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Abstract—Recently, leading research communities have been 
investigating the use of blockchains for Artificial Intelligence (AI) 
applications, where multiple participants, or agents, collaborate to 
make consensus decisions. To achieve this, the data in the 
blockchain storage have to be transformed into blockchain 
knowledge. We refer to these types of blockchains as knowledge-
based blockchains. Knowledge-based blockchains are potentially 
useful in building efficient risk assessment applications. An earlier 
work introduced probabilistic blockchain which facilitates 
knowledge-based blockchains. 

This paper proposes an extension for the probabilistic 
blockchain concept. The design of a reputation management 
framework, suitable for such blockchains, is proposed. The 
framework has been developed to suit the requirements of a wide 
range of applications. In particular, we apply it to the detection of 
malicious nodes and reduce their effect on the probabilistic 
blockchains’ consensus process. We evaluate the framework by 
comparing it to a baseline using several adversarial strategies. 
Further, we analyze the collaborative decisions with and without 
the malicious node detection. Both results show a sustainable 
performance, where the proposed work outperforms others and 
achieves excellent results. 

Keywords—blockchains, knowledge-based blockchains, 
probabilistic blockchains, reputation management framework, 
Rated Proportional Multi-Configurable Exponential Weighted 
Average, RPMC-EWA, malicious node detection. 

I. INTRODUCTION 
Recent advances in networking, big data, cloud computing, 

and data analysis techniques have made several large-scale 
distributed applications possible. However, security and 
trustworthiness issues are major concerns for such applications. 
Blockchains, as distributed, peer-to-peer, and immutable 
networks can save these applications from their security and 
trustworthiness issues [1-5]. 

Lately, there have been some efforts toward utilizing 
blockchains for decision support applications such as voting, 
predictions, and collaborative Artificial Intelligence (AI) 
systems. In 2015, the Bitcoin foundation funded a new project 
for building efficient, anomalous, and secure voting systems [6-
10]. All in all, these efforts have introduced the transformation 
of blockchains from a data storage platform to a collaborative 
processing and decision-support platform. We refer to this type 
of blockchains as knowledge-based blockchains, i.e., 
accumulating useful knowledge from the blockchains [11]. 

Our earlier work in [12] introduced a paradigm for achieving 
collaborative decision-making required for knowledge-based 
blockchains. We refer to that as the probabilistic blockchain 
paradigm. Probabilistic blockchains do not imply that the chain 
is probabilistic, as is the case in [13], but that the collaborative 
decision is made probabilistically, given many individual 
decisions made with imperfect information. As an example, one 
can think of voters in a voting system or different AI-capable 
nodes in a blockchain-based AI system as agents of the system. 
These agents are nodes that inspect events and make individual 
decisions, votes, or predictions. Based on these individual 
decisions, the blockchain network can achieve a collaborative 
decision about the event being investigated. For the rest of the 
paper, we will refer to this collaborative decision as the 
consensus made using the blockchain. 

Probabilistic blockchains, as explained further in Section II, 
can be used for many risk assessment or prediction application. 
Their applications span both FinTech and non-FinTech domains 
including stock market predictions, asset investment, insurance, 
loan granting, credit scoring, malware, and intrusion detection, 
and hotel (or any asset) recommendation systems. In other 
words, the probabilistic blockchain framework is a step toward 
building effective blockchain-based AI systems. 

This paper extends probabilistic blockchains and proposes a 
reputation management framework based on agents’ 
performance in the systems. The framework is initially designed 
to suit multiple application domains with different requirements. 
Accordingly, first, we discuss several applications of the 
proposed framework for probabilistic blockchains. We then 
apply it specifically to malicious node detection. We show that 
the framework outperforms traditional reputation systems in 
malicious node detection and results in good consensus. 

The combination of probabilistic blockchains and the 
reputation framework has several advantages for decision-
making applications. The collaborative decision in probabilistic 
blockchains is decentralized, concurred, and secure against 
manipulation. The use of a reputation framework helps in 
distinguishing good/expert nodes from 
bad/misbehaving/nonexpert ones. It can be used to incentivize 
good nodes and allow them to have a higher impact on the 
decision. This motivates participating nodes to make correct 
decisions and prevents any effort to control the decision process. 
That is, the proposed combination advances traditional decision-
making by providing more secure and reliable systems. 
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The rest of the paper is organized as follows: In Section II, 
we give a brief overview of blockchains and their extensions to 
probabilistic blockchains. In Section III, we put forward some 
requirements for reputation frameworks. In Section IV, we 
propose a particular reputation framework and prove that it 
meets the requirements. Section V presents some applications of 
the proposed framework to probabilistic blockchains. 
Section VI discusses the performance analysis, comparisons, 
and results. Finally, Section VII provides conclusions and 
summarizes the paper. 

A. Related Work 
Reputation management frameworks have been investigated 

by the blockchain community. Their main purpose is to build 
reputation-based mining techniques that allow good nodes to 
create blocks and gain rewards. Gai et al. have discussed a Proof 
of Reputation (PoR) mining algorithm where the miner is chosen 
based on his reputation [14]. PoR has been applied to GoChain 
blockchain platform that is built on top of the Ethereum platform 
[15]. Another Proof of Reputations (PoRe) concept has been 
proposed by Qin in et al. [16]. PoRe combined with Proof of 
Work (PoW) and proof of stake has been applied to RPChain, a 
blockchain-based academic social network service. 

RepuCoin, [17], is a blockchain system that uses miners’ 
reputation to define the mining power in PoW algorithm. 
RepChain, [18], is another blockchain reputation system that 
uses reputations to decide on the leader and validators in leader-
based mining algorithms. Agents will high reputations get a high 
chance to be selected as leaders. Thus, they get the opportunity 
to create blocks and gain rewards. Similar approaches have been 
applied in [19] and [20] with other mining algorithms. 

These works have shown promising results in terms of 
security analysis and higher system throughput. Thus, 
reputation-based mining techniques have the potential of solving 
major transaction throughput and security issues found in other 
mining techniques. 

To the best of the authors' knowledge, malicious node 
detection has not been investigated for blockchain applications. 
As knowledge-based blockchains are a relatively new concept, 
their malicious agents’ detection has not been investigated. 
Traditional blockchain applications use the chain as a storage 
unit. Thus, malicious nodes do not affect the system except 
when adding or removing transactions from the database. This 
is made difficult by appropriate mining techniques, and so 
malicious node detection is not useful in traditional blockchains. 

II. PROBABILISTIC BLOCKCHAINS BACKGROUND

This section gives a brief background of the transition from 
blockchains to probabilistic blockchains. It discusses the main 
design and architectural changes introduced in that paradigm. 

We assume some prior knowledge of the blockchain 
technology, the motivation to use it, and its main characteristics. 
Also, the analysis of the probabilistic blockchains has been 
discussed in [12] and is, therefore, out of the scope of this paper. 

A. Traditional Blockchains Architecture 
A blockchain consists of two main components: a network 

and a database. The blockchain database is a data structure that 

comprises transactions, blocks, and a chain. The system 
interactions, e.g., money or digital exchanges, are stored in the 
transactions. Transactions are verified and bundled together to 
form a block using a predefined technique. Several blocks are 
linked to each other where each block points to the hash of its 
predecessor. This creates a chain of blocks called the blockchain 
database. The blockchain network is a set of distributed nodes 
that maintain the database and are connected via a network. 

B. Motivation For Probabilistic blockchains 
In any collaborative decision-making application, there are 

many users that provide individual decisions about the events 
being inspected. As an example, consider a stock market 
prediction application. There are many companies that analyze 
stocks and predict their future performance. We could use the 
blockchain to store these forecasts. Moreover, the blockchain 
can be used to process these forecasts and achieve a consensus. 
A similar situation applies to group decision-making inside large 
corporations, where employees indicate their opinion about an 
important issue and the managers can benefit from the summary 
of those opinions. We call these users or employees as agents. 

To achieve these applications, the blockchains should be 
extended in three directions. First, transactions and blocks 
should be able to store probabilistic decisions made by agents. 
Second, the blockchain network should be able to summarize 
decisions and achieve probabilistic consensus without the needs 
for external parties. Third, these consensuses should be visible 
to others and possibly updated whenever needed. 

It should be noted that even if the traditional blockchains are 
able to store decisions, they are not being used to do so. Only 
simple deterministic “yes” or “no” decisions are made to check 
if ‘a transaction is valid or not’ or ‘being present in the chain or 
not.’ Therefore, the processing of transactions and blocks is still 
missing. Moreover, summarizing decisions and achieving 
consensus within the blockchain is not feasible. 

C. Probabilistic Blockchains 
Unlike traditional blockchains, probabilistic blockchains 

allow transactions to be simply the opinions of users. The blocks 
contain all such transactions along with a summary of the 
opinions. The summary may be a statistical summary like the 
mean or may be the result of a machine learning algorithm. 

The transactions that were used to store contracts or bitcoin 
exchanges in traditional blockchains are used to record decisions 
in probabilistic blockchains. Each decision is made by an agent 
i for an event j and has a probability pi,j. Therefore, a transaction 
in probabilistic blockchains has an event id, an agent id, a 
decision, and a probability pi,j. 

As with traditional blockchains, miners, or block formers, 
verify these transactions and form a candidate block containing 
several transactions. The added function for probabilistic 
blockchains consists of summarizing the decisions enclosed in 
the new block. The candidate block should have a summary of 
one or several events that are included in that block. The main 
differences between a traditional and a probabilistic blockchain 
database are illustrated in Fig. 1. 



Fig. 1. Traditional and probabilistic blockchain database 

The event summaries act as the blockchain consensus of the 
inspected events in that block. This consensus is based on a 
function that is application dependent and predefined in the 
system. We refer to this function as the consensus function. This 
function should be representative, incremental, easy to calculate, 
and difficult to manipulate. The property of being 
'representative' indicates that the summary reflects the decision 
of a group rather than that of a single agent. For example, 'min' 
or 'max' summary are not considered proper consensus functions 
because they could easily be impacted by a single agent. The 
property of being 'incremental' indicates the new summary can 
be calculated by adding the newly added decisions for the same 
event to the previous summary value. This is required so that 
miners do not have to retrieve all decisions made for the same 
event in prior blocks. The function should be easy to calculate, 
as the mining processes are already complicated. Besides, it 
should be difficult to manipulate so that a malicious agent is not 
able to control the consensus. Any function satisfying these four 
conditions can be used. Examples of good functions include 
mean, the second moment, first n moments, or even the result of 
a sophisticated machine-learning algorithm. 

After the candidate block is formed, it is broadcasted and 
verified by other blockchain nodes, as with the traditional 
blockchains. The added functions to block verifications are the 
correctness and validity of the consensus values. Thus, any 
block forming and verification technique (i.e., the mining 
process) that is used in traditional blockchains can also be used 
in probabilistic blockchains. 

D. Need for Reputation Management 
One of the issues in any group decision-making is that not 

all agents contributing to the group decision may be treated 
equally. Some agents, who have had a good history of correct 
decisions in the past, may be given a higher weight. In other 
words, the reputation of those contributing to the decision is 
important. Thus, this paper proposes a reputation assignment 
framework for the decision-making in probabilistic blockchains. 

E. Probabilistic Blockchains with Reputation 
The proposed reputation management system can be applied 

to any decision making or prediction engine with the same 
objectives. However, the use of probabilistic blockchain 
combined with the reputation framework has several advantages 
over the traditional systems. First, blockchains provide a 
distributed and immutable database where individual decisions 
are securely stored. Probabilistic blockchains add to that by 
allowing consensus decision to have the same features. Further, 
probabilistic blockchains come with many security advantages 
including resiliency to malicious agents, resiliency to malicious 
miners, Distributed Denial of Service (DDoS) protection, and 
fraud mitigation. The details of these can be found in [15]. 

A reputation management framework results in better 
consensus decision as good behaving agents have higher 
contributions to the decision. In addition to that, probabilistic 
blockchains have its own advantage to the framework. It can 
ensure that the framework is correctly followed and agents’ 
reputations are not centralized. This is true since other nodes 
validate the reputations as will be discussed. That is, reputation 
and probabilistic blockchains collectively collaborate to build 
efficient decision-making engines. 

III. REPUTATION MANAGEMENT FRAMEWORK
REQUIREMENTS 

Some requirements are needed to be met to properly design 
a reputation management framework suitable for probabilistic 
blockchains. This section will discuss seven such requirements 
and why they are necessary. It lays the foundation for the 
framework proposed in the next section. Our basic premise is 
that the requirements should favor better-performing agents and 
provide fairness among similar agents. Further, they should be 
configurable to be used for different applications. 

A. Continuity 
A reputation function should be continuous such that it gives 

a different value for any change in an agent's performance. That 
is, for any correct or incorrect decision made by an agent, a 
suitable reputation should be given. This allows the agent to 
have a reputation value at any point in the system. More 
importantly, it enables this reputation value to represent the 
agent's performance at any time. 

B. Boundedness Function 
A reputation function should be bounded between 0 and 1. 

That is, a good agent should eventually have a reputation of 1 
while a malicious agent should have a reputation of 0. This 
allows the reputation to be expressed as a percentage. For 
example, an agent with a reputation of 0.9 is mostly trusted 
while an agent with a reputation of 0.1 is not trusted. 

Boundedness helps to intuitively understand the reputation 
value based on the agent's performance. Moreover, it puts 
forward an expectation of how the agent will perform in the 
future. An agent with a 0.9 reputation is more likely to make 
correct decisions than an agent with a 0.1 reputation. 

C. A Reputation Starts at 0.5 
An agent that is just starting and has not contributed to the 

decision-making process should have a reputation of 0.5. This 
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makes the agent half trusted and gives it a 50% expectation to 
perform well in the future. It should be noted that this reputation 
value is lower than an excellent behaving agent but at the same 
time higher than a malicious or poorly performing agent. 

D. Time-Dependent Function 
The reputation function should be time-dependent, giving an 

agent the chance to enhance its reputation as he makes correct 
decisions. This indicates that an agent that has made wrong 
decisions recently should have a lower reputation than an agent 
that has made wrong decisions much earlier. This is desirable as 
the second agent has enhanced its performance while the first 
has made it worse. Thus, the second is expected to perform 
better in the near future and should have a higher reputation. 

As an example, consider two agents where the first agent 
made 98 correct decisions followed by 2 wrong decisions 
recently. The second agent made 2 wrong decisions followed by 
98 correct decisions. Hence, the second one had better recent 
performance and is expected to perform well. Intuitively, it 
should have a higher reputation. 

Examples of reputation functions that provide this property 
is exponential moving average. We will start with exponentially 
moving average and modify it in the next section. 

E. Configurable Increase and Decrease 
The increase in reputation should be configurable to suit 

various application domains. Some applications, e.g., critical 
decisions, require a slow increase in the reputations so that new 
agents are not trusted easily. Other applications, e.g., 
recommendation systems, require moderate or fast growth. 
Similarly, a decrease in reputation should be configurable to suit 
different applications. Critical decision-making applications 
require a fast decrease to penalize misbehaving agents faster. 

Further, it should be possible to have different increase and 
decrease factors to account for applications that require different 
configurations. For example, critical applications require a slow 
increase with a rapid decrease. 

We use the reputation framework for malicious node 
detection, which requires a slow increase and a fast decrease. 
Nevertheless, it should be noted that configurable parameters are 
always desirable of any reputation management framework. 

F. Slower Reputation Recovery 
The increase in the reputation value after a wrong decision 

should be slower than a normal increase. That is if two agents 
with a reputation of 0.5 where agent A is just starting and agent 
B had made several good and bad decisions. Agent B should 
have a slower increase than the agent A, which is just starting. 

The stipulation given above is required to penalize malicious 
nodes and prevent their fast reputation recovery. It also helps in 
preventing attack strategies where a malicious agent gives 
wrong decisions randomly or using a specific pattern. 

G. Proportional Update 
When a node makes a wrong decision, its reputation 

decrease should be proportional to how good it has performed 
so far. To explain this, consider two nodes, Agent A and 
Agent B, who have each made a wrong decision at the same 

time. Agent A previously made 1000 good decisions while 
Agent B made only 100. This means that Agent A made 1 in 
1000 mistakes while Agent B made 1 in 100. It is intuitive that 
Agent A should have a higher reputation than agent B. The same 
thing applies to the increase in reputation recovery. The 
proportional update helps to provide fairness and a higher 
reputation for the node that has been in the system longer.  

IV. PROPOSED REPUTATION MANAGEMENT FRAMEWORK

The seven requirements discussed in the previous section 
should be reflected in any reputation formula used. In this 
section, we propose a reputation formulation and prove that it 
meets these requirements. We propose this formulation for a 
reputation framework to be used for probabilistic blockchain as 
will be discussed later. 

A. Reputation Formulation 
We start with a function that follows an Exponentially 

Weighted Average (EWA) to calculate agents’ reputations. 
Thus, Ri,t, the reputation of Agent i at time t, may be calculated 
as follows: 

𝑅",$ = &
0.5	 	𝑡 = 0
𝛼𝑋 + (1 − 𝛼)𝑅",$34	 𝑡 ≠ 0 6 (1) 

Where 𝛼 is a configuration parameter that is between 0 and 
1. X is a value that is generally either -1 or 1, deciding whether
to decrease or increase the new reputation. X can also be a 
fractional value as we will see in our reputation function. For 
better notation, we will use 𝑅$ to represent 𝑅",$. 

The parameter α affects the weight given to the agent’s old 
performance. As 𝛼 decreases, more weight is given to the prior 
performance, thus, the change in 𝑅$  value will decrease. This 
indicates that for a slow increase or decrease, α should be small. 

The EWA formulation above is not sufficient to meet all 
seven previously discussed requirements. More specifically, 
EWA formulation does not provide boundedness (between 0 and 
1), different configurable increase and decrease, and 
proportional decrease properties. In the following, we discuss 
how to improve the formulation. 

a) Boundedness: The EWA formulation is [-1, 1]
bounded while we require [0, 1] bound to represent a 
percentage. To satisfy our bounds, we need to change the output 
from [-1, 1] to [0, 1]. Thus, the new percentage EWA 
formulation can be represented as follows: 

𝑅$ =
8 9		 		$:9
;<=(43;)(>?@AB34)																$C9

D

>
+ 0.5            (2) 

Note that X is generally either -1 or 1, and α < 1. It can be 
seen that with this translation, if Rt-1 is in the interval [0, 1], Rt is 
also in the same interval [0, 1]. Values of Rt for three values of 
Rt-1 are shown in the table below: 

Rt 
Rt-1 X=-1 X=+1 

0 0 a 
0.5 0.5(1-a) 0.5(1+a) 

1 1-a 1 

b) Configurable increase and decrease: The EWA
formula has one configuration parameter 𝛼 to account for both 



the increase and decrease. However, as discussed earlier, some 
applications require different increase and decrease parameters. 
For example, loss due to a wrong decision may be much higher 
than gain due to the correct decision. To satisfy such cases, we 
consider 𝛼 as an increase parameter and add another parameter 
𝛽  for the decrease. Thus, the new multi-configurable 
percentage EWA formula can be as follows: 

Rt=
H

0																																																															t=0
αX+(1-α)(2Rt-1-1)						t>0,	correct	decision
β(-X)+(1-β)(2Rt-1-1)					t>0,	wrong	decision

X

2
+0.5            (3) 

c) Proportional update: As X generally has a value of 
either 1 or -1, i.e., decrease or increase, the first term in EWA 
will be the same for all agents. That is, if two agents have the 
same reputation before making a wrong decision, their 
reputation will be the same regardless of their prior 
performance. However, as discussed earlier, proportional 
decreases and increases provide higher fairness to agents who 
have participated longer in the system. To achieve this property, 
we set X to the proportion of good or bad behavior of the agent 
up to this point. Formally: 

Rt=
⎩
⎨

⎧
0																																																								p=0,	n=0,	t=0
α p
p+n+(1-α)(2Rt-1-1)					t>0,	correct	decision

β -n
p+n+(1-β)(2Rt-1-1)							t>0,	wrong	decision⎭

⎬

⎫

2
+0.5       (4) 

Where p is the number of correct decisions and n is the 
number of wrong decisions before time t. 

We refer to the reputation formula in Eq. 4 as Rated 
Proportional Multi-Configurable EWA (RPMC-EWA) formula. 
We propose using RPMC-EWA in calculating the reputation for 
each agent as will be seen. 

It should be noted that we started with EWA and moved 
towards meeting our requirements. The same thing can be done 
for other known starting formulas. We choose EWA as it meets 
most requirements and does not rely on any underlying 
distribution assumption. 

B. RPMC-EWA Meets the Requirements 
The discussions in the previous subsection prove 

boundedness, configurable increase and decrease, and 
proportional update properties of RPMC-EWA. Next, we show 
that RPMC-EWA meets other requirements discussed earlier. 

RPMC-EWA is a continuous function, and any decision 
made will result in a slightly different reputation value. It is 
bounded between 0 and 1, as discussed earlier. It starts at 0.5 
following the first condition in Eq. 4. It has a configurable 
increase/decrease since both α  and 𝛽	 are configurable. It 
follows a proportional decrease as `

`=a
	was introduced for this. 

Further, RPMC-EWA is time-dependent as it inherits EWA and 
will be shown in Lemma 1 and it provides a slower reputation 
recovery as will be shown in Lemma 2. 

Lemma 1: RPMC-EWA satisfies the time-dependent 
requirement. 

This property is inherited from the EWA formula [21]. To 
show this, we consider two agents, A and B. Agent A made a 
mistake at time t while Agent B made a mistake at t-1. Earlier 

decisions were the same. Thus, the reputation at t-2 is the same 
for both agents. If RPMC-EWA is time-dependent, Agent A 
should have a lower reputation that Agent B. 

𝑅b,$ = 	𝛽
-n
p+n+(1-β)	𝑅b,$34	 = 	𝛽

-n
p+n 	+(1-β)	(α

p
p+n+

(1-α)𝑅b,$3>) 

𝑅c,$ = 	𝛼
p

p+n 	+(1-α)	𝑅c,$34	 = 	𝛼
p

p+n 	-(1-α)	(𝛽
-n
p+n+

(1-𝛽)𝑅c,$3>) 
-n

p+n
	is almost equal to 0, and we denote it by -𝛿. Similarly, 

p
p+n

 is almost equal to 1, and we denote by ∆. Therefore, 

𝑅b,$ = 	𝛽(-𝛿)+(1-β)	𝑅b,$34 = 𝛽(-	𝛿)	+(1-β)	(α(∆)+(1-α)𝑅b,$3>)
= −𝛽𝛿	+α∆+(1-α)𝑅b,$3>-	βα∆-β(1-α)𝑅b,$3>
= −𝛽𝛿	+α∆-	αβ∆+[(1-α)-β(1-α)]𝑅b,$3>
= −𝛽𝛿	+α∆-	αβ∆+[(1-β)-α(1-β)]𝑅b,$3> 

𝑅c,$ = 	𝛼(∆)+(1-α)	𝑅c,$34 = 𝛼(∆)	+(1-α)	(𝛽( − 𝛿)+(1-𝛽)𝑅c,$3>)
= 𝛼∆	-𝛽𝛿+(1-β)𝑅c,$3>+αβ𝛿-α(1-β)𝑅c,$3>
= 𝛼∆	-𝛽𝛿+	αβ𝛿+[(1-β)-α(1-β)]𝑅c,$3> 

The last term is the same for both agents and, therefore: 
𝑅b,$ − 𝑅c,$ = 𝛼𝛽(∆ − 𝛿) 

Hence, the reputation of Agent A is higher than the 
reputation of Agent B. Thus, the agent who made the most 
recent mistake will have the lowest reputation. 

Lemma 2: RPMC-EWA meets the slower reputation 
recovery property 

To prove this, we look at the value of the term p
p+n

 in Eq. 4. 
For an agent that has just started, and has made a correct 
decision, n will be 0. Thus, the above term will be 1, which is 
the maximum increase achieved. For an old agent, who has 
committed mistakes earlier, n≠0. Thus, the term will be less 
than 1. Obviously, the second case will have a slower increase. 
Further, as n increases, the recovery will be even slower. 

Fig. 2 illustrates this with a case scenario where Agent A has 
just started, Agent B made 10% wrong decisions earlier, 
Agent C made 15% wrong decisions earlier, and Agent D made 
25% wrong decisions earlier. All agents are making good 
decisions since the simulation started. Note that 
α=0.005 and β=0.3. 

V. RPMC-EWA AND PROBABILISTIC BLOCKCHAINS 
This section discusses RPMC-EWA can be used in 

probabilistic blockchains. Further, it highlights RPMC-EWA 
uses for the probabilistic blockchain paradigm. 

 
Fig. 2: RPMC-EWA slower reputation property 



A. RPMC-EWA in Probabilistic Blockchains 
The addition for probabilistic blockchain to deploy RPMC-

EWA is in the consensus calculation and validation process. For 
the calculation, the miner gets the last reputations for all 
participating agents and use it in calculating the new consensus 
in the block. For validation, the validators also get the 
reputations for all agents and recalculate the proposed consensus 
to ensure its correctness. This guarantees that the miner is not 
controlling the consensus nor manipulating the reputations. 

After the block is committed, all nodes including update 
agents’ reputations for future blocks. The number of good and 
bad behavior for all agents have to be stored at all nodes in order 
to calculate and update the reputation. However, it should be 
noted that these reputations are not stored in the chain and kept 
off-chain for block size limitation purposes. 

B. RPMC-EWA Use for Malicious Node Detection 
The first application of the reputation framework discussed 

in the previous section is the malicious node detection. This 
application is the focus of performance analysis in this paper. In 
such an application, agents with low reputation are considered 
malicious. A starting node has a reputation of 0.5. Therefore, we 
consider an agent with a reputation lower than 0.5 as malicious 
or a poorly performing agent. In some applications, such agents 
may be excluded from the decision process. 

For this application, it is preferable to increase agents’ 
reputations gradually as they make good decisions and decrease 
it rapidly as they make bad decisions. The slow increase is 
required, so that newly joined agents are less favorable than 
agents with a long history of good behavior. 

It should be noted that nodes that commit only a few 
mistakes may also be detected as malicious. This is true in 
decision-making applications as these agents affect the 
consensus. Also, if bad agents keep enhancing their 
performance, their reputation will rise above 0.5, eventually. 
Hence, they will again be considered as normal agents. 

Before calculating the consensus, miners should calculate 
the reputation for agents and exclude malicious agents from the 
decision process. However, if their transactions are valid, the 
transaction will be added to the block. This acts as a record and 
allows all blockchain nodes to see other agents' performances. 
In addition, having these records helps prove these nodes’ 
reputation recovery in case they enhance their performance. 

C. RPMC-EWA Use for Consensus Calculation 
In [15], a simple average was used to calculate the 

consensus. Having introduced the concept of reputation in this 
paper, a weighted average approach can be used with weights 
reflecting the agent’s reputation. It allows good agents to 
contribute more to the consensus. Agents with higher weights 
have a higher probability of performing well in the future. In 
contrast, agents that had poor performance recently but not yet 
detected as malicious should contribute less to the consensus. 

Note that, the increase and decrease in agent’s reputations 
for this application is not restricted. However, as we are dealing 
with decision-making applications, the slow increase, and the 
rapid decrease is still recommended. 

The reputations of agents can be used to calculate the 
weighted average. Miners consider all participating agents’ 
reputations when calculating the consensus. These reputations 
should be normalized so that their sum is equal to 1. Then, the 
weighted average can be used to calculate the consensus. 

VI. PERFORMANCE EVALUATION 
In this section, we evaluate the performance of RPMC-EWA 

for probabilistic blockchain malicious node detection. We start 
by discussing  a baseline reputation algorithm that will be used 
for comparison and the attack strategies to be used for 
evaluation. Then, we present two evaluation settings along with 
their results to show the performance of RPMC-EWA. 

A. Beta Reputation Algorithm 
The beta reputation algorithm is one of the traditional and 

most widely adopted reputation formulation that is used in 
reputation systems. It is derived from Posteriori probabilities of 
binary events that can be represented by a beta distribution. The 
expected value of the beta distribution is given α/(α+β) where α 
and β are shape parameters that are greater than 1 [22]. 

Given that α=p+1 (i.e., correct decisions) and β=n+1 (i.e., 
wrong decisions), the resulting expected value for the reputation 
follows the expected value of the beta distribution. That is, an 
agent’s reputation at time t can be calculated as follows: 

𝑅$ =
𝑝 + 1

𝑝 + 𝑛 + 2 

B. RPMC-EWA Algorithm Setting 
For the malicious node detection, we need a slow increase 

and rapid decrease setting. To be consistent with this 
requirement RPMC-EWA will use α=0.005 and β=0.3, for the 
rest of the paper, unless otherwise stated. 

C. Attack Strategies 
We assume that a normal agent is performing perfectly and 

making continuous correct decisions. If a node makes wrong 
decisions, it contributes to the decrease of its reputation. Thus, 
the assumption made above considers the worst-case scenario, 
where the attacker's target is the perfectly behaving node. It is a 
worst-case scenario because the agent’s reputation is maximized 
as it has not made any mistake yet. 

We followed four strategies for an attacker to use. These are 
discussed as follows: 

Continuous-flipping strategy: This is the most straightforward 
strategy where a malicious node continuously flips its decision. 
This strategy is easy to detect since the number of wrong 
decisions will be growing steadily without changes to the 
number of correct decisions. Thus, it is rarely followed in real 
life, but we discuss it as a base case scenario. 
Pattern-flipping-1 strategy : In this strategy, the malicious 
node will flip its decisions based on a predefined pattern. This 
results in an eventual increase in both correct and wrong 
decisions. Although it is harder to detect than the first strategy, 
it can also be detected by analyzing the agent history. For this 
case, a malicious agent is flipping the decision every four 
decisions. That is, the malicious agent makes three correct 
decisions then a wrong decision. 



Pattern-flipping-2 strategy: In this strategy, the agent make 10 
correct decisions and one wrong. 
Random-flipping strategy: In this strategy, a malicious node 
will randomly flip its decisions resulting in an eventual increase 
in both correct and wrong decisions. It is harder to detect than 
others and thus, followed mostly in real attack scenarios. 

D. RPMC-EWA and Beta Algorithms Performance 
We compare RPMC-EWA algorithm with the beta 

reputation algorithm as a baseline reputation algorithm. An 
agent is detected as malicious if its reputation falls below 0.5, 
i.e., its starting reputation. We vary the number of correct 
decisions made before the agent turned malicious and evaluate 
whether the algorithm can detect the agent as malicious. The 
evaluation metrics used are the detection accuracy and the 
decision number at which the agent is detected as malicious. The 
latter is only measured when the algorithm can detect. 

The results of the above experiments are shown in Table I. 
“Decision #” is the decision at which the agent turned malicious 
while “Detection decision #” is the decision at which the agent 
is detected as malicious. As can be seen, RPMC-EWA 
outperforms beta reputation in all cases. Beta reputation is able 
to detect a malicious agent only when in continuous flipping 
strategy and some cases of random flipping strategy. On the 
other hand, RPMC-EWA performs well in all strategies except 
for pattern-flipping-2 strategy. 

Table I. Results of RPMC-EWA and Beta algorithms performance for 
malicious node detection 

Setting Beta reputation RPMC-EWA 
reputation 

Strategy Decisi
on # 

Accuracy 
%  

Detection 
decision # 

Accura
cy % 

Detection 
decision # 

Continuou
s flipping 

1 100 3 100 2 

50 100 99 100 54 
100 100 199 100 106 
500 100 999 100 511 

1000 100 1999 100 1011 
Random 
flipping 

1 100 20 * 100 2 * 
50 10 92 * 100 59 * 

100 0 ** 100 113 * 
500 0 ** 100 525 * 

1000 0 ** 100 1030 * 
Pattern 

flipping 1 
1 0 ** 100 2 

50 0 ** 100 72 
100 0 ** 100 167 
500 0 ** 100 586 

1000 0 ** 100 1165 

Pattern 
flipping 2 

*** 0 ** 0 ** 

* an average value 
**Cannot be calculated 
*** For all numbers 

Beta’s bad performance is due to a small decrease in 
reputation when an agent makes any mistake. That is, an agent 
reputation will be going up and down by a small amount; thus, 
never reaches 0.5 except if the agent continuously flips or makes 
wrong decisions. In contrast, RPMC-EWA with rapid or even 
moderate decrease and slow increase can achieve 0.5 reputation 
faster as the decrease is much higher than increase. 

E. Malicious Node Detection and the Consensus 
We also evaluate the effect of malicious node detection on 

the consensus in probabilistic blockchains. As beta algorithm 
did not perform well on malicious node detection, we excluded 
it in this experiment. We compare the consensus with and 
without malicious node detection. 

The work in [14] has shown that probabilistic blockchain 
becomes resilient against malicious nodes as soon as these nodes 
are less than half of the total number of agents. However, this 
resiliency applies to the consensus interpretation rather than the 
consensus probability of an event. For example, the probability 
in the existence of a malicious node is 80% while honest agents 
have provided an individual probability of 100%. With 
malicious node detection, it is possible to get the exact 
consensus probability as decisions made by malicious nodes are 
excluded. 

As with the first experiment above, we use the same four 
attack strategies. Ten agents are participating with one 
malicious. Honest nodes give the same decisions with a 
probability of 1 while a malicious node flips the decision. 
Different probabilities may be used; however, we took this case 
in the context of this paper. To harden the detection, an agent is 
turned malicious only for a limited time (Decision 300 to 
Decision 500). We evaluate the consensus with and without 
malicious node detection as demonstrated in Fig. 3. 

  

a) Continuous flip b) Random flip 

  

c) Pattern flip 1 d) Pattern flip 2 
Fig. 3: Consensus Probability with and without malicious node detection 

As can be seen, the malicious node was detected and 
excluded from the consensus except for pattern-flipping-2. 
Considering a higher β facilitates the detection in the last case. 
In the case of continuous flip strategy, the node was detected 
right after it turned malicious. Whereas, in case of the random 
flip pattern, the malicious node was detected after it had made 
around 25 decisions after turning malicious. For pattern flip 1, 
the malicious node is detected after approximately 50 decisions. 

F. Analysis Limitation and Further works 
The analyses made in this paper have several known 

limitations to be handed in future works. First, all analyses are 



done off-chain as the reputation framework are yet to be 
integrated with probabilistic blockchain. Since the changes are 
only in mining, it is expected that these results will hold for 
blockchain. However, the reputation framework integration 
with a blockchain platform is needed to validate the results. The 
challenge is in tracking the reputations and making sure that 
there is a consensus among nodes. 

In addition, the framework computation analysis and 
overhead are still to be evaluated. The effects of consensus and 
reputation calculation on throughput and delay need to be 
investigated. These effects are critical to ensure that the 
proposed system does not add substantial overhead to the 
blockchains. Further, comparing the proposed reputation 
framework to already existing blockchain-based reputation 
solutions is also desirable for the proposed approach. 

The security of the proposed approach, along with 
probabilistic blockchains needs to be further analyzed 
theoretically and practically. Finally, applying the proposed 
approach to other applications and attack scenarios can add to 
the applicability of the proposed approach for decision making. 

VII. CONCLUSION 
Knowledge-based blockchains are gaining significant 

attention in building blockchain-based AI applications. In our 
earlier work, probabilistic blockchains, a blockchain paradigm 
to make consensus decisions within the blockchains, is 
proposed. The paradigm has significant potentials in building 
efficient AI systems in FinTech and non-FinTech applications. 
In this paper, we extend probabilistic blockchains and propose a 
reputation management framework for agents’ reputation in 
probabilistic blockchains. The framework is applied to 
malicious node detection where malicious agents are excluded 
from the blockchain consensus. Results showed that the 
proposed approach outperforms the traditional beta reputation 
system in detecting malicious nodes. Further, detecting and 
excluding malicious nodes show a better performance in 
consensus evaluation by probabilistic blockchains. It has been 
shown that the proposed reputation framework can also be used 
for consensus calculation, where the agents’ contributions to the 
consensus depend on their prior performances. Both 
applications are to be investigated in future extensions of the 
proposed work. 
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