
A Reputation Management Framework for
Knowledge-Based and Probabilistic Blockchains

Tara Salman
Dept. of Computer Science & Engineering

 Washington University in St. Louis
St. Louis, USA

tara.salman@wustl.edu

Raj Jain
Dept. of Computer Science & Engineering

Washington University in St. Louis
St. Louis, USA

jain@cse.wustl.edu

Lav Gupta
Dept. of Math and Computer Science

University of Missouri
St. Louis, USA

lavgupta@missouri.edu

Abstract—Recently, leading research communities have been
investigating the use of blockchains for Artificial Intelligence (AI)
applications, where multiple participants, or agents, collaborate to
make consensus decisions. To achieve this, the data in the
blockchain storage have to be transformed into blockchain
knowledge. We refer to these types of blockchains as knowledge-
based blockchains. Knowledge-based blockchains are potentially
useful in building efficient risk assessment applications. An earlier
work introduced probabilistic blockchain which facilitates
knowledge-based blockchains.

This paper proposes an extension for the probabilistic
blockchain concept. The design of a reputation management
framework, suitable for such blockchains, is proposed. The
framework has been developed to suit the requirements of a wide
range of applications. In particular, we apply it to the detection of
malicious nodes and reduce their effect on the probabilistic
blockchains’ consensus process. We evaluate the framework by
comparing it to a baseline using several adversarial strategies.
Further, we analyze the collaborative decisions with and without
the malicious node detection. Both results show a sustainable
performance, where the proposed work outperforms others and
achieves excellent results.

Keywords—blockchains, knowledge-based blockchains,
probabilistic blockchains, reputation management framework,
Rated Proportional Multi-Configurable Exponential Weighted
Average, RPMC-EWA, malicious node detection.

I. INTRODUCTION
Recent advances in networking, big data, cloud computing,

and data analysis techniques have made several large-scale
distributed applications possible. However, security and
trustworthiness issues are major concerns for such applications.
Blockchains, as distributed, peer-to-peer, and immutable
networks can save these applications from their security and
trustworthiness issues [1-5].

Lately, there have been some efforts toward utilizing
blockchains for decision support applications such as voting,
predictions, and collaborative Artificial Intelligence (AI)
systems. In 2015, the Bitcoin foundation funded a new project
for building efficient, anomalous, and secure voting systems [6-
10]. All in all, these efforts have introduced the transformation
of blockchains from a data storage platform to a collaborative
processing and decision-support platform. We refer to this type
of blockchains as knowledge-based blockchains, i.e.,
accumulating useful knowledge from the blockchains [11].

Our earlier work in [12] introduced a paradigm for achieving
collaborative decision-making required for knowledge-based
blockchains. We refer to that as the probabilistic blockchain
paradigm. Probabilistic blockchains do not imply that the chain
is probabilistic, as is the case in [13], but that the collaborative
decision is made probabilistically, given many individual
decisions made with imperfect information. As an example, one
can think of voters in a voting system or different AI-capable
nodes in a blockchain-based AI system as agents of the system.
These agents are nodes that inspect events and make individual
decisions, votes, or predictions. Based on these individual
decisions, the blockchain network can achieve a collaborative
decision about the event being investigated. For the rest of the
paper, we will refer to this collaborative decision as the
consensus made using the blockchain.

Probabilistic blockchains, as explained further in Section II,
can be used for many risk assessment or prediction application.
Their applications span both FinTech and non-FinTech domains
including stock market predictions, asset investment, insurance,
loan granting, credit scoring, malware, and intrusion detection,
and hotel (or any asset) recommendation systems. In other
words, the probabilistic blockchain framework is a step toward
building effective blockchain-based AI systems.

This paper extends probabilistic blockchains and proposes a
reputation management framework based on agents’
performance in the systems. The framework is initially designed
to suit multiple application domains with different requirements.
Accordingly, first, we discuss several applications of the
proposed framework for probabilistic blockchains. We then
apply it specifically to malicious node detection. We show that
the framework outperforms traditional reputation systems in
malicious node detection and results in good consensus.

The combination of probabilistic blockchains and the
reputation framework has several advantages for decision-
making applications. The collaborative decision in probabilistic
blockchains is decentralized, concurred, and secure against
manipulation. The use of a reputation framework helps in
distinguishing good/expert nodes from
bad/misbehaving/nonexpert ones. It can be used to incentivize
good nodes and allow them to have a higher impact on the
decision. This motivates participating nodes to make correct
decisions and prevents any effort to control the decision process.
That is, the proposed combination advances traditional decision-
making by providing more secure and reliable systems.

EPrint
IEEE 1st International Workshop on Advances in Artificial Intelligence for Blockchain (AIChain 2019),
held in conjunction with the 2019 IEEE International Conference on Blockchain, Atlanta, July 14, 2019

The rest of the paper is organized as follows: In Section II,
we give a brief overview of blockchains and their extensions to
probabilistic blockchains. In Section III, we put forward some
requirements for reputation frameworks. In Section IV, we
propose a particular reputation framework and prove that it
meets the requirements. Section V presents some applications of
the proposed framework to probabilistic blockchains.
Section VI discusses the performance analysis, comparisons,
and results. Finally, Section VII provides conclusions and
summarizes the paper.

A. Related Work
Reputation management frameworks have been investigated

by the blockchain community. Their main purpose is to build
reputation-based mining techniques that allow good nodes to
create blocks and gain rewards. Gai et al. have discussed a Proof
of Reputation (PoR) mining algorithm where the miner is chosen
based on his reputation [14]. PoR has been applied to GoChain
blockchain platform that is built on top of the Ethereum platform
[15]. Another Proof of Reputations (PoRe) concept has been
proposed by Qin in et al. [16]. PoRe combined with Proof of
Work (PoW) and proof of stake has been applied to RPChain, a
blockchain-based academic social network service.

RepuCoin, [17], is a blockchain system that uses miners’
reputation to define the mining power in PoW algorithm.
RepChain, [18], is another blockchain reputation system that
uses reputations to decide on the leader and validators in leader-
based mining algorithms. Agents will high reputations get a high
chance to be selected as leaders. Thus, they get the opportunity
to create blocks and gain rewards. Similar approaches have been
applied in [19] and [20] with other mining algorithms.

These works have shown promising results in terms of
security analysis and higher system throughput. Thus,
reputation-based mining techniques have the potential of solving
major transaction throughput and security issues found in other
mining techniques.

To the best of the authors' knowledge, malicious node
detection has not been investigated for blockchain applications.
As knowledge-based blockchains are a relatively new concept,
their malicious agents’ detection has not been investigated.
Traditional blockchain applications use the chain as a storage
unit. Thus, malicious nodes do not affect the system except
when adding or removing transactions from the database. This
is made difficult by appropriate mining techniques, and so
malicious node detection is not useful in traditional blockchains.

II. PROBABILISTIC BLOCKCHAINS BACKGROUND

This section gives a brief background of the transition from
blockchains to probabilistic blockchains. It discusses the main
design and architectural changes introduced in that paradigm.

We assume some prior knowledge of the blockchain
technology, the motivation to use it, and its main characteristics.
Also, the analysis of the probabilistic blockchains has been
discussed in [12] and is, therefore, out of the scope of this paper.

A. Traditional Blockchains Architecture
A blockchain consists of two main components: a network

and a database. The blockchain database is a data structure that

comprises transactions, blocks, and a chain. The system
interactions, e.g., money or digital exchanges, are stored in the
transactions. Transactions are verified and bundled together to
form a block using a predefined technique. Several blocks are
linked to each other where each block points to the hash of its
predecessor. This creates a chain of blocks called the blockchain
database. The blockchain network is a set of distributed nodes
that maintain the database and are connected via a network.

B. Motivation For Probabilistic blockchains
In any collaborative decision-making application, there are

many users that provide individual decisions about the events
being inspected. As an example, consider a stock market
prediction application. There are many companies that analyze
stocks and predict their future performance. We could use the
blockchain to store these forecasts. Moreover, the blockchain
can be used to process these forecasts and achieve a consensus.
A similar situation applies to group decision-making inside large
corporations, where employees indicate their opinion about an
important issue and the managers can benefit from the summary
of those opinions. We call these users or employees as agents.

To achieve these applications, the blockchains should be
extended in three directions. First, transactions and blocks
should be able to store probabilistic decisions made by agents.
Second, the blockchain network should be able to summarize
decisions and achieve probabilistic consensus without the needs
for external parties. Third, these consensuses should be visible
to others and possibly updated whenever needed.

It should be noted that even if the traditional blockchains are
able to store decisions, they are not being used to do so. Only
simple deterministic “yes” or “no” decisions are made to check
if ‘a transaction is valid or not’ or ‘being present in the chain or
not.’ Therefore, the processing of transactions and blocks is still
missing. Moreover, summarizing decisions and achieving
consensus within the blockchain is not feasible.

C. Probabilistic Blockchains
Unlike traditional blockchains, probabilistic blockchains

allow transactions to be simply the opinions of users. The blocks
contain all such transactions along with a summary of the
opinions. The summary may be a statistical summary like the
mean or may be the result of a machine learning algorithm.

The transactions that were used to store contracts or bitcoin
exchanges in traditional blockchains are used to record decisions
in probabilistic blockchains. Each decision is made by an agent
i for an event j and has a probability pi,j. Therefore, a transaction
in probabilistic blockchains has an event id, an agent id, a
decision, and a probability pi,j.

As with traditional blockchains, miners, or block formers,
verify these transactions and form a candidate block containing
several transactions. The added function for probabilistic
blockchains consists of summarizing the decisions enclosed in
the new block. The candidate block should have a summary of
one or several events that are included in that block. The main
differences between a traditional and a probabilistic blockchain
database are illustrated in Fig. 1.

Fig. 1. Traditional and probabilistic blockchain database

The event summaries act as the blockchain consensus of the
inspected events in that block. This consensus is based on a
function that is application dependent and predefined in the
system. We refer to this function as the consensus function. This
function should be representative, incremental, easy to calculate,
and difficult to manipulate. The property of being
'representative' indicates that the summary reflects the decision
of a group rather than that of a single agent. For example, 'min'
or 'max' summary are not considered proper consensus functions
because they could easily be impacted by a single agent. The
property of being 'incremental' indicates the new summary can
be calculated by adding the newly added decisions for the same
event to the previous summary value. This is required so that
miners do not have to retrieve all decisions made for the same
event in prior blocks. The function should be easy to calculate,
as the mining processes are already complicated. Besides, it
should be difficult to manipulate so that a malicious agent is not
able to control the consensus. Any function satisfying these four
conditions can be used. Examples of good functions include
mean, the second moment, first n moments, or even the result of
a sophisticated machine-learning algorithm.

After the candidate block is formed, it is broadcasted and
verified by other blockchain nodes, as with the traditional
blockchains. The added functions to block verifications are the
correctness and validity of the consensus values. Thus, any
block forming and verification technique (i.e., the mining
process) that is used in traditional blockchains can also be used
in probabilistic blockchains.

D. Need for Reputation Management
One of the issues in any group decision-making is that not

all agents contributing to the group decision may be treated
equally. Some agents, who have had a good history of correct
decisions in the past, may be given a higher weight. In other
words, the reputation of those contributing to the decision is
important. Thus, this paper proposes a reputation assignment
framework for the decision-making in probabilistic blockchains.

E. Probabilistic Blockchains with Reputation
The proposed reputation management system can be applied

to any decision making or prediction engine with the same
objectives. However, the use of probabilistic blockchain
combined with the reputation framework has several advantages
over the traditional systems. First, blockchains provide a
distributed and immutable database where individual decisions
are securely stored. Probabilistic blockchains add to that by
allowing consensus decision to have the same features. Further,
probabilistic blockchains come with many security advantages
including resiliency to malicious agents, resiliency to malicious
miners, Distributed Denial of Service (DDoS) protection, and
fraud mitigation. The details of these can be found in [15].

A reputation management framework results in better
consensus decision as good behaving agents have higher
contributions to the decision. In addition to that, probabilistic
blockchains have its own advantage to the framework. It can
ensure that the framework is correctly followed and agents’
reputations are not centralized. This is true since other nodes
validate the reputations as will be discussed. That is, reputation
and probabilistic blockchains collectively collaborate to build
efficient decision-making engines.

III. REPUTATION MANAGEMENT FRAMEWORK
REQUIREMENTS

Some requirements are needed to be met to properly design
a reputation management framework suitable for probabilistic
blockchains. This section will discuss seven such requirements
and why they are necessary. It lays the foundation for the
framework proposed in the next section. Our basic premise is
that the requirements should favor better-performing agents and
provide fairness among similar agents. Further, they should be
configurable to be used for different applications.

A. Continuity
A reputation function should be continuous such that it gives

a different value for any change in an agent's performance. That
is, for any correct or incorrect decision made by an agent, a
suitable reputation should be given. This allows the agent to
have a reputation value at any point in the system. More
importantly, it enables this reputation value to represent the
agent's performance at any time.

B. Boundedness Function
A reputation function should be bounded between 0 and 1.

That is, a good agent should eventually have a reputation of 1
while a malicious agent should have a reputation of 0. This
allows the reputation to be expressed as a percentage. For
example, an agent with a reputation of 0.9 is mostly trusted
while an agent with a reputation of 0.1 is not trusted.

Boundedness helps to intuitively understand the reputation
value based on the agent's performance. Moreover, it puts
forward an expectation of how the agent will perform in the
future. An agent with a 0.9 reputation is more likely to make
correct decisions than an agent with a 0.1 reputation.

C. A Reputation Starts at 0.5
An agent that is just starting and has not contributed to the

decision-making process should have a reputation of 0.5. This

Timestamp

Block 0

TransactionTransactio

Timestamp

Block n-1

Timestamp

Block n

TransactionTransactioRecord
TransactionTransactioRecordRecord

Timestamp

Block 0

TransactionTransaction 1

Timestamp

Block n-1

Timestamp

Block n

TransactionTransactioEvent i, Agent j,
Decision, Pi,j

TransactionTransaction 3Event i3, Agent j3,
Decision, Pi3,j3

Event i2, Agent j2,
Decision, Pi2,j2

Transactions
Summary
{ event i2,
Summary
function}

Transactions
Summary
{ event i,
Summary
function}

Transactions
Summary
{ event i3,
Summary
function}

a. The traditional blockchain database

b. The probabilistic blockchain database

makes the agent half trusted and gives it a 50% expectation to
perform well in the future. It should be noted that this reputation
value is lower than an excellent behaving agent but at the same
time higher than a malicious or poorly performing agent.

D. Time-Dependent Function
The reputation function should be time-dependent, giving an

agent the chance to enhance its reputation as he makes correct
decisions. This indicates that an agent that has made wrong
decisions recently should have a lower reputation than an agent
that has made wrong decisions much earlier. This is desirable as
the second agent has enhanced its performance while the first
has made it worse. Thus, the second is expected to perform
better in the near future and should have a higher reputation.

As an example, consider two agents where the first agent
made 98 correct decisions followed by 2 wrong decisions
recently. The second agent made 2 wrong decisions followed by
98 correct decisions. Hence, the second one had better recent
performance and is expected to perform well. Intuitively, it
should have a higher reputation.

Examples of reputation functions that provide this property
is exponential moving average. We will start with exponentially
moving average and modify it in the next section.

E. Configurable Increase and Decrease
The increase in reputation should be configurable to suit

various application domains. Some applications, e.g., critical
decisions, require a slow increase in the reputations so that new
agents are not trusted easily. Other applications, e.g.,
recommendation systems, require moderate or fast growth.
Similarly, a decrease in reputation should be configurable to suit
different applications. Critical decision-making applications
require a fast decrease to penalize misbehaving agents faster.

Further, it should be possible to have different increase and
decrease factors to account for applications that require different
configurations. For example, critical applications require a slow
increase with a rapid decrease.

We use the reputation framework for malicious node
detection, which requires a slow increase and a fast decrease.
Nevertheless, it should be noted that configurable parameters are
always desirable of any reputation management framework.

F. Slower Reputation Recovery
The increase in the reputation value after a wrong decision

should be slower than a normal increase. That is if two agents
with a reputation of 0.5 where agent A is just starting and agent
B had made several good and bad decisions. Agent B should
have a slower increase than the agent A, which is just starting.

The stipulation given above is required to penalize malicious
nodes and prevent their fast reputation recovery. It also helps in
preventing attack strategies where a malicious agent gives
wrong decisions randomly or using a specific pattern.

G. Proportional Update
When a node makes a wrong decision, its reputation

decrease should be proportional to how good it has performed
so far. To explain this, consider two nodes, Agent A and
Agent B, who have each made a wrong decision at the same

time. Agent A previously made 1000 good decisions while
Agent B made only 100. This means that Agent A made 1 in
1000 mistakes while Agent B made 1 in 100. It is intuitive that
Agent A should have a higher reputation than agent B. The same
thing applies to the increase in reputation recovery. The
proportional update helps to provide fairness and a higher
reputation for the node that has been in the system longer.

IV. PROPOSED REPUTATION MANAGEMENT FRAMEWORK

The seven requirements discussed in the previous section
should be reflected in any reputation formula used. In this
section, we propose a reputation formulation and prove that it
meets these requirements. We propose this formulation for a
reputation framework to be used for probabilistic blockchain as
will be discussed later.

A. Reputation Formulation
We start with a function that follows an Exponentially

Weighted Average (EWA) to calculate agents’ reputations.
Thus, Ri,t, the reputation of Agent i at time t, may be calculated
as follows:

𝑅",$ = &
0.5	 	𝑡 = 0
𝛼𝑋 + (1 − 𝛼)𝑅",$34	 𝑡 ≠ 0 6 (1)

Where 𝛼 is a configuration parameter that is between 0 and
1. X is a value that is generally either -1 or 1, deciding whether
to decrease or increase the new reputation. X can also be a
fractional value as we will see in our reputation function. For
better notation, we will use 𝑅$ to represent 𝑅",$.

The parameter α affects the weight given to the agent’s old
performance. As 𝛼 decreases, more weight is given to the prior
performance, thus, the change in 𝑅$ value will decrease. This
indicates that for a slow increase or decrease, α should be small.

The EWA formulation above is not sufficient to meet all
seven previously discussed requirements. More specifically,
EWA formulation does not provide boundedness (between 0 and
1), different configurable increase and decrease, and
proportional decrease properties. In the following, we discuss
how to improve the formulation.

a) Boundedness: The EWA formulation is [-1, 1]
bounded while we require [0, 1] bound to represent a
percentage. To satisfy our bounds, we need to change the output
from [-1, 1] to [0, 1]. Thus, the new percentage EWA
formulation can be represented as follows:

𝑅$ =
8 9		 		$:9
;<=(43;)(>?@AB34)																$C9

D

>
+ 0.5 (2)

Note that X is generally either -1 or 1, and α < 1. It can be
seen that with this translation, if Rt-1 is in the interval [0, 1], Rt is
also in the same interval [0, 1]. Values of Rt for three values of
Rt-1 are shown in the table below:

Rt
Rt-1 X=-1 X=+1

0 0 a
0.5 0.5(1-a) 0.5(1+a)

1 1-a 1

b) Configurable increase and decrease: The EWA
formula has one configuration parameter 𝛼 to account for both

the increase and decrease. However, as discussed earlier, some
applications require different increase and decrease parameters.
For example, loss due to a wrong decision may be much higher
than gain due to the correct decision. To satisfy such cases, we
consider 𝛼 as an increase parameter and add another parameter
𝛽 for the decrease. Thus, the new multi-configurable
percentage EWA formula can be as follows:

Rt=
H

0																																																															t=0
αX+(1-α)(2Rt-1-1)						t>0,	correct	decision
β(-X)+(1-β)(2Rt-1-1)					t>0,	wrong	decision

X

2
+0.5 (3)

c) Proportional update: As X generally has a value of
either 1 or -1, i.e., decrease or increase, the first term in EWA
will be the same for all agents. That is, if two agents have the
same reputation before making a wrong decision, their
reputation will be the same regardless of their prior
performance. However, as discussed earlier, proportional
decreases and increases provide higher fairness to agents who
have participated longer in the system. To achieve this property,
we set X to the proportion of good or bad behavior of the agent
up to this point. Formally:

Rt=
⎩
⎨

⎧
0																																																								p=0,	n=0,	t=0
α p
p+n+(1-α)(2Rt-1-1)					t>0,	correct	decision

β -n
p+n+(1-β)(2Rt-1-1)							t>0,	wrong	decision⎭

⎬

⎫

2
+0.5 (4)

Where p is the number of correct decisions and n is the
number of wrong decisions before time t.

We refer to the reputation formula in Eq. 4 as Rated
Proportional Multi-Configurable EWA (RPMC-EWA) formula.
We propose using RPMC-EWA in calculating the reputation for
each agent as will be seen.

It should be noted that we started with EWA and moved
towards meeting our requirements. The same thing can be done
for other known starting formulas. We choose EWA as it meets
most requirements and does not rely on any underlying
distribution assumption.

B. RPMC-EWA Meets the Requirements
The discussions in the previous subsection prove

boundedness, configurable increase and decrease, and
proportional update properties of RPMC-EWA. Next, we show
that RPMC-EWA meets other requirements discussed earlier.

RPMC-EWA is a continuous function, and any decision
made will result in a slightly different reputation value. It is
bounded between 0 and 1, as discussed earlier. It starts at 0.5
following the first condition in Eq. 4. It has a configurable
increase/decrease since both α and 𝛽	 are configurable. It
follows a proportional decrease as `

`=a
	was introduced for this.

Further, RPMC-EWA is time-dependent as it inherits EWA and
will be shown in Lemma 1 and it provides a slower reputation
recovery as will be shown in Lemma 2.

Lemma 1: RPMC-EWA satisfies the time-dependent
requirement.

This property is inherited from the EWA formula [21]. To
show this, we consider two agents, A and B. Agent A made a
mistake at time t while Agent B made a mistake at t-1. Earlier

decisions were the same. Thus, the reputation at t-2 is the same
for both agents. If RPMC-EWA is time-dependent, Agent A
should have a lower reputation that Agent B.

𝑅b,$ = 	𝛽
-n
p+n+(1-β)	𝑅b,$34	 = 	𝛽

-n
p+n 	+(1-β)	(α

p
p+n+

(1-α)𝑅b,$3>)

𝑅c,$ = 	𝛼
p

p+n 	+(1-α)	𝑅c,$34	 = 	𝛼
p

p+n 	-(1-α)	(𝛽
-n
p+n+

(1-𝛽)𝑅c,$3>)
-n

p+n
	is almost equal to 0, and we denote it by -𝛿. Similarly,

p
p+n

 is almost equal to 1, and we denote by ∆. Therefore,

𝑅b,$ = 	𝛽(-𝛿)+(1-β)	𝑅b,$34 = 𝛽(-	𝛿)	+(1-β)	(α(∆)+(1-α)𝑅b,$3>)
= −𝛽𝛿	+α∆+(1-α)𝑅b,$3>-	βα∆-β(1-α)𝑅b,$3>
= −𝛽𝛿	+α∆-	αβ∆+[(1-α)-β(1-α)]𝑅b,$3>
= −𝛽𝛿	+α∆-	αβ∆+[(1-β)-α(1-β)]𝑅b,$3>

𝑅c,$ = 	𝛼(∆)+(1-α)	𝑅c,$34 = 𝛼(∆)	+(1-α)	(𝛽(− 𝛿)+(1-𝛽)𝑅c,$3>)
= 𝛼∆	-𝛽𝛿+(1-β)𝑅c,$3>+αβ𝛿-α(1-β)𝑅c,$3>
= 𝛼∆	-𝛽𝛿+	αβ𝛿+[(1-β)-α(1-β)]𝑅c,$3>

The last term is the same for both agents and, therefore:
𝑅b,$ − 𝑅c,$ = 𝛼𝛽(∆ − 𝛿)

Hence, the reputation of Agent A is higher than the
reputation of Agent B. Thus, the agent who made the most
recent mistake will have the lowest reputation.

Lemma 2: RPMC-EWA meets the slower reputation
recovery property

To prove this, we look at the value of the term p
p+n

 in Eq. 4.
For an agent that has just started, and has made a correct
decision, n will be 0. Thus, the above term will be 1, which is
the maximum increase achieved. For an old agent, who has
committed mistakes earlier, n≠0. Thus, the term will be less
than 1. Obviously, the second case will have a slower increase.
Further, as n increases, the recovery will be even slower.

Fig. 2 illustrates this with a case scenario where Agent A has
just started, Agent B made 10% wrong decisions earlier,
Agent C made 15% wrong decisions earlier, and Agent D made
25% wrong decisions earlier. All agents are making good
decisions since the simulation started. Note that
α=0.005 and β=0.3.

V. RPMC-EWA AND PROBABILISTIC BLOCKCHAINS
This section discusses RPMC-EWA can be used in

probabilistic blockchains. Further, it highlights RPMC-EWA
uses for the probabilistic blockchain paradigm.

Fig. 2: RPMC-EWA slower reputation property

A. RPMC-EWA in Probabilistic Blockchains
The addition for probabilistic blockchain to deploy RPMC-

EWA is in the consensus calculation and validation process. For
the calculation, the miner gets the last reputations for all
participating agents and use it in calculating the new consensus
in the block. For validation, the validators also get the
reputations for all agents and recalculate the proposed consensus
to ensure its correctness. This guarantees that the miner is not
controlling the consensus nor manipulating the reputations.

After the block is committed, all nodes including update
agents’ reputations for future blocks. The number of good and
bad behavior for all agents have to be stored at all nodes in order
to calculate and update the reputation. However, it should be
noted that these reputations are not stored in the chain and kept
off-chain for block size limitation purposes.

B. RPMC-EWA Use for Malicious Node Detection
The first application of the reputation framework discussed

in the previous section is the malicious node detection. This
application is the focus of performance analysis in this paper. In
such an application, agents with low reputation are considered
malicious. A starting node has a reputation of 0.5. Therefore, we
consider an agent with a reputation lower than 0.5 as malicious
or a poorly performing agent. In some applications, such agents
may be excluded from the decision process.

For this application, it is preferable to increase agents’
reputations gradually as they make good decisions and decrease
it rapidly as they make bad decisions. The slow increase is
required, so that newly joined agents are less favorable than
agents with a long history of good behavior.

It should be noted that nodes that commit only a few
mistakes may also be detected as malicious. This is true in
decision-making applications as these agents affect the
consensus. Also, if bad agents keep enhancing their
performance, their reputation will rise above 0.5, eventually.
Hence, they will again be considered as normal agents.

Before calculating the consensus, miners should calculate
the reputation for agents and exclude malicious agents from the
decision process. However, if their transactions are valid, the
transaction will be added to the block. This acts as a record and
allows all blockchain nodes to see other agents' performances.
In addition, having these records helps prove these nodes’
reputation recovery in case they enhance their performance.

C. RPMC-EWA Use for Consensus Calculation
In [15], a simple average was used to calculate the

consensus. Having introduced the concept of reputation in this
paper, a weighted average approach can be used with weights
reflecting the agent’s reputation. It allows good agents to
contribute more to the consensus. Agents with higher weights
have a higher probability of performing well in the future. In
contrast, agents that had poor performance recently but not yet
detected as malicious should contribute less to the consensus.

Note that, the increase and decrease in agent’s reputations
for this application is not restricted. However, as we are dealing
with decision-making applications, the slow increase, and the
rapid decrease is still recommended.

The reputations of agents can be used to calculate the
weighted average. Miners consider all participating agents’
reputations when calculating the consensus. These reputations
should be normalized so that their sum is equal to 1. Then, the
weighted average can be used to calculate the consensus.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of RPMC-EWA

for probabilistic blockchain malicious node detection. We start
by discussing a baseline reputation algorithm that will be used
for comparison and the attack strategies to be used for
evaluation. Then, we present two evaluation settings along with
their results to show the performance of RPMC-EWA.

A. Beta Reputation Algorithm
The beta reputation algorithm is one of the traditional and

most widely adopted reputation formulation that is used in
reputation systems. It is derived from Posteriori probabilities of
binary events that can be represented by a beta distribution. The
expected value of the beta distribution is given α/(α+β) where α
and β are shape parameters that are greater than 1 [22].

Given that α=p+1 (i.e., correct decisions) and β=n+1 (i.e.,
wrong decisions), the resulting expected value for the reputation
follows the expected value of the beta distribution. That is, an
agent’s reputation at time t can be calculated as follows:

𝑅$ =
𝑝 + 1

𝑝 + 𝑛 + 2

B. RPMC-EWA Algorithm Setting
For the malicious node detection, we need a slow increase

and rapid decrease setting. To be consistent with this
requirement RPMC-EWA will use α=0.005 and β=0.3, for the
rest of the paper, unless otherwise stated.

C. Attack Strategies
We assume that a normal agent is performing perfectly and

making continuous correct decisions. If a node makes wrong
decisions, it contributes to the decrease of its reputation. Thus,
the assumption made above considers the worst-case scenario,
where the attacker's target is the perfectly behaving node. It is a
worst-case scenario because the agent’s reputation is maximized
as it has not made any mistake yet.

We followed four strategies for an attacker to use. These are
discussed as follows:

Continuous-flipping strategy: This is the most straightforward
strategy where a malicious node continuously flips its decision.
This strategy is easy to detect since the number of wrong
decisions will be growing steadily without changes to the
number of correct decisions. Thus, it is rarely followed in real
life, but we discuss it as a base case scenario.
Pattern-flipping-1 strategy : In this strategy, the malicious
node will flip its decisions based on a predefined pattern. This
results in an eventual increase in both correct and wrong
decisions. Although it is harder to detect than the first strategy,
it can also be detected by analyzing the agent history. For this
case, a malicious agent is flipping the decision every four
decisions. That is, the malicious agent makes three correct
decisions then a wrong decision.

Pattern-flipping-2 strategy: In this strategy, the agent make 10
correct decisions and one wrong.
Random-flipping strategy: In this strategy, a malicious node
will randomly flip its decisions resulting in an eventual increase
in both correct and wrong decisions. It is harder to detect than
others and thus, followed mostly in real attack scenarios.

D. RPMC-EWA and Beta Algorithms Performance
We compare RPMC-EWA algorithm with the beta

reputation algorithm as a baseline reputation algorithm. An
agent is detected as malicious if its reputation falls below 0.5,
i.e., its starting reputation. We vary the number of correct
decisions made before the agent turned malicious and evaluate
whether the algorithm can detect the agent as malicious. The
evaluation metrics used are the detection accuracy and the
decision number at which the agent is detected as malicious. The
latter is only measured when the algorithm can detect.

The results of the above experiments are shown in Table I.
“Decision #” is the decision at which the agent turned malicious
while “Detection decision #” is the decision at which the agent
is detected as malicious. As can be seen, RPMC-EWA
outperforms beta reputation in all cases. Beta reputation is able
to detect a malicious agent only when in continuous flipping
strategy and some cases of random flipping strategy. On the
other hand, RPMC-EWA performs well in all strategies except
for pattern-flipping-2 strategy.

Table I. Results of RPMC-EWA and Beta algorithms performance for
malicious node detection

Setting Beta reputation RPMC-EWA
reputation

Strategy Decisi
on #

Accuracy
%

Detection
decision #

Accura
cy %

Detection
decision #

Continuou
s flipping

1 100 3 100 2

50 100 99 100 54
100 100 199 100 106
500 100 999 100 511

1000 100 1999 100 1011
Random
flipping

1 100 20 * 100 2 *
50 10 92 * 100 59 *

100 0 ** 100 113 *
500 0 ** 100 525 *

1000 0 ** 100 1030 *
Pattern

flipping 1
1 0 ** 100 2

50 0 ** 100 72
100 0 ** 100 167
500 0 ** 100 586

1000 0 ** 100 1165

Pattern
flipping 2

*** 0 ** 0 **

* an average value
**Cannot be calculated
*** For all numbers

Beta’s bad performance is due to a small decrease in
reputation when an agent makes any mistake. That is, an agent
reputation will be going up and down by a small amount; thus,
never reaches 0.5 except if the agent continuously flips or makes
wrong decisions. In contrast, RPMC-EWA with rapid or even
moderate decrease and slow increase can achieve 0.5 reputation
faster as the decrease is much higher than increase.

E. Malicious Node Detection and the Consensus
We also evaluate the effect of malicious node detection on

the consensus in probabilistic blockchains. As beta algorithm
did not perform well on malicious node detection, we excluded
it in this experiment. We compare the consensus with and
without malicious node detection.

The work in [14] has shown that probabilistic blockchain
becomes resilient against malicious nodes as soon as these nodes
are less than half of the total number of agents. However, this
resiliency applies to the consensus interpretation rather than the
consensus probability of an event. For example, the probability
in the existence of a malicious node is 80% while honest agents
have provided an individual probability of 100%. With
malicious node detection, it is possible to get the exact
consensus probability as decisions made by malicious nodes are
excluded.

As with the first experiment above, we use the same four
attack strategies. Ten agents are participating with one
malicious. Honest nodes give the same decisions with a
probability of 1 while a malicious node flips the decision.
Different probabilities may be used; however, we took this case
in the context of this paper. To harden the detection, an agent is
turned malicious only for a limited time (Decision 300 to
Decision 500). We evaluate the consensus with and without
malicious node detection as demonstrated in Fig. 3.

a) Continuous flip b) Random flip

c) Pattern flip 1 d) Pattern flip 2
Fig. 3: Consensus Probability with and without malicious node detection

As can be seen, the malicious node was detected and
excluded from the consensus except for pattern-flipping-2.
Considering a higher β facilitates the detection in the last case.
In the case of continuous flip strategy, the node was detected
right after it turned malicious. Whereas, in case of the random
flip pattern, the malicious node was detected after it had made
around 25 decisions after turning malicious. For pattern flip 1,
the malicious node is detected after approximately 50 decisions.

F. Analysis Limitation and Further works
The analyses made in this paper have several known

limitations to be handed in future works. First, all analyses are

done off-chain as the reputation framework are yet to be
integrated with probabilistic blockchain. Since the changes are
only in mining, it is expected that these results will hold for
blockchain. However, the reputation framework integration
with a blockchain platform is needed to validate the results. The
challenge is in tracking the reputations and making sure that
there is a consensus among nodes.

In addition, the framework computation analysis and
overhead are still to be evaluated. The effects of consensus and
reputation calculation on throughput and delay need to be
investigated. These effects are critical to ensure that the
proposed system does not add substantial overhead to the
blockchains. Further, comparing the proposed reputation
framework to already existing blockchain-based reputation
solutions is also desirable for the proposed approach.

The security of the proposed approach, along with
probabilistic blockchains needs to be further analyzed
theoretically and practically. Finally, applying the proposed
approach to other applications and attack scenarios can add to
the applicability of the proposed approach for decision making.

VII. CONCLUSION
Knowledge-based blockchains are gaining significant

attention in building blockchain-based AI applications. In our
earlier work, probabilistic blockchains, a blockchain paradigm
to make consensus decisions within the blockchains, is
proposed. The paradigm has significant potentials in building
efficient AI systems in FinTech and non-FinTech applications.
In this paper, we extend probabilistic blockchains and propose a
reputation management framework for agents’ reputation in
probabilistic blockchains. The framework is applied to
malicious node detection where malicious agents are excluded
from the blockchain consensus. Results showed that the
proposed approach outperforms the traditional beta reputation
system in detecting malicious nodes. Further, detecting and
excluding malicious nodes show a better performance in
consensus evaluation by probabilistic blockchains. It has been
shown that the proposed reputation framework can also be used
for consensus calculation, where the agents’ contributions to the
consensus depend on their prior performances. Both
applications are to be investigated in future extensions of the
proposed work.

ACKNOWLEDGMENT
This publication was made possible by NPRP grant

#NPRP11S-0109-180242 from the Qatar National Research
Fund (a member of Qatar Foundation) and the National Science
Foundation Grants No. CNS-1547380 and CNS-1718929.The
findings achieved herein are solely the responsibility of the
author[s].

REFERENCES
[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2009.

[Online]. Available: https://bitcoin.org/bitcoin.pdf. [Accessed 3 June
2019].

[2] M. Pilkington, Blockchain technology: principles and applications,
Research handbook on digital transformations, 2016.

[3] M. Mettler, "Blockchain technology in healthcare: The revolution starts
here," in 2016 IEEE 18th International Conference on e-Health
Networking, Applications and Services (Healthcom), Munich, 2016.

[4] K. Christidis and M. Devetsikiotis, "Blockchains and Smart Contracts for
the Internet of Things," IEEE Access, vol. 4, pp. 2292-2303, 2016.

[5] B. Betts, "Blockchain and the promise of cooperative cloud storage,"
Computerweekly, August 2016. [Online]. Available:
http://www.computerweekly.com/feature/Blockchain-and-the-promise-
of-cooperative-cloud-storage. [Accessed February 2019].

[6] P. McCorry, C. F. Shahandashti, and F. Hao, "A smart contract for
boardroom voting with maximum voter privacy," in International
Conference on Financial Cryptography and Data Security, Malta, 2017, pp.
357-375.

[7] L. Shen, "Ethereum-Based Blockchain Betting Platform Augur Just
Launched. Here's Why It's Not Married to Ether," 9 July 2018. [Online].
Available: http://fortune.com/2018/07/09/augur-coin-crypto-rep-vitalik-
buterin/. [Accessed 3 June 2019].

[8] M. Swan, "Blockchain Thinking : The Brain as a Decentralized
Autonomous Corporation [Commentary]," IEEE Technology and Society
Magazine, vol. 34, no. 4, pp. 41-52, Dec 2015.

[9] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang and J. Han, "When
Intrusion Detection Meets Blockchain Technology: A Review," IEEE
Access, vol. 6, pp. 10179-10188, 2018.

[10] T. Golomb, Y. Mirsky and Y. Elovici, "CIoTA: Collaborative IoT
Anomaly Detection via Blockchain," in Network and Distributed Systems
Security Symposium (NDSS), San Diego, CA, 2018.

[11] R. Jain, "Extending Blockchains for Extending Blockchains for Risk
Management Risk Management and Decision Making and Decision
Making," 9 November 2018. [Online]. Available:
https://www.cse.wustl.edu/~jain/talks/ftp/pbc_ibf.pdf. [Accessed 3 June
2019].

[12] T. Salman, R. Jain and L. Jupta, "probabilistic Blockchains: A Blockchain
Paradigm for Collaborative Decision-Making," in The 9th IEEE Annual
Ubiquitous Computing, Electronics & Mobile Communication
Conference, New York, November 2018.

[13] K. Yamada and H. Saito, "What’s So Different about Blockchain? —
Blockchain is a Probabilistic State Machine," in IEEE 36th International
Conference on Distributed Computing Systems Workshops (ICDCSW),
Nara, 2016, pp. 168-175.

[14] F. Gai, B. Wang, W. Deng and W. Peng, "Proof of Reputation: A
Reputation-Based Consensus Protocol for Peer-to-Peer Network," in
Database Systems for Advanced Applications, Gold Coast, Australia,
2018.

[15] Github, "The official GoChain client. https://gochain.io," gochain,
[Online]. Available: https://github.com/gochain-io/gochain. [Accessed 3
June 2019].

[16] D. Qin, C. Wang and Y. Jiang, "RPchain: A Blockchain-Based Academic
Social Networking Service for Credible Reputation Building," in
International Conference on Blockchain, Seattle, WA, USA, 2018.

[17] J. Yu, D. Kozhaya, J. Decouchant and P. E. Verissimo, "RepuCoin: Your
Reputation is Your Power," IACR Cryptology ePrint Archive 2018, 2018.

[18] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang and X. Guan,
"RepChain: A Reputation based Secure, Fast and High Incentive
Blockchain System via Sharding," arXiv preprint arXiv:1901.05741.

[19] C. Tang, L. Wu, G. Wen and Z. Zheng, "Incentivizing Honest Mining in
Blockchain Networks: A Reputation Approach," IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. (to appear), 2019.

[20] J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim and J. Zhao, "Toward
Secure Blockchain-Enabled Internet of Vehicles: Optimizing Consensus
Management Using Reputation and Contract Theory," IEEE Transactions
on Vehicular Technology, vol. 68, no. 3, pp. 2906-2920, March 2019.

[21] Weki, "Exponential_moving_average," Wekipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_ave
rage. [Accessed 22 Febreuary 2019].

[22] A. Josang and R. Ismail, "The Beta Reputation System," in 15th Bled
Electronic Commerce Conference, Bled, Slovenia, 2002.

