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Abstract: Network Function Virtualization (NFV) and Service  
Chaining (SC) are novel service deployment approaches in the 
contemporary cloud environments for increased  flexibility  and  
cost efficiency to the Application Service Providers and Network 
Providers. However, NFV and SC are still new and evolving topics. 
Optimized placement of these virtual functions is necessary for 
acceptable latency to the end-users. In this work we consider the 
problem of optimal Virtual Function (VF) placement in a multi-
cloud environment to satisfy the client demands so that the total 
response time is minimized. In addition we consider the problem of 
dynamic service deployment for OpenADN, a novel multi-cloud 
application delivery platform. 1 
 
Keywords — Virtual Function Distribution, OpenADN, Multi-
Cloud, Application Delivery, Inter-Cloud, Optimal Placement, 
Network Function Virtualization,  Service Chaining. 
 

I. Introduction 
 

OpenADN is a novel approach to facilitate multi-
cloud service deployment and application delivery by 
extending the concept of control and data plane separation 
proposed by the “Software-Defined Networking” (SDN) 
architecture [1, 2]. Cloud management platforms such as 
OpenStack and OpenDayLight consider the same problem 
from single-cloud perspective. These platforms need to be 
complemented by the sophisticated algorithms for the selection 
of sites to deploy Network Virtual Functions (NVFs or just 
VFs) and dynamic VF allocation on the already deployed VMs 
for the optimal performance. Network Function Virtualization 
(NFV) is an enabler for the Network Service Chaining (NSC) 
in the recent years which allows network Services to be 
deployed at software level contrary to the ad-hoc hardware 
implementation [19, 23]. The problem of VF placement has 
been widely considered in the literature with the focus 
primarily on a single-cloud environment.  

If one considers the same problem from the multi-
cloud perspective, new dimensions get introduced to the 
problem that need to be addressed. For example, one needs to 
consider a 3-dimensional (3-D) model for service requirements 
comprising computational capacity, storage capacity as well as 

1 This work has been supported under the grant ID NPRP 6 - 901 - 2 - 
370 for the project entitled "Middleware Architecture for Cloud 
Based Services Using Software Defined Networking (SDN)", which 
is funded by the Qatar National Research Fund (QNRF). The 
statements made herein are solely the responsibility of the authors. 

network capacity. On contrary, 2-dimensional model has been 
considered for intra-cloud solution, where only computational 
capacity and storage capacity are considered. This is justified 
since network capacity is not a limiting factor for a single-
cloud environment. In this work, we revisit the problem to 
solve it in multi-cloud environment. 

A good example of multi-cloud application 
deployment is the “Network Function Virtualization” (NFV) 
being planned at ETSI [19]. NFV allows Internet Service 
Providers (ISPs) to implement key function modules, such as, 
BRAS (Broadband Remote Access Server), IMS (Internet 
Multimedia System), etc. in virtual machines in a cloud 
environment. One key problem in the NFV implementation is 
that of connecting various virtual network functions (VNFs). 
This is called “Service Chaining.” For VNFs located inside a 
single cloud, this consists of programming the data center 
network so that the traffic flows through the various VMs 
according to the policies of the tenant. The network links in the 
data center can be programmed accordingly. Similarly, for 
VNFs located in different cloud data centers, the tenants would 
like their traffic to be handled according to their policies. Since 
the WAN link capacities are extremely limited and expensive, 
the available capacity often dictates the VNF placement to a 
subset of available clouds in order to meet the strict throughput 
and delay guarantees. The same problem is faced by non-ISP 
multi-cloud applications and is called service chaining of 
virtual functions (VFs). 

From the Application Service Provider (ASP) 
perspective, an application is a set of interdependent services 
forming a “workflow”. ASPs need to start multiple instance of 
a single workflow depending on the client demands. ASPs 
confront a problem while optimally placing the workflow 
instances considering the user demand density across multiple 
autonomous systems in various regions and distribution of the 
data-centers as potential deployment sites. Since these 
workflows are eventually mapped to the VFs, we will be 
referring the problem as a VF placement problem. In this work 
we propose a scheme for optimal distribution of VFs in multi-
cloud environment and allocation of the clients to the 
respective service chains so as to minimize total response time 
to the clients. We also propose a heuristic approach for the 
dynamic VF allocation to the hosts in multi-cloud 
environment. We then compare our proposed heuristic against 
standard Max-Min approach. 
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II. Prior Work 
 

There has been some recent work in the similar 
domain. For example, Bakiras presents a constrained mirror 
placement problem and approximate server selection problem 
in the context of the web-servers [4]. Laoutaris, et al, consider 
a similar problem but from the perspective of optimizing 
storage capacity only [13]. Tang and Xu try to address a 
similar problem form the QoS perspective in [3]. Work by 
Seshan, et al. propose a server selection scheme based on end-
to-end performance measurements collected from clients in the 
same network [14]. Guyton and Schwartz use shortest distance 
method between clients and servers based on the routing tables 
[7]. 

We try to minimize the total latency (delay) for the 
user demands while total number of VFs to be deployed is 
given as an input. In addition, we are proposing a heuristic for 
dynamic service deployment on geographically disparate hosts 
with varying set of capacities, by considering a 3-dimensional 
(3-D) capacity model. It is to be noted that we are focusing 
only on transmission delays in the network for the current 
work and other delays such as  queuing delay or propagation 
delay are not considered. We aim  to extend the proposed 
model in our next work. 

We aim to complement already proposed schemes to 
accommodate a new dimension which are introduced due to 
multi-cloud environment with dynamic client requests arrivals. 
Randles et al. proposes an “Active Clustering” approach in 
[16] and Li and Xu, propose a scheme based on “Ant Colony 
Optimization” for load balancing in clouds [17]. In addition, 
Wu proposes hierarchical approach to achieve load balancing, 
especially from single cloud perspective [18]. We aim to 
minimize the total number of VFs to satisfy dynamic client 
demands as well as minimize the network, storage and 
computational resources in multi-cloud environment. 

Rest of the paper is organized as follows. In Section 
III we present an optimization model for the optimal placement 
of the workflows and their VFs so as to minimize the total 
response time to the clients spread across multiple 
Autonomous Systems (ASs) or regions. Section IV represents 
a novel heuristic approach in order to deploy the VFs 
dynamically on the already chosen set of hosts so as to 
minimize the total computational, storage and network 
resources. In Section V we describe the simulation setup and 
present the simulation results for the evaluation of the 
proposed optimization model and the heuristic. Section VI 
concludes the paper. 

 
III. Optimal Distribution of Virtual Functions 
 

In this section, we formulate an optimization model to 
deploy the workflows on the VFs and assign client requests to 
these workflows so as to minimize the response time (latency) 
to the clients. Let G = {V, E} be a graph to represent the 
network in consideration where V is a set of nodes representing 

the clusters or ASs in the network and E be set of the edges 
such that E ⊆ V×V. The Virtual Functions (VFs) of the 
workflows will be deployed per cluster which will be picked 
from the set of vertices V.  

Total number of such instances to be deployed, λ, is 
given as an input to the optimization model. We vary this 
number from some minimum threshold (λmin) till maximum 
threshold (λmax) and observe the variation in the performance in 
terms of the total delay in the network. Let be H ⊆ V the set of 
clients. For the sake of convenience, we are assuming that the 
set of clients and hosts are disjoint sets. A capacity of vector 
matrix C represents the capacities of the sites in a vector 
format with Ci = C1

i + C2
i + C3

i being the capacity of site i. As 
mentioned earlier, we are referring to a 3-D vector to represent 
the capacity, that is, CPU, Storage and Network Capacity. |Ci| 
= 0 indicates that the site i is a client site.  

Let P be the transmission delay matrix with Pij being 
the delay between nodes i and j in the graph G. This can be 
calculated with the help of simple ping requests between two 
nodes i and j [11]. Let W be the matrix to represent the volume 
of traffic originating from the client sites, that is, Wi be the 
traffic getting generated at node i. The total response time 
(latency), Rij for a client i which is allocated to the host j, is a 
function of Pij and Wi. That is, Rij = f(Pij, Wi). 

Let M be total number of VF. Let D be the demand 
matrix for the VFs with Dm = D1

m + D2
m + D3

m being the 
demand of VF m. Let 𝛤𝛤 be a representing the processing limit 
of VFs, that is, maximum client traffic a single host VF can 
handle with 𝛤𝛤m being the processing limit of the VF m. Please 
note that more than one instances of a VF may be deployed at 
any deployment site depending on the processing capacity of 
the VF and total traffic demand getting generated at the sites 
which are allocated to that particular VF. Let T be the instance 
matrix with Tmk representing how many instances of a VF m 
need to be deployed at site k.  

Let A be an allocation matrix such that Aij = 1 if client 
request i is assigned to the host j. Note that Akk = 1 means node 
k has been assigned a client request. In other words, a 
workflow instance has been deployed on a VF at node k. We 
have assumed no-split of the client requests amongst the hosts 
or VFs, that is, one client request will be processed at a single 
node only (single-allocation model). The constraint may be 
modeled as: 

∑ 𝐴𝐴𝑖𝑖𝑖𝑖  
𝑗𝑗 ∈|𝑉𝑉|  = 1, ∀ i ∈ |V|       (1) 

 
As mentioned earlier, for the sake of convenience, we 

are assuming that the set of clients and hosts are disjoint set. 
Hence, we need to make sure that the clients requests are 
forwarded to VF nodes only (and not to the other client nodes). 
It is ensured with the help of following constraint: 

𝐴𝐴𝑖𝑖𝑖𝑖  ≤ 𝐴𝐴𝑘𝑘𝑘𝑘, ∀ i, k ∈ |V|         (2) 
 

Also, we will be providing number of host nodes to 
be installed as an input, λ. λ varies from λmin to λmax. λmin may 
start from 1 however we provide some  feasible number to start 
with. Also let f be fixed cost associated with the installation of 
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a single host and F be the total cost limit. Hence λmax can be 
calculated as λmax = F/f. We need to make sure that the total 
number of VFs hosting the workflows should be equal to λ.. 
That is: 

∑ 𝐴𝐴𝑘𝑘𝑘𝑘  𝑘𝑘 ∈|V| = λ         (3) 
 

Maximum number of instances of a VF which may be 
deployed at a given site is bounded by the capacity of the site 
and demands of the VF. Similarly, minimum number of a VF 
is bounded by the total client traffic from all the sites assigned 
to that VF. We formulate the capacity constraints as follows. 

 
𝑇𝑇𝑚𝑚𝑚𝑚  ≤ 𝐴𝐴𝑘𝑘𝑘𝑘  ×  (𝐶𝐶𝑘𝑘/𝐷𝐷𝑚𝑚), ∀ k ∈ |V|, m ∈ M      (4) 

𝑇𝑇𝑚𝑚𝑚𝑚  ≥ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗  ×  (𝑊𝑊𝑗𝑗/𝛤𝛤𝑚𝑚)𝑗𝑗 ∈|𝑉𝑉| , ∀ k ∈ |V|, m ∈ M (5) 
   
We formulate our optimization function as follows: 

Minimize: ∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖𝑗𝑗∈ |𝑉𝑉| 𝑖𝑖∈ 𝐶𝐶           (6) 
 
We seek to minimize the total response time to the 

clients in the network. We solve the above formulation using 
Integer Linear Program (ILP) tool. The results are presented 
later in Section V. In the next section we present a heuristic 
approach for dynamic VF deployment in multi-cloud scenario. 

 
IV. Dynamic Virtual Function Deployment ― 

Heuristic Approach 
 

We have proposed an optimal solution in the previous 
section to place the VFs for specific set of client demands. In 
the cloud, a single Application Service Provider (ASP) may 
have a set of services (VFs) to be deployed and every VF has 
specific requirements such as computational power, storage 
capacity and others. OpenADN platform which deploys 
services over multiple clouds imposes additional constraints 
such as network bandwidth requirement. Each Virtual Machine 
(VM) may host a specific set of VFs depending on its 
computational, storage and network capabilities. 

Locating suitable VMs from a given pool to minimize 
the number of VMs so that all the instances of the VFs can be 
satisfied is a NP-complete problem. It can be reduced to the 
“Set Cover” problem in a polynomial time. In this section, we 
describe an approximate heuristic approach for the VF 
deployment on the preselected VMs across the multiple clouds. 
We will be introducing a 3-D model for service requirements 
and VM capacities which is necessary for multi-cloud 
scenario. As we have mentioned, the already existing cloud 
management platforms are good for service deployment within 
a single cloud and hence the model considered for service 
requirements is a 2-D model, that is, computational capacity 
and storage capacity [8, 15]. However, we will be introducing 
a new parameter which we refer as network capacity. Each VF 
in a workflow demands some minimum network infrastructure 
to be able to communicate across the data-centers with other 
VF as well. 

We assume that each VM on a physical server gets 
equal share of the host bandwidth. ASPs need to provide 
configuration files for the VF requirements after doing a 
careful VF profiling. As no logs or patterns of VF or service 
requests for data-center or clouds are publicly available due to 
privacy and/or security concerns, we generate the service 
requirement patterns along the lines of published traffic 
distributions to emulate typical cloud workloads to evaluate 
the proposed schemes [9, 10, 12]. We have assumed the VM 
configurations from Amazon EC2 cloud service [5]. 

We propose Minimum-Residue heuristic approach for 
this variant of set-cover problem. As mentioned earlier, we 
model each ASP service as a 3-D vector. Also, each VM is 
represented in term of the same 3-D vector, that is, 
computational capacity, storage capacity and network capacity. 
We then try to fit all the instances of the VFs for each ASP on 
minimum number of VMs. For a given set S of the VFs for a 
given ASP, we calculate a new set Ü, which is a set of all the 
subsets for S (except a null set). For example, if S = {s1, s2, 
s3} (that is an ASP has three services to be deployed), then the 
corresponding Ü will be: Ü = {{s1}, {s2}, {s3}, {s1, s2}, …, 
{s1, s2, s3}}. Each VM will be able to satisfy some of these 
subsets, that is, can accommodate some VFs at a given time 
instance. 

Then we try to find out a set-cover with the given 
VMs so that all the VFs in S will be covered with the minimum 
number of VMs. To do this, we iterate through all the subsets 
of S in Ü. We find total CPU, storage and network bandwidth 
requirement for each subset. While considering the 
requirements for a particular VF, we allow it to run on a VM 
even if a VM cannot satisfy its complete CPU and Network 
requirements, but instead can satisfy some percentage of it. 
However, the storage requirements need to be satisfied 
completely for a VF to be started. It may be justified since an 
ASP may prefer a service to be a bit slower rather than not 
running at all. We have assumed the percentage level to be 
80% (i.e. λ = 0.8), though this parameter is configurable and 
depends on the end-user demands. We then iterate through 
each VM sequentially. For each VM, we subtract the 3-D 
vector calculated above from the 3-D vector of that particular 
VM. We discard all the subsets where a negative term is 
introduced (that is the VM cannot satisfy one of three 
requirement of that subset). For the remaining subsets, we 
choose a subset which results in minimum remaining resources 
on that VM. In other words, of all the possible subsets of the 
VFs, we fit that subset on the VM which will result in the 
maximum utilization of the VM. If there are two or more 
subsets with the same remaining resources, we choose the 
subset with minimum size since smaller the size of the subset, 
more difficult it will be to split the subset later on. In other 
words, there will be less possible combinations to try for a 
subset with smaller size. 

We repeat this process till all the services for a given 
ASP are deployed. This procedure is repeated for all the ASPs. 
We notice that a similar approach is used in the field of 
Computer Architecture and Operating Systems to avoid the 
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fragmentation in the computer memory or storage [21, 22]. It 
must be noted that, though we start the heuristic with static 
knowledgebase of the service requirements, the dynamic 
service allocation is also possible with the proposed heuristic. 
If a completely new set of services from an ASP arrives, we 
just need to execute the heuristic again. If an ASP adds to its 
existing set of services, a VM can be chosen with the 
maximum residue to satisfy the newly added services. Listing 
1 below outlines the proposed heuristic. 

 
Listing 1: Outline of the proposed heuristic 

 
 

V. Results and Analysis 
 

In this section, first, we analyze the performance of 
the ILP presented in Section III for optimal VF deployments so 
as to minimize the total response time in the network. Random 
cluster graphs generated employing the “networkx” library [6] 
using Python have been used for the purpose of simulation. We 
have considered mesh topology with average degree of three or 
four. Such networks are prevalent in the contemporary metro 
and access networks. Networks with sizes varying from 10-
nodes to 100-nodes have been considered for the simulation 
purpose. Client requests are generated at these nodes in the 
Autonomous Systems. A sample 40-node topology for data-
center interconnectivity (data from a data-center service 
provider in USA) considered in the simulations is displayed in 
Fig. 1 below. 

 
Fig. 1: A sample 40-node topology for the inter-datacenter 

connectivity 
 

Fig. 2 below displays the same network topology as in 
Fig.1 using a tool “GraphDraw” which we have used for the 
visualization of the various topology and generating the 
adjacency matrix for the given topology. 

 

 
Fig. 2: Representation of the topology in Fig. 1 using a graph 

generator tool “GraphDraw” 
 

We have used MOSEK optimizing tool [24] for the 
solution. We have provided number of VFs to be installed as 
an input parameter and the range (λmin to λmax) is calculated as 
mentioned in the Section III earlier. Service requests are 
generated randomly with the service granularities in Mbps and 
are chosen from the set G = {100, 200, 500, 1000}. Fig. 3 
below displays variation of the total response time for topology 
from 10-nodes till 40-nodes with number of VFs installed 
varying from 4 to 40. Fig. 4 displays the same graph for 50-
nodes till 100-nodes topology with number of VFs installed 
varying from 10 to 100. 

Algorithm: Minimal-Residue
1. Let S be the set of services the given ASP
2. Ü  Set of all Subsets of S (except Null set)
3. foreach set Ṣ in Ü
4. foreach service ṡ in Ṣ

1. Ṣ (CPUtotal)+= ṡ(CPU) X λ
2. Ṣ (Storagetotal)+= ṡ(Storage)
3. Ṣ (NWtotal) += ṡ(NW) X λ

5. foreach V in VMs
6. foreach set Ṣ in Ü

If V(CPU) >= Ṣ (CPUtotal) && V(Storage) >= Ṣ (Storagetotal)  
&& V(NW) >= Ṣ (NWtota) 

V(residue)    (3_D Vector)remaining_cap
7. Sort the set of V(residue) for all VMs in non-decreasing order
8. Select first Ṣ as a set of services to be deployed on the selected VM V.
9. Remove all the services ṡ in Ṣ from the set of services to be allocated 

(set S).
10. Repeat until all services are allocated to the VMs
11. Repeat Step 1 through Step 10 for all ASPs.

302



 
Fig. 3: Total response time against number of VFs installed (15-nodes 

till 40-nodes) 
 

 
Fig. 4: Total response time against number of VFs installed (50-nodes 

till 100-nodes) 
 

We observe from both the graphs that the response 
time reduces as the number of VFs deployed increases till 
certain limit, however, after that there is no significant 
reduction in the total response time. For example, the total 
response time dips approximately from 35k units to 10k units 
for 100-nodes as total number of VFs installed vary from 20 to 
50 (approximate 25k units of improvement). However the 
change in total response time for same topology is from 8k 
units to 2k units with VFs varying from 60 to 90 (improvement 
is mere 6k units). We now demonstrate the performance of the 
proposed heuristic “Minimum-Residue” for the dynamic 
service deployment on the preselected pool of VMs so as to 
satisfy all the VF demands on minimum number of VMs. In 
addition we compare the performance of the heuristic against 
well-known “Max-Min” heuristic approach for task allocation. 
We have used a variant of the Max-Min approach proposed in 
[17, 20] to suit our input data-sets. As mentioned earlier, we 
generate the service requirement patterns along the lines of 
traffic distributions in published work or on the Internet to 
emulate typical cloud workloads to evaluate the proposed 
schemes [9, 10, 12, 19]. A simple example is presented below 
where our proposed heuristic outperform the standard Max-
Min approach. We consider a set of five VFs. Let there be two 

resources, r1 and r2, analogous to the CPU and Storage 
demands (we are considering 2-D resource model in this 
example for the simplicity purpose, however implementation is 
for 3-D model as mentioned earlier. The example can easily be 
extended for 3-D model). Table 1 shows the demands of the 
VFs for r1 and r2. Table 2 displays the available VM 
configurations with r1 and r2 available. 

 
Table 1: VF requirements 

 
 

Table 2: VM configurations 

 
 

The allotment scheme by both the heuristics is 
displayed in Table 3 below. As we observe, the Max-Min 
heuristic needs all the three VMs. While our proposed scheme 
can accommodate all the VFs with only two VMs. This is 
because we search for minimum remaining capacity for each 
VM rather than greedily allocating the demands, which might 
get stuck in local-minima. 

 
Table 3: Allotment schemes by both heuristics 

Max-Min Minimum Residue 
V1  S1, S3, S4 V1  S1, S5 
V2  S2 V2  S2, S3, S4 
V3  S5 V3  free 

 

 
 

Fig. 6: Average Utilization of the VMs with the two schemes 
 

This also ensures maximum Average Utilization of 
the VMs. The graph in Fig. 6 displays the average utilization 
(as per the definition in [20]) of the VMs in the above 
example. As we observe, the utilization of both the used VMs 
is higher with the proposed heuristic against that of Mix-Min 
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approach. We have generated various sets of VFs with total 
number varying from 100 till 1000. We observe from the graph 
displayed in Fig. 7 that the maximum number of VMs needed 
to satisfy all the incoming service requests with the proposed 
heuristic is always less than that of standard Max-Min 
heuristic. Please note we have considered only micro and small 
VM configurations from [5] to generate this result for better 
demonstration. We observe in the graph that the gap between 
two schemes keeps on increasing as number of services 
increases. Though the gap in both schemes is small, we expect 
a better performance with more VM configurations. Overall 
we observe that the performance of the proposed heuristic gets 
better with increased load. 

 

 
Fig. 7: Comparison between proposed Minimum-Residue and 

standard Max-Min Heuristic 
 

VI. Conclusions 
 

In this work we propose an optimization model to 
place the Virtual Functions in multi-cloud environment so as to 
minimize the total transmission delay in the network and solve 
it using Integer Linear Program tool. We also propose a 
heuristic scheme for dynamic Virtual Function deployment at 
the sites which are selected in the optimization model. We 
deploy the instances of VFs on Virtual Machines at pre-
selected sites, which may be deployed on the OpenADN 
platform, a multi-cloud application delivery tool. The problem 
is NP-Complete and we propose a polynomial time heuristic 
approach “Minimum Residue” to solve the problem for 3 
dimensional (3-D) capacity model. The proposed scheme is 
compared with the standard Max-Min approach in the literature 
and it is showed that the proposed heuristic out-performs 
standard approach. Simulation results are presented to evaluate 
the optimal solution and the proposed heuristic with larger 
topology and greater number of VF instances. 
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