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Packet Trains-Measurements  and  a New Model  for 
Computer  Network  Traffic 

RAJ JAIN, SENIOR MEMBER, IEEE, AND SHAWN A. ROUTHIER 

Abstract-Traffic measurements  on  a  ring  local  area  computer  net- 
work at the Massachusetts  Institute  of  Technology  are  presented.  The 
analysis of the  arrival  pattern  shows that the  arrival  processes  are  nei- 
ther Poisson  nor  compound  Poisson. An alternative  model  called 
“packet  train”  is  proposed. 

In  the  train  model,  the traffic on  the  network  consists of a  number 
of packet  streams  between  various  pairs  of  nodes  on the network.  Each 
node-pair  stream (or node-pair  process, as we call  them)  consists of a 
number of trains.  Each  train  consists  of  a  number of packets (or cars) 
going in either  direction  (from  node  A  to B or  from  node B to  A).  The 
intercar  gap  is  large  (compared  to  packet  transmission  time)  and  ran- 
dom.  The  intertrain  time  is  even  larger.  The  Poisson  and  the  compound 
Poisson  arrivals  are  shown  to  be special cases of the train  arrival  model. 

Another  important  observation  is that the  packet  arrivals  exhibit  a 
“source  locality.”  If  a  packet  is  seen  on  the  network  going  from  A  to 
B, the  probability of the  next  packet  going  from  A  to B or from B to 
A  is very  high. 

Implications  of  the  train  arrivals  and  of  source  locality  on  the  design 
of bridges,  gateways,  and  reservation  protocols  are  discussed. A num- 
ber of open  problems  requiring  development of analysis  techniques  for 
systems  with  train  arrival  processes  are  also  described. 

INTRODUCTION 

M ANY system design problems are essentially re- 
source management problems which can be done 

more efficiently if the resource requirements can be ac- 
curately predicted. In computer networks, a common as- 
sumption is that packet arrivals  are ,independent and un- 
predictable.  However, if  we could somehow predict 
something about future.  arrivals,  we could design better 
packet-handling strategies  or  at  least implement current 
ones in a more effective manner. 

The problem of predicting packet arrivals in a computer 
communication system is analogous to that of predicting 
memory page references in a paged memory computer. If 
the page references are assumed to be  independent,  anal- 
ysis would indicate that a random page replacement strat- 
egy -is as good as any other. On the  other  hand, actual 
page references have been observed to  be correlated such 
that the probability of a page being referenced decreases 
as  the  time to its previous reference increases.  This ob- 
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servation leads to  a least  recently used (LRU)  policy, 
which is at present the most commonly used page replace- 
ment policy.  Similarly, if we find that the probabilities of 
packets going to different destinations in a computer net- 
work are not the  same, it may lead us to use different 
strategies than if .we assume the probabilities’ to be  the 
same. 

In designing computer  networks, we have a  choice of 
at least two models of packet arrival patterns: a “car 
model,” which assumes independent single packet ar- 
rivals, and a  ‘‘train  model,” which assumes that a group 
of packets travel together.  A protocol design based on the 
assumption of a train arrival would be quite different from 
one based on independent arrivals. In the  car  model, each 
car has to decide at each intersection (or exit) whether to 
take that exit  or  not. Even if all packets are going to one 
destination, they each make an independent decision, 
which may result in unnecessary overhead.  The overhead 
is apparent on computer networks in which all interme- 
diate nodes (routers,  gateways,  or bridges [SI) must make 
this decision for  all  packets,  therefore resulting in long 
queues at each node. In a  train  model, on the  other  hand, 
the locomotive (the first packet of the train) may make the 
routing decision, and all  other packets may follow it. 

The size of data objects being transported over com- 
puter networks. has increased substantially compared to 
the increase in packet sizes. Packet sizes  have generally 
been limited by the buffer sizes and by the need to be 
compatible with old networks.  Transfer of a graphic 
screen may involve on the  order of two million bits.  This 
increase in information size means that most communi- 
cations involve a train of packets, not just  one packet. 
This fact precipitated a  closer look into ,actual traffic on 
the networks to determine whether there i s  a  “train”  ef- 
fect.  This paper is a result of that  inspection. 

A number of studies of LAN traffic exist in the  litera- 
ture [9], [6], [13], [17], [23],  [27]. Also,  a number of 
authors have discussed issues related to measurement of 
LAN  traffic [3], [ 13. For wide area networks traffic stud- 
ies,  we  refer readers to an excellent surv’ey  by Tobagi et 
al. [29]. The measurements presented in this paper differ 
from other measurements in that we  are looking for 
burstiness,  predictability,  locality, and correlations in the 
traffic. 

In the next section, we describe  the network on which 
the measurements were done.  We then describe  the com- 
monly used arrival patterns such as Poisson and  com- . .  
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Fig. 1 .  The  M.I.T. LCS 10 Mbit/s ring network. 

pound Poisson and introduce the concept of packet train 
arrivals. In  the third section, we present an analysis of 
actual data that shows the  existence of the train phenom- 
enon. Finally, we present many applications of the train 
concept in the design and implementation of protocols. 

ENVIRONMENT 
All the measurements presented in this paper were clone 

on a token ring network [4] at  the Massachusetts Institute 
of Technology (M.I.T.) Laboratory for Computer Sci- 
ence (LCS). The ring configuration is shown in Fig.  1. 
The ring operates at 10  Mbits/s, connecting 33 computers 
and 5 gateways on 4 floors of a  building.  It  has  a  star 
shape with one wire center on each of the  four floors [22]. 
It has two gateways to ARPAnet,  one gateway to a 3 Mbit/s 
Ethernet”, another gateway to a 10 Mbit/s Ethernet”, and 
a dial-up gateway used by personal computers. There  are 
three disk servers, which are used by  many time-sharing 
VAX” systems that use a remote virtual disk (RVD) pro- 
tocol 171. 

The predominantly used higher-level protocols on the 
ring include DARPA Internet’s transmission  control pro- 
tocol (TCP) [19] used mostly for remote terminal (TEL- 
NET) [5] applications, remote virtual disk (RVD) proto- 
col used by the disk servers, and user  datagram  protocol 
(UDP) [ 181 used generally in a request-response mode by 
network inquiries and for  a file transfer protocol named 
trivialjle transfer protocol (TFTP) [24]. 

The traffic on the ring is continuously monitored by a 
station which is described in 161. The monitor extracts the 
first 16 bytes of each packet’s header, which contains 
source,  destination, packet length, and protocol type. 
Since the monitoring station does not have the power nec- 
essary for detailed analysis, it combines headers of 67 
successive packets and prepares a monitor packet, which 
is sent over  the ring to a more powerful analysis machine. 
The monitor packets are sequentially numbered, and 

Fig. 2. The  Poisson model treats each packet  as a black box. 
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Fig, 3 .  The  histogram and log  histogram of interamval times of a Poisson 
process. 

therefore the analysis machine can recognize any packets 
that are sent from the monitoring station and lost on the 
way. We  lose about 1-9 percent of the monitor packets. 
This is because the monitor uses a simple protocol with- 
out retransmissions, it sends most of its packets when the 
network is busiest, and the receiver is  a time-sharing 
Unix“ system that may be busy with other  tasks, and its 
buffers may overflow. This introduces some discrepancies 
in the numbers presented, but this should not change any 
of our conclusions since they do not depend upon exact 
numeric values. 

We analyzed the traffic on the ring at different occasions 
in many different ways. The analysis presented here is for 
data collected during  the week of December 10-17, 1984. 
During that week,  the. ring .carried a total of 11 million 
packets. 

MODELS OF PACKET  ARRIVAL 
Model 1: Poisson  Arrival  Model 

The most commonly used model for arrivals in analyt- 
ical modeling is  “Poisson  arrival” [14], [21], [28]. In 
this model, the interarrival times ti (between arrival of 
packets.i and i + 1;  see  Fig. 2) have the following char- 
acteristics. 

1) They are independent. 
2) They are  exponentially  distributed, i .  e . ,  probability 

density function 

p(t)  = X exp ( -At ) .  

If  we plot a histogram of the interarrival times, it  would 
be an exponentially decreasing function,  as shown in Fig. 
3(a). There are many statistical techniques to verify if a 
particular arrival process is  Poisson.  One  simple way to 
visually verify whether the interarrival times are exponen- 
tially distributed (the second condition above) is to plot a 
log histogram,  as is shown in Fig.  3(b).  Since  the prob- 
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Fig. 4. The log histogram of interarrival  times of packets as measured. 

Fig. 5 .  A compound Poisson arrival process consists of a  sequence of bursts 
arriving  in  a Poisson manner.  Each  burst  (batch) consists of several 
simultaneous  arrivals. 

ability is an  exponential  function,  the logarithm of the 
probabilities would be a linear  function: 

Log { p ( t ) )  = log {X] - At. 
Another property of the exponential distribution is that 

its coefficient of variation (the ratio of standard deviation 
to the mean) is  one. 

In  order to verify if the interarrival times are exponen- 
tially distributed,  Feldmeier [6] plotted a  log histogram 
of an  earlier  week's  activity, which is reproduced in Fig. 
4. It- is obvious from this figure that the  log histogram is 
not linear.  Rather, it consists of three  distinct straight-line 
segments.  This  deviation from the Poisson is what even- 
tually led us to the research presented in this paper. 

Model 2: Compound Poisson  Arrivals 
An extension of the Poisson arrivals is the compound 

Poisson arrival process [lo], [15] , [16]. As shown in Fig. 
5 ,  in this model the  arrivals  occur in batches.  The batch 
arrival process is Poisson in the  sense that the interbatch 
times are independent and exponentially distributed.  The 
batch size'is random. If the batch size is assumed to be 
geometric, it is possible to derive  simple analytical results 
for  the process. 

On a  log  histogram, compound Poisson arrivals would 
result in a straight line with a  spike near the  origin. From 

Inter-Car 

Fig. 6 .  The  packet train model consists of a sequence of packets  traveling 
between  a given pair of nodes. The intercar  interval is much  smaller 
compared  to  the  intertrain  interval. 

Fig. 4, we  see that this is not the  case.  Our measurements 
also confirmed that simultaneous (or back-to-back) ar- 
rivals are  rare.  This is because the  time required to pre- 
pare packets (on the  order of milliseconds) is generally 
much longer than the  time required tro transmit the packet 
on the network (on the  order of 100 p s ) .  Furthermore, 
most network nodes are shared by nonnetwork activities. 
This makes the  time between successive packets from a 
single node large as well as random. 

Model 3: Train Arrival  Process 
Our measurements (presented later in this paper) led us 

to a new model of arrival, which we named the train 
model, shown in Fig. 6. Imagine that every node on the 
network is connected to eveiy  other node via a railroad 
track (sometimes called alogical link).  Consider  the track 
between two nodes A and B. All packets on the track are 
flowing either from A  to B or from B to A. A  train consists 
of packets flowing on this track with the  intercar  time be- 
tween them being smaller.than  a specified maximum, re- 
ferred to as the minimum allowed intercar gap (MAIG). 
If no packets are seen on the track for MAIG time  units, 
the previous train is declared to have ended and the next 
packet is declared to be the  locomotive (first car) of the 
next train.  The intertrain time is defined as the  time be- 
tween the  last packet of a train and the  locomotive of the 
next train. 
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Notice that the train packets flow in both directions and 
that there may be several different trains traveling simul- 
taneously on the network. For  example, in between pack- 
ets of a train traveling between nodes A and B, there may 
be seen packets of another train traveling between nodes 
C and D. 

Before coming to the above definition of trains, we ex- 
perimented with other possible models, such as: source 
trains-the train of packets starting from a given source, 
destination trains-the train of packets destined to a given 
node, etc.  However,  the analysis showed that these alter- 
natives do not characterize the traffic well. This is because 
the sequence of packets going in one direction on a track 
is closely related to the sequence going in the reverse di- 
rection on the same track.  In  fact, in many protocols (e.g., 
in request-response protocols), given the sequence of 
packets going in one  direction, it is possible to predict the 
sequence of packets going in the reverse direction. 

The Poisson as well as compound Poisson models treat 
packets as black boxes. They do not distinguish between 
packets coming from different sources or those going to 
different destinations. They therefore lose some infor- 
mation which is easily available at the network layer. By 
dividing the packets into different tracks, we are trying to 
use this information. An analogous example is the prob- 
lem  of predicting employee arrival times. If we stand at 
the gate and measure interarrival times of employees, we 
may conclude that the successive interarrival times are  in- 
dependent and exponentially distributed; we therefore 
cannot predict arrivals. On the other  hand, if  we note the 
badge numbers and their arrival times,  we can accurately 
predict arrival times for  the next day,  as people generally 
arrive around the same time each day. Ignoring the source 
and destination of packets on the networks is like ignoring 
the badge  numbers. The packets on different tracks are 
independent, yet packets on the same track may be cor- 
related. 

ANALYSES OF MEASURED TRAFFIC 

Analysis 1: Packets as Black Boxes 
The first analysis that one can perform on a stream of 

packets is to treat them as black boxes.  We do not look 
into the packet header fields or distinguish packets based 
on their source or destination.  The  time intervals between 
successive packets form a time series, whose mean, stan- 
dard deviation, and coefficient of variation can be cal- 
culated. Another important quantity for  a  time series is its 
autocorrelation  function (ACF).  This function shows the 
relationship of an element of a  time  series,  say, ti, with a 
previous element,  say, ti -k. The covariance between ti 
and ti - k normalized by the variance of t gives the  ACF at 
lag k [2]. The  ACF always lies between - 1 and + 1. A 
negative ACF implies an inverse  relationship, i.e., when 
ti - k goes up, ti is expected to go down, and when ti - k  
goes down, ti is expected to go  up.  A positive ACF im- 
plies a direct  relationship, i.e., if ti - k is high, ti is also 
expected to be high.  A  zero  ACF indicates no relation- 
ship,  or statistical independence. 

TABLE I 
ANALYSIS WITH PACKETS AS BLACK BOXES 

Number of  Mean 
Intervals (ms) 1 2 3 Dev. Var. 

ACF Stand. Coeff. 

11,022,088  65.8  0.015 0.046 0.043 2835.3 43.1 
_____ ~ ___._..._ ....-.- ___ -.-- -....-. ...____ _._..._.__ _.__.. 

E l  E ] r i q E l  F l  k-+-rk++- 
Fig. 7. A node-pair  process  consists of all  packets  traveling  between a pair 

of nodes. 

If the packet arrivals on the network were a Poisson 
process, the interarrival times would have a coefficient of 
variation of one, and the  ACF would be zero at all lags. 

Table I shows the results of such an analysis for  our 
data. From the table, we see that the ACF is small, which 
indicates that successive time intervals are independent. 
However, the coefficient of variation is very high com- 
pared to unity, leading us to conclude that interarrival 
times are not exponentially distributed. Hence, packet  ar- 
rivals  are not a  Poisson process. 

Analysis 2: Node-Pair  Processes 
Low autocorrelation as well as high variability are both 

bad news to a network designer, as they both reduce pre- 
dictability. Designers prefer high predictability because it 
helps improve the efficiency of resource management. If 
one could exactly determine the  future resource require- 
ments, the resources could be assigned optimally. There- 
fore, in analyzing the packet stream, we started looking 
for ways to increase the predictability. 

One alternative that comes to mind is to divide the 
stream into several node-pair processes, as is shown in 
Fig. 7. For each pair of nodes, say (A, B), on the net- 
work, all packets traveling between A and B form a time 
series (process) which can be analyzed separately. For ex- 
ample, in a network with four nodes A, B, C, and D, there 
would be a maximum of six node-pair processes, i.e., 
those belonging to AB, AC,  AD,  BC,  BD, and CD. Given 
n nodes on the network,  the packet stream can be divided 
into n!(n  - 1)!/2 node-pair processes. However, not every 
pair of nodes communicates and therefore the actually ob- 
served number of node-pair processes is rather low. We 
divided the packet stream into individual node-pair pro- 
cesses, and we analyzed each node-pair process in exactly 
the same manner as in the previous section.  We computed 
mean, standard deviation, coefficient of variation, and 
ACF at lags 1 ,  2, and 3.  In addition, 90 percentiles of the 
time series were calculated. 

The results for the ten most active node-pair processes 
are shown in Table 11. The first two columns of the table 
list node identifiers of the two nodes of the  pair.  The third 
column is the number of interpacket intervals for packets 
that were sent between the nodes.  The remaining columns 
give statistics of the interarrival times (measured in mil- 
liseconds). From the  table, we see that the  ACF is still 
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TABLE I1 
ANALYSIS WITH ARRIVALS  DIVIDED INTO SOURCE-DESTINATION NODE-PAIR 

PROCESSES 

1 2 Intervals (ms) Pert. Var. 
Nodes Numberof Mean 90- Coeff. ACF 

1 2 3  

68 86 1,320,555 123.9 70 60.0 0.1 0.1 0.0 
4 9 1,275,500 381.3 435 22.3 0.0 0.1 0.1 
9 86 1,258,595 28.1 25 85.1 0.0 0.2 0.0 

6  65 427,892 447.2 500+ 25.5 0.1 0.1 0.0 
4  75 981,888 187.4 80 63 7 0.0 0.0 0.0 

67 68 412.316 317.5 230 47.7 0.0 0.0 0.0 
65 87 397,095 733.2 85 32.9 0.0 0.1 0.0 
75 86 395,635 25.9 45 27.9 0.0 0.0 0.0 
68 87 -349,953 988.3 275 27.2 0.0 0.1 0.0 
6  66 294.332 459.5  500+  22.1 0.0 0.0 0.0 

............................................ 

...................................................................................................... 
Overall 10,650,688  1411.5 245 20.6 

“If a 90 percentile value is greater  than 500 ms, it is shown as 500+. 

TABLE 111 
ANALYSIS WITH NODE-PAIR PROCESSES DIVIDED INTO TRAINS 

(WITH MAIG = 500 ms) 

Nodes Number of Mean 90- Coeff. 
1 2 Intervals (ms) Perc. Var. 1 2  3 

68 86 1,315,298 31.0 70 ’ , 1.6 0.0 -0.1 0.0 

4  9 1.177.654 85.3 255 1.3 0.1 0.3 0.2 
9  86  1,257,178  16.2 25 1.9  0.2 0.0 0.0 

4 75 956,195 30.1 65 2.0 0.0 0.1 0.1 
67 68 401.008 59.1 195 1.6 0.1 0.0 0.0 
75 86 395.174 22.1 40 1.5 0.1 0.0 0.0 
65 87 388,007 35.0 75 1.4 0.1 0.1 0.0 
6 65 382.232 84.5 200 1.1 -0.1 0.1 , 0.0 

68 87 332,011 55.4 155 1.6 0.0 0.0 -0.1 
6 66 256.689 87.5 205 1.1 -0.2 0.2 -0.1 

ACF 

..................................... - -- 

- .............................................. ........................................ 
Inter-Car 10,228,405 51.1  1.6 
Inter-Train 622,283 23,773.0  5.0 

small, indicating negligible correlation. The coefficient of 
variation for  some processes is more than that in Table I, 
and for  others it is less than that in Table I. Overall,  the 
coefficient of variation is now smaller than that in Table 
I. However, it is still high compared to that for  a Poisson 
process. The node-pair processes are  therefore neither 
Poisson nor any more predictable than the packet stream 
as a  whole. 

The 90 percentile column in Table I1 provides some new 
information.  Notice  that  for most node-pair processes,  the 
90 percentile is lower than the mean. This implies that the 
distribution of interarrival times is highly skewed to the 
right (i.e., with a long tail on the  right). Most packets 
arrive within a  short interval of the previous arrival. How- 
ever, in a few cases,  there is a  considerable delay leading 
to a tail in the  distribution.  This raises the mean above 
the 90 percentile  value.  This  observation  leads us to the 
train model discussed next. 
Analysis 3: Train  Model 

Each node-pair process can be divided into a number of 
trains by specifying a  MAIG.  We experimented with a 
few different MAIG values.  Table I11 shows the analysis 
with a MAIG of 500 ms. Although the  choice  of MAIG 
does impact numerical results,  the final conclusions about 
traffic characteristics remain unchanged. We prefer the 
chosen value primarily because 90 percentiles for most 
node-pair processes in our initial measurements were well 
below this  value. 

Trailing 
Time 

Response 
Time 

Fig. 8. A train can  be  subdivided  into  several  tandem  trailers.  Each  tan- 
dem  trailer consists  of several  packets going in  the  same  direction. 

There  are  a number of observations that one can make 
from Table 111. First,  the coefficient of variation is very 
near one. Ninety percentiles are  two to three times the 
mean value. Both these observations lead us to ‘believe 
that the interpacket time in a train is exponentially dis- 
tributed.  However,  the  ACF is now generally nonzero. 
Nonzero correlations indicate that  the intercar periods are 
dependent.  One explanation for  this is that  the network 
nodes have  other  tasks going on in parallel with network- 
ing activities and the nodes have  their busy periods and 
idle periods. During a busy period, it takes long to  send/ 
route a  packet, and all intercar intervals are  long.  During 
idle  periods, all successive  intercar intervals are  short. 
Some of the correlations are  negative, indicating that 
sometimes short intervals are followed by large  intervals, 
and vice  versa.  This happens particularly in the request- 
response type of protocol, in .which there is an alternating 
sequence of data (which takes a dong time to generate) 
and requests or acknowledgments (which are generated 
quickly). The bottom two  lines of the  table  indicate that 
the mean intercar interval is about 5 1 ms, which is small 
compared to the mean intertrain  interval, which is about 
23.7 s. Although the  variance in Table I11 is considerably 
smaller than that in Tables  I  and 11, it is still far from zero. 
At this point, we wonder if we can further reduce the 
variance and increase  the  correlation. Doing so will help 
increase the predictability of resource demands and lead 
to the  design of more efficient packet-handling strategies. 
To see if this can be  done,  we need to  look  further  into 
the trains.  This  leads us to our next model, called the tan- 
dem-trailer  model. 

Analysis 4: Tandem-Trailer  Model 
A packet train consists of packets going in both direc- 

tions. A train between A  and B, as shown in Fig. 8,  for 
example, consists of one  or more AB packets (packets 
going from A  to B) followed by one  or more BA packets, 
followed again by more AB packets, and so on.  A  se- 
quence of successive packets going from one  source  to  the 
same destination is called a  tandem  trailer.  The  train  con- 
sists of several tandem-trailer trucks going in alternate di- 
rections. A tandem trailer may consist of segments of the 
same  user message. It takes some time  for  a node to gen- 
erate  the data initially; they may have to  be read from a 
disk,  for  example.  However,  once it has read a chunk of 
say eight blocks, it can send successive packets (of one 
block each, say) rather quickly.  The leading packet (first 
packet) of the  truck,  therefore, may take  longer than the 
trailing packets in the  truck.  Actually,  the leading packets 
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TABLE IV 
ANALYSIS WITH TRAINS DIVIDED INTO TANDEM TRAILERS 

ot. A B  A  B  A  B 
Pr Node # Trailing  Time Response Time 

A 
Truck Size Total 

B  Intervals 

RVD 68 86 11.3 16.0 88.0 53.1 3.8 
RVD 65  87 10.1 13.9  58.0 57.4 

2.6 1,314,272 

RVD 67 68 14.8 47.5  91.6  189.9 3.8 
1.8 2.2 387,747 

RVD 68  87 12.6 10.0 169.4  66.3 
3.1 380,766 

1.3  2.9  331,624 

RVD Overall 14.0 74.4 2.4 3,999.668 . 
UDP 4 5 
UDP 5 75 

220.3  26.4 1.0 1.0 
51.0 27.0 

31,069 

UDP 5 74 
1.0 1.0 9,500 

UDP 6 65 
51.0 23.0 

129.1 31.1 
1.0 1.0 
1.0 

8,392 
1.0 7,096 

UDP Overall 51.3 1.1 101.559 

ICMP 195  195 92.1 94759.0 
ICMP 4 67 141.1 

94.759 

ICMP 4 86 44.6 ’ 
20308.0 7.0 20,315 
6883 0 

ICMP 6 65 140.0 2818.0 1.0 
6.883 
2,819 

ICMP Overall 99.6 2679.5  128,615 

TCP 9 86 7.1 
TCP 4 9 87.0 55.2 148.9 53.0 

22.9  11.5  2.7 1.2 1,256,940 

TCP 4 75 
1.5 2.0 1,176.827 

31.2 51.0 7 6 
TCP 75 86 14.9  83.4  23.7  12.2 

1.0 1.3 955,656 
1.2  1.2  395,122 

TCPOverall 53.0 61.6 1.5  5,965,835 

All Overall 34.2 65.2 1.8 10,202.774 

.............................. .......  ....... .......... 

..................................... .................................... 

................................................................................................................................... 

..................................... ...................... .............. 

................................................................................................................................... 

..................................... .................................... 

................................................................................................................................... 

..................................... .................................... 

................................................................................................................................... 

are of two types: simple responses such as acks, which 
required neither I/O nor any significant computation, and 
complex responses (such as long user messages), which 
may require I/O, computation, and possibly process 
schedulings. The interarrival times before a simple re- 
sponse, complex response, and trailing packets would be 
expected to be small,  large, and medium, respectively. 

It is obvious that the validity of the tandem-trailer model 
depends heavily on the networking protocol. Some pro- 
tocols are purely request-response type with packets going 
in one direction that ‘are data packets (responses) and 
packets going in the  other direction that are  either  ac- 
knowledgments or requests for more data.  To identify 
tandem trailers in the network traffic, we have to look in 
the protocol field as well and analyze  separate packets of 
different protocols. 

Table IV shows the results for four different protocols. 
The four most active node pairs are shown for each of the 
protocols. The protocols are  RVD,  UDP, internet control 
message protocol (ICMP), and TCP.  For each node pair 
AB, the average time between adjacent A-to-B packets is 
shown under the column marked “Trailing  Time A.” The 
average time between adjacent B-to-A packets is shown 
in the next column.  The  “Response  Time A” column 
shows the average  time between a packet going from B to 
A and the adjacent A-to-B response. The truck size is the 
number of packets going in one direction before a packet 
is seen in the opposite direction. 

Table IV shows that the  average truck size in RVD is 
2.4,  i.e., every response is followed by one or two trail- 
ers.  The trailing time is much shorter than the response 
time in each case. 

UDP is DARPA Internet’s transport layer protocol used 
generally for  the request-response type of application. In 
these applications, every packet traveling in one direction 

is followed by a packet traveling in the  other  direction. 
The average truck size is close to one; that is, there are 
no trailers. 

ICMP is another protocol from the DARPA Internet 
suite. Periodically, each node sends a message to a  con- 
trol node. All packets flow in one direction only. There 
are no responses or leaders. Every packet is a  trailer.  The 
truck size is large. 

TCP is also from the DARPA Internet suite.  It is an- 
other transport layer protocol. This protocol is used by 
many different applications.  The average truck size is 1.5; 
that is, about one-half of the packets are followed by a 
second packet which is going in the same direction. Both 
simple and complex responses can be seen in the  table. 

Overall,  the truck size is 1.8.  The trailing times are 
about half  of the response time. The tandem-trailer model 
seems to be valid, but the variance is still not zero.  The 
predictability is basically the same as with the train model. 
Although the truck model gives a  little more understand- 
ing of the underlying phenomenon, it still does not give 
understanding sufficient for use in protocol design or im- 
plementation. 

Analysis 5: Source Locality 

One additional phenomenon that we observed in our 
traffic  was that of source  locality. We have borrowed the 
term locality from the field  of memory reference model- 
ing. It is well known that successive references to mem- 
ory have  a tendency to cluster at the most recently refer- 
enced page. We observed a similar phenomenon in the 
network traffic. We found that successive packets have a 
tendency to belong to the  same train. We termed this phe- 
nomenon source locality. 

Most analyses on network modeling assume a uniform 
probability of a packet coming from all sources on the 
network. Under this assumption, given a network with m 
nodes, 

Probability {the next packet will come from 
a given source i }  = l /m, 

a given source i }  = l/m2, 
Probability{the next two packets will come from 

l 

and 

Probability {the next two packets will come from 
the  same  source} = l/m. 

In the packets that we monitored, we found that 21 
nodes either sent or received more than 100 000 packets. 
Even if  we ignore other  nodes, which were not as active, 
the probability that two packets will come from the same 
source would equal 1/21 or 5 percent. However, we found 
that the probability of a packet going from A to B being 
followed by another packet going from A to B is 29 per- ’ 

cent, and that of an A-to-B packet being followed by a B- 
to-A packet is 31 percent. Approximately one-third of the 
packets followed a packet from the  same  source, and an- 
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other third followed packets from the destination of the 
previous source.  This happened when we did not break 
the traffic into different node pairs.  This shows that the 
,assumption of uniform distribution does not represent the 
real-world traffic. 

High source locality shows that  the trains from different 
source-destination pairs  do not overlap much. Of course, 
the amount of train overlap  depends  on  the total load on 
the network. During periods of high utilization, one would 
expect a higher overlap  and  less source locality. During 
periods of low utilization,  there is lower  overlap and a 
high source locality.  The networks are designed for peak 
loads, which occur  rarely, and therefore the network uti- 
lization is generally low.  The measurements were done 
several times. Each time we noticed the  same phenome- 
non, including at peak periods, such as  just  before  the 
final exams when all term papers and theses were due. 

For  bulk  data  transfer, Zwaenepoel [30] compared a 
number of protocols and concluded that the best protocol 
was a  blast  protocol, in which the source blasts the net- 
work with a  large number of packets going to the  same 

' destination. If such protocols become common, the source 
locality will be even more pronounced in the  future. 

APPLICATIONS OF THE TRAIN MODEL 
In  this  section, we describe  a few potential applications 

of our findings to protocol modeling/analysis, protocol 
implementation,  and protocol design. We present only a 
brief discussion of these applications and show that the 
results based on  the packet train model would be  quite 
different from those based on traditional assumptions. 
Solving systems models with train arrivals is currently an 
open problem. 

. Application 1: Protocol Modeling 
The  analysis has shown  that  an  appropriate model of 

packets on  a network is a  train  model.  The traditional 
Poisson model has only one parameter-the mean inter- 
arrival time, which is a  cumulative result of  many under- 
lying phenomena. The  train  model, on the  other  hand, has 
many parameters, each of which explains  a different phe- 
nomenon in the network. The intertrain time depends upon 
how often users transfer data objects.  The parameter de- 
pends upon the  user  behavior.  The  intercar  time does not 
depend on  user  behavior,  but it depends solely on the sys- 
tem (hardware/firmware/software) and  the protocols. The 

. train size  is related to data object  sizes. Given a distribu- 
tion of object  sizes,  one can come up with a distribution 
of train  sizes.  The  tandem-trailer model provides a yet 
more detailed  insight.  The  average  size of the truck is 
related to the flow control window sizes used in the pro- 
tocols.  The response time may or may not include I/O time, 
depending upon whether or not it is a  simple or complex 
response. It may therefore depend upon the  characteristics 
of the I/O device.  The  trailer  time, on the  other  hand, 
does not depend upon the I/O  device, but is rather a func- 
tion of the protocol and system characteristics. 

An analog of this problem happens in the modeling of 

TABLE V 
MEASURED TRAIN CHARACTERISTICS 

Inter-CarTime: 

C.O.V. = 1.6 
Mean = 51.1ms 

ACF(1) = 0.2 
ACF(2) = 0.3 
ACF(3) = 0.2 

Inter-Train  Time: 
Mean = 23.8sec 
C.O.V. = 5.0 

Number of CarwTrain = 17.4 
Number ofCarflruck = 1.8 

time-sharing systems.  The  average  service  time at the sys- 
tem (in the machine-repairman model) was the only pa- 
rameter that the initial models of time-sharing systems 
had. This was later replaced by a more detailed (central 
server) model with explicit modeling of time  spent at 
disks, CPU, paging device,  etc.  The  train model provides 
a more detailed understanding of user  and system effects 
in a networked environment.  The measured train param- 
eters are summarized in Table V. Exact numerical values 
of interarrival times (e.g., 51 ms) are expected to vary 
significantly for different systems,  media, protocol imple- 
mentations, and load  levels. It is their relative values (or- 
ders of magnitude difference) that  are important to  the 
model. 

Some idea of probability distribution functions, e.g., 
the distribution of train  sizes or the distribution of inter- 
arrival times, would be useful for modeling purposes. Un- 
fortunately, at  the  time of this study we did not have  fa- 
cilities to measure them. Efforts are currently underway 
to study these  distributions. 

Application 2: Path Caching in Protocol 
Implementation 

The present analysis has shown that successive packets 
have a  source  locality. Given a  packet,  we can predict with 
high probability that the next packet will be destined either 
to the destination or the  source of the previous packet. 
Normally, a network has several thousand nodes. Finding 
the link on which to forward a packet requires sophisti- 
cated table  search and hashing procedures at each node. 
The  existence of source locality indicates that consider- 
able savings in table  lookup can be obtained by simply 
saving (caching) the  table entry for  the  last  packet.  The over- 
head can be further reduced by prefetching the,table entry 
for  the source and the destination of a  packet.  Thus, there 
is a high probability of having the  table entry in our  cache 
even before  the next packet arrives.  Even  a two-entry 
cache would give  an approximately 60 percent hit ratio. 

Application 3: Number of Buffers  in RouterslGatewaysl 
Bridges 

A key parameter in network design  is  the number of 
buffers required at intermediate nodes. Any node con- 
necting a high-speed network with a low-speed network 
tends to  have  a  queue of packets to  be forwarded to the 
low-speed network. Queueing theorists often use an 
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main reserved for a source until the source passes it on 
empty. 

The efficiency  of reservation switching depends upon 
the correct selection of the  frame  size.  For  example, if the 

. frame size for voice traffic were chosen to be 10 ms, the 
nodes would  not have a packet to send in successive 10 

Fig. 9. The reservation  switching as used on satellites. 

M/M/1 model for  the node to determine  the number of 
buffers that are required to make the probability of buffer 
overflow (probability of losing a packet) sufficiently small. 
The result is based on the  average interarrival time and 
average service  time  only.  The train model indicates that 
the buffers would also depend on the train size.  Also,  the 
trains may create more congestion than predicted by an 
M/M/1 model. 

Application 4: Dynamic Circuit Management 
A network path using a telephone connection is a dy- 

namic circuit, such that the circuit is established only for 
the duration of the  transfer.  To minimize costs, it ought 
to be closed as soon as we are  sure that no immediate 
traffic is expected to arrive. In network architectures with 
connectionless orientation (e.  g . , DNA and DARPA Inter- 
net),  the end nodes originate the traffic  but do not  know 
the path a packet takes.  The intermediate node originating 
the telephone call has to dynamically open and close the 
circuit based on the traffic. With the Poisson model, the 
packet arrivals are  independent, and the fact that we have 
not seen any packet for the last 1 h has no  effect on the 
probability of arrival in the next 1 s. With the train model, 
one could set the cutoff point based on the distribution of 
intercar arrivals and close the connection when the idle 
time exceeds this cutoff value.  The optimal cutoff point 
will depend on the train parameters as well as on the tariff 
structure, e.g., cost of opening and closing a telephone 
call. 

Application 5: Reservation Switching 
Reservation switching is a form of switching com- 

monly used in satellite links [ I l l .  As shown in Fig. 9, the 
time in this switching method is divided into equal size 
frames, and each frame consists of several slots. An empty 
slot can be obtained by contention. If a node succeeds in 
obtaining a slot without collision,  the slot that is in the 
same position in the next frame is reserved for the node. 
If the node does not use the slot in the next frame, the 
reservation is cancelled and the slot is again made avail- 
able to other nodes via contention. Reservation switching 
is based on the belief that a node sending  one packet is 
very likely to send more packets. This is especially true 
for voice traffic. Active connections send packets every 
20 ms or so. 

An example of reservation switching in LAN environ- 
ments is seen in the Cambridge fast ring [26] .  The ring 
has two types of slots: normal slots and channel slots. 
Once a normal slot has returned to its source after trans- 
mission, it must  be passed on empty. Channel slots re- 

ms intervals, and all reserved slots would go  empty.  For 
data traffic, the  determinatiorfof optimal frame  size is not 
straightforward because the data packets do not arrive in 
a perfectly regular pattern. Had the train measurements 
shown a  zero variance for intercar intervals, the ideal 
frame size would be the fixed intercar interval. The net- 
work measurements have shown that the intercar intervals 
are not fixed; nonetheless, the ideal frame  size is a func- 
tion of the  intercar interval distribution. Further,  the ob- 
servations show that a packet going from A to B should 
result in a slot being reserved for packets coming from 
A as  well as  for those coming from B .  The measurements 
(Table IV) show that the direction changes on the average 
after 1.8 packets, and therefore,  for data traffic, we  need 
bidirectional reservation protocols. 

HIERARCHY OF LAN WORKLOAD MODELS 
We have presented several models of LAN traffic. The 

appropriate model depends upon the level of detail de- 
sired.  The Poisson model is the least detailed model of 
the traffic. It can represent the traffic with the single pa- 
rameter of mean interarrival interval. This model treats 
packets as  black boxes in that we do not look into the 
packets. The next level is that of node-pair processes, 
which requires separating the traffic into several streams 
based on the source and destination.  The train model is 
the next level down from node-pair processes. At this 
point, we further subdivide a node-pair sequence into sev- 
eral trains. A new train starts if a  car is not seen for  a 
MAIG interval. Each train consists of several tandem 
trailers, which is the next level model. Each trailer truck 
consists of leading packets (responses) and trailing pack- 
ets.  The responses can be simple or complex. The com- 
plete hierarchy tree is shown in Fig. 10. As  we go down 
the tree, the variance decreases, skewness decreases, and 
correlation increases, leading to higher predictability. 

SUMMARY 
The packet train research has shown that the packet ar- 

rival process is neither a Poisson process nor a compound 
Poisson process.  The packet arrivals follow a train model. 
A train consists of packets traveling in both directions be- 
tween a given node pair. Although the packets of a train 
are  close to each other, they are  too  far apart to be con- 
sidered as simultaneous arrivals.  The intercar interval is 
much smaller than the intertrain interval. 

The intertrain time is a user parameter, and it depends 
upon the frequency with which applications use the net- 
work. The intercar interval is a system parameter and de- 
pends primarily on the network hardware and software. In 
Poisson arrival models, these parameters are merged to 
give  a  single parameter: mean interarrival time. 
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Fig. 10.  Hierarchy  of  LAN  workload  models. 

TABLE VI 
SPECIAL  CASES OF THE PACKET TRAIN  MODEL 

Inkr-Car  Interval  Inter-Car  Interval  Inter-Train  Interval Yetwork 
Distribution  Auto-Correlation  Distribution Traffic Model 

Exponential(X1) Zero 
Zero 

Exponential(hl)*  Poisson 

Constant 
Zero Exponential 9 

Zero 
Compound Poisson 

Exponential 
General Non-Zero  General Train 

Regular Train 

‘The two  exponential  distributions  have  the  same  mean. 

----_-------_ ------. - ...--- .....-.._____.......____ ~.. ............................... .......................... 

The train model is a generalization of which other 
models are special cases.  If  we find ways to analyze net- 
work protocols using a train model, the results can be used 
for  other models by simply setting the  intercar and inter- 
train time distributions to values such as  are shown in Ta- 
ble VI. Also shown in the  table is a simplification of the 
train model called the regular  train. In this  the trains ar- 
rive in a Poisson process and consist of a random number 
of cars with constant intercar  intervals.  This  type of train, 
which represents voice traffic, is simple  to  analyze as well 
as helpful to network designers  since  the  car  arrivals can 
be easily predicted.  We  encourage  other researchers to 
attempt modeling with train arrivals  and’ applying these 
for real-world applications discussed earlier in this paper. 

‘The packets have  a high source locality such that, given 
a packet going from A  to B, there is a high probability 
that the next packet will be going either from A to B or 
from B to A. The probability of packets from other sources 
is small. 

The  lessons learned from the  train model can be used to 
improve protocol analysis,  design, and implementation. 
Cars  are good for transporting a small number of people 
to a  large number of independent destinations, whereas 
trains are good for  bulk  transfers. 

To verify the  existence of trains,  we need to repeat the 
analyses in other environments. That will help determine 
typical vaiues of train parameters for today’s traffic. These 
parameter values are obviously of interest to network an- 
alysts. Even without that verification, network designers 
argue that the amount of information being transported 
across computer networks is increasing and that they ought 
to look  at ways of making bulk transfers more efficient. 

We therefore hope that in the near future we will see more 
railroad tracks along with the highways. 
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