
Multi-Cloud Distribution of Virtual Functions and Dynamic
Service Deployment: OpenADN Perspective

Deval Bhamare

Qatar University,
Doha, Qatar

devalb@qu.edu.qa

Raj Jain

Washington University,
St. Louis, USA
jain@wustl.edu

Mohammed Samaka
Qatar University,

Doha, Qatar
samaka.m@qu.edu.qa

Gabor Vaszkun
Washington University,

St. Louis, USA
vaszkun@gmail.com

Aiman Erbad
Qatar University,

Doha, Qatar
aerbad@qu.edu.qa

Abstract: Network Function Virtualization (NFV) and Service
Chaining (SC) are novel service deployment approaches in the
contemporary cloud environments for increased flexibility and
cost efficiency to the Application Service Providers and Network
Providers. However, NFV and SC are still new and evolving topics.
Optimized placement of these virtual functions is necessary for
acceptable latency to the end-users. In this work we consider the
problem of optimal Virtual Function (VF) placement in a multi-
cloud environment to satisfy the client demands so that the total
response time is minimized. In addition we consider the problem of
dynamic service deployment for OpenADN, a novel multi-cloud
application delivery platform. 1

Keywords — Virtual Function Distribution, OpenADN, Multi-
Cloud, Application Delivery, Inter-Cloud, Optimal Placement,
Network Function Virtualization, Service Chaining.

I. Introduction

OpenADN is a novel approach to facilitate multi-
cloud service deployment and application delivery by
extending the concept of control and data plane separation
proposed by the “Software-Defined Networking” (SDN)
architecture [1, 2]. Cloud management platforms such as
OpenStack and OpenDayLight consider the same problem
from single-cloud perspective. These platforms need to be
complemented by the sophisticated algorithms for the selection
of sites to deploy Network Virtual Functions (NVFs or just
VFs) and dynamic VF allocation on the already deployed VMs
for the optimal performance. Network Function Virtualization
(NFV) is an enabler for the Network Service Chaining (NSC)
in the recent years which allows network Services to be
deployed at software level contrary to the ad-hoc hardware
implementation [19, 23]. The problem of VF placement has
been widely considered in the literature with the focus
primarily on a single-cloud environment.

If one considers the same problem from the multi-
cloud perspective, new dimensions get introduced to the
problem that need to be addressed. For example, one needs to
consider a 3-dimensional (3-D) model for service requirements
comprising computational capacity, storage capacity as well as

1 This work has been supported under the grant ID NPRP 6 - 901 - 2 -
370 for the project entitled "Middleware Architecture for Cloud
Based Services Using Software Defined Networking (SDN)", which
is funded by the Qatar National Research Fund (QNRF). The
statements made herein are solely the responsibility of the authors.

network capacity. On contrary, 2-dimensional model has been
considered for intra-cloud solution, where only computational
capacity and storage capacity are considered. This is justified
since network capacity is not a limiting factor for a single-
cloud environment. In this work, we revisit the problem to
solve it in multi-cloud environment.

A good example of multi-cloud application
deployment is the “Network Function Virtualization” (NFV)
being planned at ETSI [19]. NFV allows Internet Service
Providers (ISPs) to implement key function modules, such as,
BRAS (Broadband Remote Access Server), IMS (Internet
Multimedia System), etc. in virtual machines in a cloud
environment. One key problem in the NFV implementation is
that of connecting various virtual network functions (VNFs).
This is called “Service Chaining.” For VNFs located inside a
single cloud, this consists of programming the data center
network so that the traffic flows through the various VMs
according to the policies of the tenant. The network links in the
data center can be programmed accordingly. Similarly, for
VNFs located in different cloud data centers, the tenants would
like their traffic to be handled according to their policies. Since
the WAN link capacities are extremely limited and expensive,
the available capacity often dictates the VNF placement to a
subset of available clouds in order to meet the strict throughput
and delay guarantees. The same problem is faced by non-ISP
multi-cloud applications and is called service chaining of
virtual functions (VFs).

From the Application Service Provider (ASP)
perspective, an application is a set of interdependent services
forming a “workflow”. ASPs need to start multiple instance of
a single workflow depending on the client demands. ASPs
confront a problem while optimally placing the workflow
instances considering the user demand density across multiple
autonomous systems in various regions and distribution of the
data-centers as potential deployment sites. Since these
workflows are eventually mapped to the VFs, we will be
referring the problem as a VF placement problem. In this work
we propose a scheme for optimal distribution of VFs in multi-
cloud environment and allocation of the clients to the
respective service chains so as to minimize total response time
to the clients. We also propose a heuristic approach for the
dynamic VF allocation to the hosts in multi-cloud
environment. We then compare our proposed heuristic against
standard Max-Min approach.

2015 IEEE International Conference on Cloud Engineering

978-1-4799-8218-9/15 $31.00 © 2015 IEEE

DOI 10.1109/IC2E.2015.49

299

II. Prior Work

There has been some recent work in the similar
domain. For example, Bakiras presents a constrained mirror
placement problem and approximate server selection problem
in the context of the web-servers [4]. Laoutaris, et al, consider
a similar problem but from the perspective of optimizing
storage capacity only [13]. Tang and Xu try to address a
similar problem form the QoS perspective in [3]. Work by
Seshan, et al. propose a server selection scheme based on end-
to-end performance measurements collected from clients in the
same network [14]. Guyton and Schwartz use shortest distance
method between clients and servers based on the routing tables
[7].

We try to minimize the total latency (delay) for the
user demands while total number of VFs to be deployed is
given as an input. In addition, we are proposing a heuristic for
dynamic service deployment on geographically disparate hosts
with varying set of capacities, by considering a 3-dimensional
(3-D) capacity model. It is to be noted that we are focusing
only on transmission delays in the network for the current
work and other delays such as queuing delay or propagation
delay are not considered. We aim to extend the proposed
model in our next work.

We aim to complement already proposed schemes to
accommodate a new dimension which are introduced due to
multi-cloud environment with dynamic client requests arrivals.
Randles et al. proposes an “Active Clustering” approach in
[16] and Li and Xu, propose a scheme based on “Ant Colony
Optimization” for load balancing in clouds [17]. In addition,
Wu proposes hierarchical approach to achieve load balancing,
especially from single cloud perspective [18]. We aim to
minimize the total number of VFs to satisfy dynamic client
demands as well as minimize the network, storage and
computational resources in multi-cloud environment.

Rest of the paper is organized as follows. In Section
III we present an optimization model for the optimal placement
of the workflows and their VFs so as to minimize the total
response time to the clients spread across multiple
Autonomous Systems (ASs) or regions. Section IV represents
a novel heuristic approach in order to deploy the VFs
dynamically on the already chosen set of hosts so as to
minimize the total computational, storage and network
resources. In Section V we describe the simulation setup and
present the simulation results for the evaluation of the
proposed optimization model and the heuristic. Section VI
concludes the paper.

III. Optimal Distribution of Virtual Functions

In this section, we formulate an optimization model to
deploy the workflows on the VFs and assign client requests to
these workflows so as to minimize the response time (latency)
to the clients. Let G = {V, E} be a graph to represent the
network in consideration where V is a set of nodes representing

the clusters or ASs in the network and E be set of the edges
such that E ⊆ V×V. The Virtual Functions (VFs) of the
workflows will be deployed per cluster which will be picked
from the set of vertices V.

Total number of such instances to be deployed, λ, is
given as an input to the optimization model. We vary this
number from some minimum threshold (λmin) till maximum
threshold (λmax) and observe the variation in the performance in
terms of the total delay in the network. Let be H ⊆ V the set of
clients. For the sake of convenience, we are assuming that the
set of clients and hosts are disjoint sets. A capacity of vector
matrix C represents the capacities of the sites in a vector
format with Ci = C1

i + C2
i + C3

i being the capacity of site i. As
mentioned earlier, we are referring to a 3-D vector to represent
the capacity, that is, CPU, Storage and Network Capacity. |Ci|
= 0 indicates that the site i is a client site.

Let P be the transmission delay matrix with Pij being
the delay between nodes i and j in the graph G. This can be
calculated with the help of simple ping requests between two
nodes i and j [11]. Let W be the matrix to represent the volume
of traffic originating from the client sites, that is, Wi be the
traffic getting generated at node i. The total response time
(latency), Rij for a client i which is allocated to the host j, is a
function of Pij and Wi. That is, Rij = f(Pij, Wi).

Let M be total number of VF. Let D be the demand
matrix for the VFs with Dm = D1

m + D2
m + D3

m being the
demand of VF m. Let 𝛤𝛤 be a representing the processing limit
of VFs, that is, maximum client traffic a single host VF can
handle with 𝛤𝛤m being the processing limit of the VF m. Please
note that more than one instances of a VF may be deployed at
any deployment site depending on the processing capacity of
the VF and total traffic demand getting generated at the sites
which are allocated to that particular VF. Let T be the instance
matrix with Tmk representing how many instances of a VF m
need to be deployed at site k.

Let A be an allocation matrix such that Aij = 1 if client
request i is assigned to the host j. Note that Akk = 1 means node
k has been assigned a client request. In other words, a
workflow instance has been deployed on a VF at node k. We
have assumed no-split of the client requests amongst the hosts
or VFs, that is, one client request will be processed at a single
node only (single-allocation model). The constraint may be
modeled as:

∑ 𝐴𝐴𝑖𝑖𝑖𝑖
𝑗𝑗 ∈|𝑉𝑉| = 1, ∀ i ∈ |V| (1)

As mentioned earlier, for the sake of convenience, we

are assuming that the set of clients and hosts are disjoint set.
Hence, we need to make sure that the clients requests are
forwarded to VF nodes only (and not to the other client nodes).
It is ensured with the help of following constraint:

𝐴𝐴𝑖𝑖𝑖𝑖 ≤ 𝐴𝐴𝑘𝑘𝑘𝑘, ∀ i, k ∈ |V| (2)

Also, we will be providing number of host nodes to
be installed as an input, λ. λ varies from λmin to λmax. λmin may
start from 1 however we provide some feasible number to start
with. Also let f be fixed cost associated with the installation of

300

a single host and F be the total cost limit. Hence λmax can be
calculated as λmax = F/f. We need to make sure that the total
number of VFs hosting the workflows should be equal to λ..
That is:

∑ 𝐴𝐴𝑘𝑘𝑘𝑘 𝑘𝑘 ∈|V| = λ (3)

Maximum number of instances of a VF which may be
deployed at a given site is bounded by the capacity of the site
and demands of the VF. Similarly, minimum number of a VF
is bounded by the total client traffic from all the sites assigned
to that VF. We formulate the capacity constraints as follows.

𝑇𝑇𝑚𝑚𝑚𝑚 ≤ 𝐴𝐴𝑘𝑘𝑘𝑘 × (𝐶𝐶𝑘𝑘/𝐷𝐷𝑚𝑚), ∀ k ∈ |V|, m ∈ M (4)

𝑇𝑇𝑚𝑚𝑚𝑚 ≥ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗 × (𝑊𝑊𝑗𝑗/𝛤𝛤𝑚𝑚)𝑗𝑗 ∈|𝑉𝑉| , ∀ k ∈ |V|, m ∈ M (5)

We formulate our optimization function as follows:

Minimize: ∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖𝑗𝑗∈ |𝑉𝑉| 𝑖𝑖∈ 𝐶𝐶 (6)

We seek to minimize the total response time to the

clients in the network. We solve the above formulation using
Integer Linear Program (ILP) tool. The results are presented
later in Section V. In the next section we present a heuristic
approach for dynamic VF deployment in multi-cloud scenario.

IV. Dynamic Virtual Function Deployment ―

Heuristic Approach

We have proposed an optimal solution in the previous
section to place the VFs for specific set of client demands. In
the cloud, a single Application Service Provider (ASP) may
have a set of services (VFs) to be deployed and every VF has
specific requirements such as computational power, storage
capacity and others. OpenADN platform which deploys
services over multiple clouds imposes additional constraints
such as network bandwidth requirement. Each Virtual Machine
(VM) may host a specific set of VFs depending on its
computational, storage and network capabilities.

Locating suitable VMs from a given pool to minimize
the number of VMs so that all the instances of the VFs can be
satisfied is a NP-complete problem. It can be reduced to the
“Set Cover” problem in a polynomial time. In this section, we
describe an approximate heuristic approach for the VF
deployment on the preselected VMs across the multiple clouds.
We will be introducing a 3-D model for service requirements
and VM capacities which is necessary for multi-cloud
scenario. As we have mentioned, the already existing cloud
management platforms are good for service deployment within
a single cloud and hence the model considered for service
requirements is a 2-D model, that is, computational capacity
and storage capacity [8, 15]. However, we will be introducing
a new parameter which we refer as network capacity. Each VF
in a workflow demands some minimum network infrastructure
to be able to communicate across the data-centers with other
VF as well.

We assume that each VM on a physical server gets
equal share of the host bandwidth. ASPs need to provide
configuration files for the VF requirements after doing a
careful VF profiling. As no logs or patterns of VF or service
requests for data-center or clouds are publicly available due to
privacy and/or security concerns, we generate the service
requirement patterns along the lines of published traffic
distributions to emulate typical cloud workloads to evaluate
the proposed schemes [9, 10, 12]. We have assumed the VM
configurations from Amazon EC2 cloud service [5].

We propose Minimum-Residue heuristic approach for
this variant of set-cover problem. As mentioned earlier, we
model each ASP service as a 3-D vector. Also, each VM is
represented in term of the same 3-D vector, that is,
computational capacity, storage capacity and network capacity.
We then try to fit all the instances of the VFs for each ASP on
minimum number of VMs. For a given set S of the VFs for a
given ASP, we calculate a new set Ü, which is a set of all the
subsets for S (except a null set). For example, if S = {s1, s2,
s3} (that is an ASP has three services to be deployed), then the
corresponding Ü will be: Ü = {{s1}, {s2}, {s3}, {s1, s2}, …,
{s1, s2, s3}}. Each VM will be able to satisfy some of these
subsets, that is, can accommodate some VFs at a given time
instance.

Then we try to find out a set-cover with the given
VMs so that all the VFs in S will be covered with the minimum
number of VMs. To do this, we iterate through all the subsets
of S in Ü. We find total CPU, storage and network bandwidth
requirement for each subset. While considering the
requirements for a particular VF, we allow it to run on a VM
even if a VM cannot satisfy its complete CPU and Network
requirements, but instead can satisfy some percentage of it.
However, the storage requirements need to be satisfied
completely for a VF to be started. It may be justified since an
ASP may prefer a service to be a bit slower rather than not
running at all. We have assumed the percentage level to be
80% (i.e. λ = 0.8), though this parameter is configurable and
depends on the end-user demands. We then iterate through
each VM sequentially. For each VM, we subtract the 3-D
vector calculated above from the 3-D vector of that particular
VM. We discard all the subsets where a negative term is
introduced (that is the VM cannot satisfy one of three
requirement of that subset). For the remaining subsets, we
choose a subset which results in minimum remaining resources
on that VM. In other words, of all the possible subsets of the
VFs, we fit that subset on the VM which will result in the
maximum utilization of the VM. If there are two or more
subsets with the same remaining resources, we choose the
subset with minimum size since smaller the size of the subset,
more difficult it will be to split the subset later on. In other
words, there will be less possible combinations to try for a
subset with smaller size.

We repeat this process till all the services for a given
ASP are deployed. This procedure is repeated for all the ASPs.
We notice that a similar approach is used in the field of
Computer Architecture and Operating Systems to avoid the

301

fragmentation in the computer memory or storage [21, 22]. It
must be noted that, though we start the heuristic with static
knowledgebase of the service requirements, the dynamic
service allocation is also possible with the proposed heuristic.
If a completely new set of services from an ASP arrives, we
just need to execute the heuristic again. If an ASP adds to its
existing set of services, a VM can be chosen with the
maximum residue to satisfy the newly added services. Listing
1 below outlines the proposed heuristic.

Listing 1: Outline of the proposed heuristic

V. Results and Analysis

In this section, first, we analyze the performance of
the ILP presented in Section III for optimal VF deployments so
as to minimize the total response time in the network. Random
cluster graphs generated employing the “networkx” library [6]
using Python have been used for the purpose of simulation. We
have considered mesh topology with average degree of three or
four. Such networks are prevalent in the contemporary metro
and access networks. Networks with sizes varying from 10-
nodes to 100-nodes have been considered for the simulation
purpose. Client requests are generated at these nodes in the
Autonomous Systems. A sample 40-node topology for data-
center interconnectivity (data from a data-center service
provider in USA) considered in the simulations is displayed in
Fig. 1 below.

Fig. 1: A sample 40-node topology for the inter-datacenter

connectivity

Fig. 2 below displays the same network topology as in
Fig.1 using a tool “GraphDraw” which we have used for the
visualization of the various topology and generating the
adjacency matrix for the given topology.

Fig. 2: Representation of the topology in Fig. 1 using a graph

generator tool “GraphDraw”

We have used MOSEK optimizing tool [24] for the
solution. We have provided number of VFs to be installed as
an input parameter and the range (λmin to λmax) is calculated as
mentioned in the Section III earlier. Service requests are
generated randomly with the service granularities in Mbps and
are chosen from the set G = {100, 200, 500, 1000}. Fig. 3
below displays variation of the total response time for topology
from 10-nodes till 40-nodes with number of VFs installed
varying from 4 to 40. Fig. 4 displays the same graph for 50-
nodes till 100-nodes topology with number of VFs installed
varying from 10 to 100.

Algorithm: Minimal-Residue
1. Let S be the set of services the given ASP
2. Ü  Set of all Subsets of S (except Null set)
3. foreach set Ṣ in Ü
4. foreach service ṡ in Ṣ

1. Ṣ (CPUtotal)+= ṡ(CPU) X λ
2. Ṣ (Storagetotal)+= ṡ(Storage)
3. Ṣ (NWtotal) += ṡ(NW) X λ

5. foreach V in VMs
6. foreach set Ṣ in Ü

If V(CPU) >= Ṣ (CPUtotal) && V(Storage) >= Ṣ (Storagetotal)
&& V(NW) >= Ṣ (NWtota)

V(residue)  (3_D Vector)remaining_cap
7. Sort the set of V(residue) for all VMs in non-decreasing order
8. Select first Ṣ as a set of services to be deployed on the selected VM V.
9. Remove all the services ṡ in Ṣ from the set of services to be allocated

(set S).
10. Repeat until all services are allocated to the VMs
11. Repeat Step 1 through Step 10 for all ASPs.

302

Fig. 3: Total response time against number of VFs installed (15-nodes

till 40-nodes)

Fig. 4: Total response time against number of VFs installed (50-nodes

till 100-nodes)

We observe from both the graphs that the response
time reduces as the number of VFs deployed increases till
certain limit, however, after that there is no significant
reduction in the total response time. For example, the total
response time dips approximately from 35k units to 10k units
for 100-nodes as total number of VFs installed vary from 20 to
50 (approximate 25k units of improvement). However the
change in total response time for same topology is from 8k
units to 2k units with VFs varying from 60 to 90 (improvement
is mere 6k units). We now demonstrate the performance of the
proposed heuristic “Minimum-Residue” for the dynamic
service deployment on the preselected pool of VMs so as to
satisfy all the VF demands on minimum number of VMs. In
addition we compare the performance of the heuristic against
well-known “Max-Min” heuristic approach for task allocation.
We have used a variant of the Max-Min approach proposed in
[17, 20] to suit our input data-sets. As mentioned earlier, we
generate the service requirement patterns along the lines of
traffic distributions in published work or on the Internet to
emulate typical cloud workloads to evaluate the proposed
schemes [9, 10, 12, 19]. A simple example is presented below
where our proposed heuristic outperform the standard Max-
Min approach. We consider a set of five VFs. Let there be two

resources, r1 and r2, analogous to the CPU and Storage
demands (we are considering 2-D resource model in this
example for the simplicity purpose, however implementation is
for 3-D model as mentioned earlier. The example can easily be
extended for 3-D model). Table 1 shows the demands of the
VFs for r1 and r2. Table 2 displays the available VM
configurations with r1 and r2 available.

Table 1: VF requirements

Table 2: VM configurations

The allotment scheme by both the heuristics is
displayed in Table 3 below. As we observe, the Max-Min
heuristic needs all the three VMs. While our proposed scheme
can accommodate all the VFs with only two VMs. This is
because we search for minimum remaining capacity for each
VM rather than greedily allocating the demands, which might
get stuck in local-minima.

Table 3: Allotment schemes by both heuristics

Max-Min Minimum Residue
V1  S1, S3, S4 V1  S1, S5
V2  S2 V2  S2, S3, S4
V3  S5 V3  free

Fig. 6: Average Utilization of the VMs with the two schemes

This also ensures maximum Average Utilization of
the VMs. The graph in Fig. 6 displays the average utilization
(as per the definition in [20]) of the VMs in the above
example. As we observe, the utilization of both the used VMs
is higher with the proposed heuristic against that of Mix-Min

303

approach. We have generated various sets of VFs with total
number varying from 100 till 1000. We observe from the graph
displayed in Fig. 7 that the maximum number of VMs needed
to satisfy all the incoming service requests with the proposed
heuristic is always less than that of standard Max-Min
heuristic. Please note we have considered only micro and small
VM configurations from [5] to generate this result for better
demonstration. We observe in the graph that the gap between
two schemes keeps on increasing as number of services
increases. Though the gap in both schemes is small, we expect
a better performance with more VM configurations. Overall
we observe that the performance of the proposed heuristic gets
better with increased load.

Fig. 7: Comparison between proposed Minimum-Residue and

standard Max-Min Heuristic

VI. Conclusions

In this work we propose an optimization model to
place the Virtual Functions in multi-cloud environment so as to
minimize the total transmission delay in the network and solve
it using Integer Linear Program tool. We also propose a
heuristic scheme for dynamic Virtual Function deployment at
the sites which are selected in the optimization model. We
deploy the instances of VFs on Virtual Machines at pre-
selected sites, which may be deployed on the OpenADN
platform, a multi-cloud application delivery tool. The problem
is NP-Complete and we propose a polynomial time heuristic
approach “Minimum Residue” to solve the problem for 3
dimensional (3-D) capacity model. The proposed scheme is
compared with the standard Max-Min approach in the literature
and it is showed that the proposed heuristic out-performs
standard approach. Simulation results are presented to evaluate
the optimal solution and the proposed heuristic with larger
topology and greater number of VF instances.

VII. References

[1] S. Paul, R. Jain, M. Samaka, J. Pan, "Application Delivery in Multi-

Cloud Environments using Software Defined Networking," Computer

Networks Special Issue on cloud networking and communications,
February 2014, pp. 166-186.

[2] S. Paul and R. Jain, “OpenADN: Mobile Apps on Global Clouds Using
OpenFlow and Software Defined Networking,” 1st Int’l. Wksp. On
Management and Security Technologies for Cloud Computing,
December 2012, pp. 719-723.

[3] X. Tang, J. Xu, "QoS-aware replica placement for content distribution",
IEEE Transactions on Parallel and Distributed Systems, August 2005,
pp. 921-932.

[4] S. Bakiras, "Approximate server selection algorithms in content
distribution networks," IEEE International Conference on
Communications, 2005, pp.1490-1494.

[5] Amazon EC2 Virtual Function Instances:
http://aws.amazon.com/ec2/instance-types/

[6] Online reference: http://networkx.github.com/
[7] A. Guyton and M. Schwartz, “Locating nearby copies of replicated

internet servers”, ACM SIGCOMM, August 1995, pp. 288–298.
[8] K. M. Hanna, N. Natarajan, and B. N. Levine, “Evaluation of a novel

two-step server selection metric”, IEEE International Conference on
Network Protocols (ICNP), November 2001, pp. 290–300.

[9] T. Benson, A. Anand, A. Akella, M. Zhang, "Understanding Data Center
Traffic Characteristics", ACM SIGCOMM Computer Communication
Review, 2009, pp. 92-99.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, "The
Nature of Data Center Traffic: Measurements & Analysis", ACM
SIGCOMM conference on Internet measurement, 2009, pp. 202-208.

[11] TraceRT consulting service. [Online]: http://www.tracert.com
[12] X. Kuai, F. Wang, G. Lin, "Profiling-as-a-Service in Multi-tenant Cloud

Computing Environments", Distributed Computing Systems Workshops
(ICDCSW), June 2012, pp. 461-465.

[13] N. Laoutaris, V. Zissimopoulos, I. Stavrakakis, "On the optimization of
storage capacity allocation for content distribution", Computer Networks,
February 2005, pp. 409-428.

[14] S. Seshan, M. Stemm, and R. Katz, “Shared passive network
performance discovery”, USENIX Symposium on Internet Technologies
and Systems, December 1997, pp. 1-18.

[15] A. Lenk, M. Klems, J. Nimis, S. Tai, T. Sandholm, "What's inside the
Cloud? An architectural map of the Cloud landscape", ICSE Workshop
on Software Engineering Challenges of Cloud Computing, May 2009,
pp. 23-31.

[16] M .Randles, D. Lamb, A. Bendiab, "A Comparative Study into
Distributed Load Balancing Algorithms for Cloud Computing", IEEE
24th International Conference on Advanced Information Networking and
Applications Workshops (WAINA), 2010, pp. 551-556.

[17] K. Li, G. Xu, G. Zhao, Y. Dong, D. Wang, "Cloud task scheduling based
on load balancing ant colony optimization", IEEE Sixth Annual
ChinaGrid Conference, 2011, pp. 3-9.

[18] Z. Wu, X. Liu, Z. Ni, D. Yuan, A. Yang, "Market-oriented hierarchical
scheduling strategy in cloud workflow systems", Journal of Super
Computing, 2013, pp. 256-293.

[19] ETSI, “NFV – Update White Paper,” Oct 2013,
http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf.

[20] J. Cao, D. P. Spooner, S. A. Jarvis, G. R. Nudd, "Grid Load Balancing
Using Intelligent Agents", Future Generation Computer Systems, 2005,
pp. 135-149.

[21] P. Denning, "The Locality Principle", Communications of the ACM,
2005, pp. 19-24.

[22] Q. Zhu, Y. Qiao, "A Survey on Computer System Memory Management
and Optimization Techniques", American Journal of Computer
Architecture, 2012, pp. 37-50.

[23] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, C. Meirosu, "Research Directions in
Network Service Chaining," IEEE SDN for Future Networks and
Services (SDN4FNS), November 2013 , pp. 11-13.

[24] MOSEK, https://mosek.com

304

