Queue 1.3 361.32

Inv.Hyper H(1) ACR 1.51 52.38
SW5 Queue 2.0 1443.72

before the first round trip time. Once the feedback control
loop is established, the f(Q) value is QDLF and queues
are drained quickly.

When the step function (figure 4(a)) is used, the oscil-
lations are more compared to the oscillations when other
functions are used. Some of the VCs do not get their max-
min fair share rates and the VCs near the fair share have
considerable oscillations. The step function is very sensi-
tive to queue length variation near the thresholds. Since the
configuration is complex with large number of VCs passing
through each of the switches, the queue length and hence
the rates vary. For the graphs 4(c), 5(a) and 5(c) the os-
cillations are only present before steady state. The oscilla-
tions die down and the rates become steady since the func-
tion f(Q) changes smoothly. The maximum queue length
is same for all queue control functions since this depends
only on the ICR. When the inverse hyperbolic function is
used, the queues are larger since in this case the steady state
queue length is near Q.

The simulation results obtained by using different queue
control functions in the simple and the GFC-2 configura-
tions are consistent with the analytical explanation. The
step function is sensitive to queue thresholds (Qo, @1, @2)-
The other functions are not sensitive to these queue thresh-
olds. Small steady state queuing delay can be achieved by
choosing nearby values for Qg and Q.

7. Conclusion

In this paper, we have considered the problem of design-
ing a simple and robust queue control function for switch
schemes. A switch scheme tries to maximize utilization,
minimize queuing delay and give max-min fair rates to the
sources. It is also desirable to have fewer oscillations in
rates and queue lengths to support (low quality) video over
ABR service. We assume a switch scheme model which dy-
namically adjusts the rate of the sources to match the output
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rate and drain large queues. The design considerations were
discussed with analytical explanations. Four different queue
control functions were analyzed. The choice of parameters
for the queue control functions was both explored analyti-
cally and by simulation. The simulations showed that even
in complex configurations (like GFC-2), the system behav-
ior was consistent with the analytical explanation. When
the step function is used, the system oscillates and does not
converge in most cases. Both the analytical and the sim-
ulation results show that the inverse hyperbolic is the best
queue control function, followed by the hyperbolic and the
linear queue control functions. For lower implementation
complexity, the linear function is recommended.
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