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Abstract—Ensuring end-to-end quality-of-service for video
applications requires the network to choose the most feasible
path in terms of bandwidth, delay and jitter. Quality of service
can only be ensured if the paths are reliable - perform to
specification per request. This paper makes four contributions
to research. First, it presents Reliable Video over Software-
Defined Networking (RVSDN) which builds upon previous
work of Video over Software-Defined Networking (VSDN) to
address the issue of finding the most reliable path(s) through
the network for video applications. Second, it presents the
design and implementation of RVSDN. Third, it presents the
experience of integrating RVSDN into ns-3 which is a network
simulator used by the research community to simulate and
model computer networks. Finally, it presents the results of
RVSDN in terms of the number of requests serviced by the
network architecture. RVSDN is able to service 31 times more
requests than VSDN and MPLS explicit routing when the
reliability constraint is 0.995 or greater using aggregation of
reliability across network paths.

I. INTRODUCTION

Video demands across the Internet are projected to grow
to nearly 69 percent of Internet traffic by 2017 [1]. The
increase in video demand is caused by hardware (e.g., smart
TVs, tablets and smart phones) and software (e.g., Facebook,
YouTube, Netflix and HuLu). Video applications such as
video-on-demand (VOD) and telesurgery are pushing the
current network infrastructure and protocols to the limits.
These factors require that video traffic have a certain level of
quality-of-service (QoS) from the network. The QoS that the
network provides to video applications can be required band-
width and minimal delay and jitter. Currently, there are QoS
frameworks (e.g., differentiated services, integrated services
and MPLS) that provide QoS for real-time application like
video but each has its limitations [2]. The QoS frameworks
and the Internet were not developed for the great demands
of video applications of today. New approaches to handle
QoS, security, reliability and wireless technologies within
the Internet are needed [3].

Supporting today’s video applications require us to rethink
how the network should provide end-to-end QoS guaran-
tees. Currently, network QoS frameworks consider network
bandwidth, delay and jitter. Although these attributes are
important to real-time applications like video, meeting these
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constraints do not address reliability of network paths or
build the confidence of network operators about the path
selection process. In this paper, reliability is the ability of
the network to perform to specification [4] per request. This
paper builds on our past work [5] and investigates the ability
of the network to select reliable network paths. Network
frameworks may use multi-path selections to decrease the
probability of a failure, handle failures more gracefully or
increase bandwidth capacity [6]. Multi-path selection allows
the network to load balance network traffic and to provide
fail-over in case the primary path fails. Multi-path selection
does not address the reliability issue of video applications
such as remote surgery, robotic packets or interactive video.

Constraint-based routing or multiple path selection can
fail to provide end-to-end quality of service for video
applications. For example, if the QoS requirement for a
video application is 0.95 reliability, 1.5Mbps bandwidth,
100ms delay, and 20ms jitter, current QoS frameworks like
integrated services find a Pathl which meets the required
constraints (i.e., bandwidth, delay and jitter) but will be
unable to meet reliability constraint because supporting
reliability constraint is not built into architecture design.
The network operator may configure MLPS fail-over links
to address the issue of reliability. Although, availability
of the network is increased using fail-over links, fail-over
links will not necessarily provide the required reliability
for video application because MPLS explicit routing paths
are static. If network operator configures MPLS fail-over as
Pathl with reliability of .75 and Path2 with reliability of
.75, the overall reliability of the disjointed paths would be
(1 —(1-.75) x (1 —.75)) = 0.9375 which does not meet
the reliability of requirement 0.95. Furthermore, the static
routes of MPLS could not dynamically select a combination
of reliable paths to service real-time applications like video.

Meeting reliability requirement for video applications
requires the path selection process to consider more than a
single path even if path meets reliability requirement before
a failure. It requires the path selection algorithms to dynami-
cally consider the combination of multiple paths’ bandwidth,
delay, jitter and reliability constraints. The network QoS
frameworks currently do not address the issue of reliability
which is the main idea of this paper.



Therefore, this paper presents experience and results of
integrating reliability support into the Video over Software-
Defined Networking (VSDN) architecture which ensures
end-to-end QoS for video applications. The main contribu-
tions of this paper are:

o It presents Reliable Video over Software-Defined Net-
working (RVSDN), which is an architecture that builds
on previous work [5] to ensure end-to-end quality of
service for video applications;

« It presents the results of implementing RVSDN into the
NS3 simulator [7]; and

o It presents an empirical study that evaluates RVSDN
runtime performance in terms of number of requests
serviced per reliability constraint request.

Paper organization. The remainder of this paper is orga-
nized as follows: Section II motivates the need for Reli-
able Video over Software-Defined Networking (RVSDN);
Section III discusses the design and implementation of
RVSDN; Section IV presents results of simulating RSVDN
in a simulator and interpretation of the results; Section V
compares RVSDN to related works; and Section VI provides
concluding remarks.

II. OVERVIEW OF INTSERV QOS MODEL AND CURRENT
IMPLEMENTATION OF VIDEO OVER SOFTWARE-DEFINED
NETWORKING (VSDN)

This section briefly discusses IntServ architecture. It also
discusses VSDN'’s current implementation and limitations in
ensuring end-to-end QoS for video applications.

A. Overview of Integrated Services (IntServ)

IntServ architecture uses a reservation protocol to con-
figure end-to-end QoS over IP networks. The necessary
resources (e.g., computation and storage) are reserved at
each router along the packet’s path. A PATH message is
sent by the sender to receiver. The PATH message follows
the exact path as the IP packet; it can not be sent along
a different path. The PATH message leaves states along the
packet’s path at each router (i.e., hop). The receiver responds
to sender with a RESV which is used to reserve the resources
along the packet’s path after receiving and accepting the
PATH message. The PATH and RESV message configures
soft states (e.g., rate, max queue size, peak data rate and
minimal packet size) at each router. These metrics are used
to ensure packets of a specific flow receive the guaranteed
QoS. The software states at each router must be refreshed
periodically to ensure sessions do not timeout.

IntServ advantages include software state adaptability,
ability of receiver to initiate reservation and the ability for
routers to merge reservations [2]. One key disadvantage of
IntServ is the inability to select a different QoS path that
differs from the routing protocols (e.g., IS-IS, OSPF and
RIPv2). For example, in figure 1 let us assume that the
best path for video in terms of bandwidth, delay and jitter
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Figure 1: Simple Network Topology with a Sender and a
Receiver

is R1 - R2 - R5 - Ré6. If the routers in autonomous
system one (AS1) are running OSPF, the shortest path would
be calculated to be R1 — R6. Therefore, video packets
in IntServ from sender to receiver will traverse R1 — R6
which is two hops.

In this case, IntServ would ensure quality of service at
routers R1 and R6 but as previously stated, the best path
iSR1 — R2 - R5 - R6 not R1 - R6. Furthermore, if
path R1 — Ré6 is broken, OSPF will find the next shortest
path whichis R1 - R3 - Ro6. IntServ would install a new
reservation along the R1 - R3 - Ré6 after failure of path
R1 - R6, but the best path is R1 - R2 - R5 - R6.
IntServ has failed to configure and installed QoS for video
packets over best path R1 - R2 - R5 - R6. This is a
major issue since requirements for video applications can
vary based on the resolution (e.g., standard-definition (SD),
enhanced-definition (ED) or high-definition (HD)).

OpenFlow
«ii—m— >
ot — s — — o —— SON e
r Controller r :

Sender Receiver

AS1

Figure 2: Software-Defined Networking Topology with a
Sender and a Receiver

VSDN architecture seen in figure 2 was developed to
address path inflexibility limitation of IntServ Architecture.
VSDN, like IntServ, is capable of providing QoS guarantees
to real-time applications like video. VSDN is capable of
selecting not only the shortest path but the optimum path



for video in terms of bandwidth, delay and jitter.

B. Current Usage of VSDN and its limitations

Although VSDN can select the optimum path for video
applications using bandwidth, delay and jitter, it is limited
in two ways when supporting end-to-end QoS for video
applications like telesurgery. First, VSDN only considers a
single path when a video application requests service. This
is a major limitation because a single path can fail. For
example, in figure 2 if video packets are traversing path
R1 - R6 and the path fails, VSDN will need to recognize
that a failure has occurred and re-calculate a new path.

Second, VDSN does not consider reliability when making
path selections. VSDN should aggregate reliability over
multiple paths to ensure QoS for video applications. For
example in figure 2, if all paths have reliability of 0.92
and the application request reliability of 0.95 VSDN will
have to reject the request or service the request with no
guarantee using reliability of 0.92. If VSDN is able to
aggregate reliability across two paths (e.g., Rl — R6 and
R1 - R3 - R6), it can ensure reliability of 0.9936 (i.e.,
(I -=(1-0.92) x (1 —0.92))) across multiple paths.

Network has become multiple path, mobile devices have
multiple radio interfaces, computer devices have multiple
network interfaces and data centers have multiple paths [8].
End host video application will need to support multiple
path transport to take advantage of the reliability support
of RVSDN. Multiple path TCP [8] has been shown to be
feasible. A detailed explanation of multi-path transport layer
support is outside the scope of this paper.

The network architecture should be able to select the
most reliable paths and aggregate reliability across multiple
paths. Aggregating reliability across multiple paths allows
the network to perform to specification per request. Having
the network operator configure explicit paths across links
using a protocol like MPLS is hard. This paper argues
that the network architecture should automatically handle
the video application’s request of ensuring reliability. The
remainder of this paper discusses how Reliable Video over
Software-Defined Networking (RVSDN) addresses the issue
of reliability.

III. DESIGN AND IMPLEMENTATION

This section discusses the design and implementa-
tion of Reliable Video over Software-Defined Networking
(RVSDN). This section also discusses how RVSDN ad-
dresses the challenges introduced in Section II-B.

1) Video Over Software-Defined Networking (VSDN):
Figure 3 illustrates the core architecture of VSDN. The
links are labeled with QoS constraints (i.e., bandwidth Mbps,
delay ms, jitter ms, reliability). VSDN utilizes SDN [9]
and OpenFlow [10] to separate the control and forwarding
planes of the network devices (i.e., routers and switches).
The control plane (i.e., routing) is implemented in the VSDN
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Figure 3: Software-Defined Networking Topology with Link
Constraints

controller which resides outside of the forwarding plane
as shown in figure 3. The control plane and forwarding
plane communicate with one another using OpenFlow. A key
component of VSDN is the Routing Module (RM) [5]. The
RM which is located in the VSDN controller uses constraint-
based routing to calculate feasible paths from ingress router
to egress router [5]. Constraint-based routing (CBR) with
two or more constraints has been shown to be an NP-
hard [11]. Therefore, a heuristics (i.e., A ¥*Prune Algorithm)
is used to find a feasible path through the network.

2) A *Prune Algorithm: A *Prune algorithm combines
A*-search with a correct pruning technique [12]. A *Prune
algorithm can be used to solve finding the K shortest
paths subject to multiple constraints (KMCSP). A *Prune
algorithm takes a graph G, with vertices V and edges E.
A *Prune starts at path P (s, s) where s is a starting
vertex in G. It expands all possible paths P (s, V) that
can be reached from s. It performs specific pruning against
constraint C, only the paths in admissible head path set P (s,
V, H(p), C) are considered. The paths are ordered in a
way that the path with the shortest project path length Hy(p)
is expanded first. The algorithm terminates when there is a
set of constraint shortest path (CSP) found or there are no
candidate paths found. There are 7 key processing steps in
A *Prune which are combined to select, expand and prune
the candidate CSP until the algorithm terminates [12].

A. Changes to Video Over Software-Defined Networking
(VSDN) Routing Module

The Routing Module (RM) of VSDN utilizes a variation
of the A *Prune algorithm [12] to perform constraint-
based routing using bandwidth, delay and jitter as metrics.
RVSDN supports the reliability constraint and aggregation
of reliability across multiple paths unlike VSDN. A network
path supporting video applications like telesurgery may
support bandwidth, jitter and delay constraints but if the



network path is not reliable, the performance of the network
per request cannot be guaranteed. RVSDN addresses the
reliability concern of the network operator automatically by
routing based on reliability of network paths.

Algorithm 1 Find Reliable Paths

procedure FINDRELIABLEPATH(G, B, D, J, R)
G: Network Graph
B: Bandwidth
D: Delay
J: Jitter
R: Reliability

EC = CreateEdgeConstraint(B, D, J, R)
R1 = GetIngressSwitch(G)

R6 = GetEgressSwitch(Q)

P = GetFeasiblePath(R1, R6, EC)

RP = GetReliablePath(P, R)

return RP
end procedure

Algorithm 2 Install Reliable Paths
procedure INSTALLRELIABLEPATH(RP, UUID)
RP: Reliability Path(s)
UUID: Unique Path ID

if (AcquireFlowResource(RP)) then
PathDatabase. Insert(UUID, RP)
InstallReliablePath(OF PFC_ADD, RP)
return TRUE

end if

return FALSFE
end procedure

Algorithm 1 illustrates the pseudo code that is im-
plemented in RVSDN controller to support reliable path
computation and selection. The user creates an edge con-
straint EC that takes as parameters B, D, J and R where
B is bandwidth, D is delay, J is jitter and R is min-
imal reliability for video application. The ingress and
egress routers (i.e., R1 and R6 in figure 3) are retrieved
using GetEgressSwitch and GetIngressSwitch.
GetFeasiblePath (R1, R6, EC) isa core functional-
ity of the routing module (RM). GetReliablePath (P,
R) takes candidate paths P and reliability constraint
R as parameters. GetReliablePath (P, R) sorts the
candidate paths. The RVSDN controller installs the
paths as illustrated in algorithm 2. The RVSDN con-
troller acquires the resources for reliability paths using
AcquireFlowResource (RP). The reliability paths are
stored in the path database using a unique id UUID. Finally,

the RVSDN controller installs the reliability paths using
InstallReliablePath (OFPFC_ADD, RP).

For example, assume a video application requests re-
liability of 0.993 and FindReliablePath (G, B, J,
R) returns 4 paths with reliability 0.91, 0.75, 0.94 and
0.89. GetReliabilityPath (P, R) will sort paths P
(0.94, 091, 0.89, 0.75). GetReliabilityPath (P, R)
will check to determine if the first path with reliability
0.94 meets reliability constraint. If not, it will calculate
the reliability of the first two paths (i.e., 0.94 4+ 0.91 —
0.94 x 0.91) which is 0.9946. A reliability of 0.9946 meets
constraint for reliability 0.993. GetReliablePath (P,
R) will return reliability paths RP (i.e., paths with relia-
bility of 0.94 and 0.91). The VSDN controller will update
the path database and the flow tables of each OpenFlow
switch in reliability paths RP after the admission controller
(i.e., AcquireFlowResource (RP)) determines that re-
sources are available for request.

Algorithms 1 and 2 illustrate the ease of use for controller
developers to find constraint-based paths and update the
OpenFlow switches. RVSDN and VSDN are fully integrated
into the NS3 [7] simulator. This paper discusses results from
integrating RSVDN into NS3 in the next section.

IV. RESULTS

In this section, this paper analyzes the number-of-requests
serviced by the network architectures based on reliability
(i.e., the network architecture ability to perform to specifi-
cation per request).

A. Experimental Setup

Bandwidth
3.0Mbps

Delay Jitter
150ms | 30ms

Reliability
0.90 - 1.00

Table I: Video Service Request Constraints

Performance metrics - This paper chooses the following
performance metric to assess the performance of the RVSDN
architecture:

o Number-of-Requests Serviced by Architecture - mea-
sures the number of requests serviced by network
architecture (i.e., VSDN, MPLS and RVSDN). The
actual constraints per request are shown in table I.

All experiments were performed on an AMD Athlon X2
5400 system configured with Fedora 18 and 4GB RAM. This
system’s development environment is typical for developers
using NS3 v3.16 [13] and Linux based systems.



B. Experimental Results

Number of Requests Handle By Architecture
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Figure 4: Number of Requests Serviced

Figure 4 illustrates the number of requests serviced by
each network architecture using the network topology in
figure 3.

MPLS services 33,333 requests before rejecting all other
request at reliability 0.90 because MPLS uses path R1 -
R6 which is 100Gbps bandwidth. As stated earlier, MPLS
is using explicit routes (i.e., R1 - R3 - R6 and R1 -
R6 in figure 3). Therefore, after the label switching paths
resources are exhausted, MPLS is unable to guarantee qual-
ity of service for video requests. VSDN and RVSDN are
both able to services 103,333 requests at reliability 0.90
because VSDN and RVSDN can explore undiscovered paths.
RVSDN behaves similar to VSDN because there is no need
to aggregate links at reliability 0.90. All paths in figure 3
have reliability greater than 0.90 in figure 4. Therefore, as
shown in figure 4 each network architecture is able to service
end host’s requests consistently between reliability 0.90 and
0.97.

MPLS services 33,333 requests at reliability 0.98. Path
R1 - R6 has reliability of 0.993 which meets reliability of
0.98 when using MPLS. VSDN number of requests serviced
decreased to 70,000 requests at reliability 0.98 because
VSDN does not aggregate reliability across paths. VSDN
uses the reliability of a single path. Therefore, only paths R1
- R3 - R6 (i.e, 0.995 x 0.995 = 0.990), R1 - R6 (ie.,
0.993) and R1 - R4 - R6 (i.e., 0.993 x 0.993 = 0.9860)
meet the reliability constraint of 0.98. RVSDN continue
to service 103,333 because it has the ability to aggregate
reliability over multiple paths at reliability constraint 0.98.
VSDN number-of-requests serviced decreases to 36,666 at
reliability 0.99 because only paths R1 - R3 - R6 and
R1 - R6 meet reliability constraint of 0.99. VSDN at
reliability 0.99 behaves similar to MPLS because VSDN
uses a single path when satisfying the reliability constraint.
MPLS is able to service 33,333 requests at reliability con-
straint 0.99. RVSDN number-of-requests serviced remain

constant at reliability 0.99 because it aggregates reliability
across links. Each network architecture number-of-requests
serviced remains the same at reliability 0.993. VSDN and
MPLS number-of-requests serviced drops to 3,333 because
both architectures only use path R1 - R3 - R6 which
has bandwidth of 10Gbps and reliability of 0.999 (i.e.,
0.999 = 0.9995 x 0.9995). RVSDN is able to continue
to service 103,333 requests because it aggregates reliability
across links which allows it to service more requests at
reliability constraint 0.999.

RVSDN’s ability to aggregate reliability across links al-
lows it to service more network requests than MPLS and
VSDN in terms of number-of-requests serviced. VSDN is
able to service more request than MPLS in terms of number-
of-requests serviced because VSDN paths are not explicit
and can dynamically be discovered.

V. RELATED WORKS

Determining the most reliable path (MRP) between two
nodes in a network is a well-known problem. Typically,
the MRP is determined by using a find shortest path first
algorithm similar to Dijkstra or Floyd. Petrovic [14] uses a
labeling procedure and a matrix algorithm to compute the
MRP. RVSDN uses a variation of the A *Prune Algorithm
with a combination of Dijkstra shortest path algorithm.
RVSDN like [14] creates an adaptive routing process that is
capable of selecting the most reliable path between nodes.
RVSDN differs from techniques purposed by Petrovic [14]
in that it uses not only the MRP but an aggregation of paths
to ensure reliability of service.

Lee et al. [15] select the most reliable path considering
the link cost and capacity (i.e., average queue sizes). Lee
et al. [15] use random early detection (RED) which is
an algorithm for avoiding network congestion using buffer
management in routers. Lee et al. [15] use Floyd shortest
path algorithm and combines the probability of packets
being dropped on link by RED algorithm to select the
MRP. RVSDN uses a variation of the A *Prune algorithm
combined with Dijkstra shortest path algorithm to calculate
the MRP. It was not shown that the algorithm proposed
by Lee et al. [15] actually out performs the fixed value
operational probability method of finding the MRP. RVSDN
does not use the queue length on the links when calculating
the MRP. In this case, each router would need to report their
average queue length to the RVSDN controller. It has been
shown that statistic gathering is an expensive operation on
the routers and switches [16]. More research is needed to
determine if this method is cost effective. The idea of finding
the most reliable path under abnormal traffic conditions
purposed by Lee et al. [15] is a technique that RVSDN could
use to improve robustness.

Wang et al. [17] use the MRP to ensure the delivery of
relief material after a natural disaster. Wang et al. [17] use
the concept of detour vital edge to choose the adjustable



reliable path which has higher connectivity reliability and
minimal detour distant. Wang et al. [17] present three
shortest path algorithms (i.e., depth first search, Dijkstra)
and models and compared the modified versions of each
algorithm. They use a modified version of Dijkstra shortest
path to compute the reliability and weight. Their algorithm
is bound by time so it does not run forever. Both traffic
and communication networks can be complicated after a
natural disaster. Although the networks are complicated,
Wang et al. [17] illustrated the feasibility and the correctness
of finding the most reliable path after a natural disaster.
RVSDN does not assume that a natural disaster has occurred.
RVSDN can use the same concepts of detour edge and
the ability to handle abnormal traffic conditions [15] to
calculate aggregated MRP in the communication network
after a natural disaster. Failures were not introduced into
the network in this paper.

VI. CONCLUSION

This paper presented the design and implementation
of Reliable Video over Software-Defined Networking
(RVSDN). RVSDN builds on previous work [5] of provid-
ing end-to-end quality-of-service for video applications and
devices that require bandwidth, delay and jitter constraints.
RVSDN added the support for routing based on reliability
constraint to the VSDN path selection process. RVSDN used
multiple paths when determining if network architecture can
service requests with reliability constraint. RVSDN was able
to service network request that required 0.999 reliability
where as MPLS and VSDN ability to service such requests
decreased drastically starting at reliability constraint 0.995.
Furthermore, RVSDN was able to service 31 times more
requests when compared to VSDN and MPLS at reliability
constraint 0.995 or greater.
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