Network Virtualization and Application Delivery Using Software Defined Networking

RAJ JAIN

Project Leader: Subharthi Paul
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Invited Talk at Huawei Strategy and Technology Workshop Santa Clara, CA, March 19, 2013

These slides and audio/video recordings are available at:

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_hw.htm

- 1. Five Reasons for Virtualization
- 2. Five Networking Virtualization Technologies
- 3. Five Innovations of SDN
- 4. Our Research: Open Application Delivery

Virtualization of Life

 \square Internet \Rightarrow Virtualization

- □ No need to get out for
 - > Office
 - > Shopping
 - > Entertainment
 - > Education

- Virtual Workplace
- Virtual Shopping
- Virtual Education
- □ Virtual Sex
- Virtual Computing

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_hw.htm

5 Reasons to Virtualize

- 1. Sharing: Break up a large resource Large Capacity or high-speed
- 2. Isolation: Protection from other tenants
- 3. Aggregating: Combine many resources in to one
- 4. Dynamics: Fast allocation, Change/Mobility, load balancing
- 5. Ease of Management⇒ Cost Savings. fault tolerance

Virtualization in Computing

- **□** Storage:
 - > Virtual Memory \Rightarrow L1, L2, L3, ... \Rightarrow Recursive
 - > Virtual CDs, Virtual Disks (RAID), Cloud storage
- **□** Computing:
 - > Virtual Desktop \Rightarrow Virtual Server \Rightarrow Virtual Datacenter Thin Client \Rightarrow VMs \Rightarrow Cloud
- **Networking**: Plumbing of computing
 - Virtual Channels, Virtual LANs,
 Virtual Private Networks
 - > Quick review of recent technologies for network virtualization

Levels of Network Virtualization

Data Center

- Networks consist of: **Host Interface** L2 Links **L2 Bridges L2 Networks** L3 Links L3 Routers L3 Networks **Data Centers Global Internet**
- Each of these needs to be virtualized

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

1. vNICs

□ Each VM needs its own network interface card (NIC)

pNIC

vNICs (Cont)

- 1. VM vendors: S/W NICs in Hypervisor w Virtual Ethernet Bridge (VEB)(overhead, not ext manageable, not all features)
- 2. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus
- 3. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade), 802.1Qbh (new switches)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

2. Bridge Port Extension

- Multiple physical bridges to make a single virtual bridge with a large number of ports
 - ⇒ Easy to manage and configure
- **□ IEEE 802.1BR**

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_hw.htm

3. Multi-Tenants

Each tenant needs its own networking domain with its VLAN

- 1. Virtual Extensible Local Area Networks (VXLAN)
- 2. Network Virtualization using Generic Routing Encapsulation (NVGRE)
- 3. Stateless Transport Tunneling Protocol (STT)
- ⇒ Network Virtualization over L3 (NVO3) group in IETF

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

4. Multi-Site

■ Better to keep VM mobility in a LAN (IP address changes if subnet changes)

- □ Solution: IP encapsulation
- Transparent Interconnection of Lots of Links (TRILL)

5. Clouds and Mobile Apps

- □ August 25, 2006: Amazon announced EC2
 ⇒ Birth of Cloud Computing in reality
 (Prior theoretical concepts of computing as a utility)
 - g as
 For
- Web Services To Drive Future Growth For Amazon (\$2B in 2012, \$7B in 2019)
 - Forbes, Aug 12, 2012
- ☐ June 29, 2007: Apple announced iPhone
 - ⇒ Birth of Mobile Internet, Mobile Apps
 - > Almost all services are now mobile apps: Google, Facebook, Bank of America, ...

- > Almost all services need to be global (World is flat)
- > Almost all services use cloud computing

Networks need to support efficient service setup and delivery

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

Application Delivery in a Data Center

- **Replication**: Performance and Fault Tolerance
 - \checkmark If Load on S1 >0.5, send to S2
 - ✓ If link to US broken, send to UK
- **□** Content-Based Partitioning:
 - Video messages to Server S1
 - Accounting to Server S2
- **□** Context Based Partitioning:
 - > Application Context: Different API calls
 - Reads to S1, Writes to S2
 - > User Context:
 - ✓ If Windows Phone user, send to S1
 - ✓ If laptop user, send to HD, send to S2
- Multi-Segment: User-ISP Proxy-Load Balancer-Firewall-Server

Application Delivery in Multi-Clouds

- Multi-Cloud: Cloud services provided by different CSPs
 - > Required for cloud market to grow
- ☐ Internet connecting the clouds is operated by ISP
 - ISP cannot do application based routing
 (e.g., content-based partitioning)
 Cannot look at the content (privacy)
- Only static partitioning possible by rotating DNS
 - Middle boxes and servers implemented in VM.
 - > Location too dynamic for DNS.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

Our Solution: OpenADN

- Open Application Delivery Networking Platform
 Platform = OpenADN aware clients, servers, switches, and middle-boxes
- □ Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing⇒ Global datacenter

OpenADN: 5 Innovations

- 1. Uses the latest in networking:
 - Software defined networking
 - 2. OpenFlow
- 2. Cross-Layer Communication OpenADN tags: Layer 7 Proxies without layer 7 visibility (MPLS like Labels => APLS)
- 3. ID/Locator Split
- 4. Late Multi-stage binding
- 5. Rule-Based Delegation

Ref: S. Paul, Raj Jain, "OpenADN: Mobile Apps on Global Clouds Using OpenFlow and Software Defined Networking," First Int. workshop on Management and Security technologies for Cloud Computing (ManSec-CC) 2012, December 7, 2012, IEEE Globecom 2012, http://www.cse.wustl.edu/~jain/papers/adn_gc12.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

1. Separation of Control and Data Plane

- Control Plane = Making forwarding tables
- □ Data Plane = Using forwarding tables
- Once vs. Billion times per second, Complex vs. fast
- One expensive controller with lots of cheap switches

2. Flow-based control

- Data/disk/Memory sizes are going up by Moore's Law
- □ Packet size has remained 1518 bytes since 1980
- Multimedia, big data ⇒ Packet Trains 🗒 🗒 🗒 🗒 🗒
- □ Flow is defined by L2-L4 headers
- \square Decide once, use many times \Rightarrow Execution performance

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

3. Centralization of Control Plane

Centralized vs. Distributed

- Consistency
- Fast Response to changes
- Easy management of lots of devices

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_hw.htm

4. Programmable Control Plane

□ Policies can be changed on the fly⇒Software Defined

5. Standardized API between planes

- Independent development of hw/control/applications
- Commoditization of HW/Control/Application
- South-Bound API: OpenFlow

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

SDN Impact

- Why so much industry interest?
 - Commodity hardware
 - \Rightarrow Lots of cheap forwarding engines \Rightarrow Low cost
 - ➤ Programmability ⇒ Customization
 - > Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly
- Tsunami of software defined devices:
 - Software defined wireless base stations
 - > Software defined optical switches
 - > Software defined routers

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_hw.htm

Industry Growth: Formula for Success

- □ Paradigm Shifts ⇒ Leadership Shift
- Old market leaders stick to old paradigm and loose
- \square Mini Computers \rightarrow PC, Phone \rightarrow Smart Phone, PC \rightarrow Smart Phone

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

OpenADN in SDN's Layered Abstractions **APPLICATIONS** ASP2 ASP1 OpenADN OpenADN ISP's Controller Controller **Northbound API** Policies ASP 2's CONTROL PLANE Controller // Control Controller **Network Controller Software** OpenADN Aware **Southbound API** Middle-poxes Legacy (OpenADN Unaware) **OpenFlow OpenFlow** Forwarding HW **OpenADN** Forwarding HW Forwarding HW Forwarding HW SDN provides standardized mechanisms for distribution of control information OpenADN aware devices use enhanced OpenFlow http://www.cse.wustl.edu/~jain/talks/adn hw.htm Washington University in St. Louis ©2013 Raj Jain

Key Features of OpenADN

Edge devices only.
 Core network can be current TCP/IP based,
 OpenFlow or future SDN based

- Coexistence (Backward compatibility):Old on New. New on Old
- 3. Incremental Deployment
- 4. Economic Incentive for first adopters
- 5. Resource owners (ISPs) keep complete control over their resources

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn hw.htm

Summary

- 1. Cloud computing ⇒ Virtualization of computing, storage, and networking
 - ⇒ Numerous recent standards related to networking virtualization both in IEEE and IETF
- 2. Recent Networking Architecture Trends:
 - 1. Centralization of Control plane
 - 2. Standardization of networking abstractions
 - ⇒ Software Defined Networking (SDN)
 - 3. Most networking devices will be software defined
- 3. OpenADN enables delivery of applications using North-bound SDN API