Computer Networking: Recent Developments, Trends, and Issues Raj Jain

Co-F

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

These Slides are available at

http://www.cse.ohio-state.edu/~jain/talks/ieee0501.htm

This on-line version does not include cartoons used during the presentation.

IEEE On-Line DLT 2005

©2005 Raj Jain

Officer

- Life Cycle of Technologies
- □ Top 10 Developments of 2004
- Optical Networking Developments: Core, Metro, Access
- Networking Technologies: Failures vs Successes
- Wireless Networking: Issues

Trend: Back to ILECs

1. CLECs to ILECs

ILEC: Slow, steady, predictable.

CLEC: Aggressive, Need to build up fast

New networks with newest technology

No legacy issues

2. Back to Voice

CLECs wanted to *start* with data

ILECs want to *migrate* to data

⇒ Equipment that support voice circuits but allow packet based (hybrids) are more important than those that allow only packet based

Life Cycles of Technologies

Number of Problems Solved

Hype Cycles of Technologies

IEEE On-Line DLT 2005

Industry Growth

Top 10 Developments of 2004

- 1. Large investments in Security
- 2. Wireless (WiFi) is spreading (Intel Centrino)
- 3. More Cell phones than POTS.
 Smart Cell phones w PDA, email, video, images ⇒ Mobility
- 4. Broadband Access is growing faster than cell phones
- 5. Fiber is creeping towards home
- 6. Ethernet extending from Enterprise to Access to Metro ...
- 7. Wiring more expensive than equipment \Rightarrow Wireless Access
- 8. Multi-Protocol Label Switching for traffic engineering
- 9. Voice over Internet Protocol (VOIP) is in the Mainstream
- 10. Multi-service IP: Voice, Video, and Data

Convergence

- Distance: LAN vs MAN
- Services: Data, Voice, Video
- Phy: Circuit switched vs Packet switched
- L2 Protocols: Ethernet and SONET
- □ L3 Protocols: IP
- □ HTTP: Hyper-Application Access protocol

Core Networks

- Higher Speed/λ: 10 Gbps to 40 Gbps to 160 Gbps
- □ Longer Distances/Regens: 600 km to 6000 km
- □ More Wavelengths: 16λ 's to 160λ 's
- □ 1 Fiber = $160 \lambda \times 40 \text{ Gbps} = 6.4 \text{ Tbps}$ = 1 kbps x 6 Billion = 1 kbps/person

Ethernet: 1G vs 10G Designs

1G Ethernet	10G Ethernet		
 1000 / 800 / 622 Mbps Single data rate 	□ 10.0/9.5 Gbps Both rates.		
LAN distances only	□ LAN and MAN distances		
□ No Full-duplex only⇒ Shared Mode	□ Full-duplex only ⇒ No Shared Mode		
□ Changes to CSMA/CD	□ No CSMA/CD protocol		
	\Rightarrow No distance limit due to MAC		
NAYNA	\Rightarrow <i>Ethernet</i> End-to-End		
Networks	EE On-Line DLT 2005 ©2005 Raj Jain		

SONET/SDH vs Ethernet: Remedies

Feature	SONET	Ethernet Remedy		
Payload Rates	51M, 155M,	10M, 100M, 1G,	10GE at 9.5G	
	622M, 2.4G,	10G		
	9.5G			
Payload Rate	Fixed	\sqrt{Any}	Virtual	
Granularity			Concatenation	
Bursty Payload	No	\sqrt{Yes}	Link Capacity	
			Adjustment Scheme	
Payload Count	One	√M ultiple	Packet GFP	
Protection	√Ring	Mesh	Resilient Packet	
			Ring (RPR)	
OAM&P	$\sqrt{\text{Yes}}$	No	In RPR	
Synchronous	√Yes	No	MPLS + RPR	
Traffic				
Restoration	$\sqrt{50}$ ms	Minutes	Rapid Spanning Tree	
Cost	High	√Low	Converging	
Used in	Telecom	Enterprise		

IEEE On-Line DLT 2005

Enterprise vs Carrier Ethernet

Enterprise

- □ Distance: up to 2km
- Scale:
 - □ Few K MAC addresses
 - □ 4096 VLANs
- Protection: Spanning tree
- Path determined by spanning tree
- Simple service
- \square Priority \Rightarrow Aggregate QoS
- No performance/Error monitoring (OAM)

Carrier

- □ Up to 100 km
- Millions of MAC Addresses
- Millions of VLANsQ-in-Q
- □ Rapid spanning tree (Gives 1s, need 50ms)
- □ Traffic engineered path
- □ SLA. Rate Control.
- Need per-flow QoS
- Need performance/BER

No 100 Mbps Ethernet switches with Q-in-Q, Rate control, Priority

IEEE On-Line DLT 2005

RPR: Key Features

- Dual Ring topology
- Supports broadcast and multicast
- □ Packet based ⇒ Continuous bandwidth granularity
- Max 256 nodes per ring
- MAN distances: Several hundred kilometers.
- ☐ Gbps speeds: Up to 10 Gbps
- □ Too many features and alternatives too soon (702 pages)

Networking: Failures vs Successes

- 1980: Broadband (vs baseband) Ethernet
- □ 1984: ISDN (vs Modems)
- 1986: MAP/TOP (vs Ethernet)
- 1988: Open System Interconnection (OSI) vs TCP/IP
- □ 1991: Distributed Queue Dual Bus (DQDB)
- □ 1994: CMIP (vs SNMP)
- □ 1995: FDDI (vs Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs Ethernet)
- □ 1997: ATM to Desktop (vs Ethernet)
- □ 1998: Integrated Services (vs MPLS)
- □ 1999: Token Rings (vs Ethernet)

Requirements for Success

- □ Low Cost: Low startup cost ⇒ Evolution
- High Performance
- Killer Applications
- □ Timely completion
- Manageability
- Interoperability
- Coexistence with legacy LANs
 Existing infrastructure is more important than new technology

Laws of Networking Evolution

- 1. Existing infrastructure is more important then deploying new technology
 - □ Ethernet vs ATM, IP vs ATM
 - □ Exception: Killer technology, immediate savings
- 2. Modifying existing protocol is more acceptable than new protocols
 - □ TCP vs XTP
 - □ Exception: New applications (VOIP SIP, MEGACO, ...)
- 3. Traffic increases by a factor of X/year Total revenue remains constant (or decreases)
 - \Rightarrow Price/bps goes down by \cong X/year (X = 2 to 4)

Telecom and Economic Development

Fundamental correlation between GDP growth and teledensity

IEEE On-Line DLT 2005

Access Networks

- □ 63.84 M DSL subscribers worldwide. 2003 growth rate of 77.8% is more than the peak growth rate of cellular phones.
- By Q3'04, 19M Cable Modems, 12M DSL in USA [Leichtman Research]
- □ All countries are racing to a leadership position in broadband
- □ Digital-Divide \Rightarrow 30M subs@10Mbps, 10M@100Mbps in Japan by 2005
- □ Telecom epicenter has moved from NA+Europe to Asia Pacific

Rank	Country	DSL per	Rank	Country	DSL per
		100 Phones			100 Phones
1	South Korea	28.3	6	Israel	14.5
2	Taiwan	19.8	7	Denmark	14.2
	Belgium	16.7	8	Finland	13.6
4	Hong Kong	16.1	9	Singapore	13.4
5	Japan	15.7	10	France	12.1
NAYN	A		32	USA	5.6
Network	2	IEEE On-Line I	DLT 2005		©2005 Rai Jain

Mobility

- 1.35 Billion mobile subscribers vs 1.2 Billion Fixed line subscribers at the end of 2003 [ITU]
- Number of wired phones in USA is declining for the first time since the Great Depression.
- 20% of world population is mobile. Need internet access.70% of internet users in Japan have mobile access
- □ Vehicular mobility up to 250 Km/h (IEEE 802.20)

Wireless Industry Trends

- Wireless industry is stronger than wireline.
 Particularly strong growth in developing countries.
- □ 48% of global telco revenues coming from wireless
- □ 26% of wireless revenues coming from data (vs voice)
- □ Past: Voice, email, SMS, Ring tones
- Present: Push, Gaming, Pictures, Instant Messaging
- □ Future: Music, Video, Location, Remote monitoring, m-commerce
- Long Term: Video telephony, remote enterprise applications, remote management, Multiparty collaboration,

Wireless Issues

- □ Security (IEEE 802.11i)
- ☐ Higher Data rate (IEEE 802.11n, 100 Mbps, using Multiple-input multiple-output antennas)
- □ Longer distance (WiMAX, >1Mbps to 50 km)
- □ Seamless Networking \Rightarrow Handoff (IEEE 802.21)
- □ Mobility (IEEE 802.20)
- □ Automated RF management (Cell sites)
- □ Large scale networks (RFID, Sensors)

Summary

- Hype Cycles of Technologies
 ⇒ Recovering from the bottom
 Networking (infrastructure) are mature (widely deployed)
 technologies. Evolution is more like to succeed than revolution.
- 2. Enterprise networking is different from carrier networking. Core market stagnant. Metro and Access more important.
- 3. SONET vs Ethernet in Metro. Need carrier grade Ethernet.
- 4. Low cost is the key to success of a technology
- 5. FTTH is finally happening. EPON will lead.

Key issues in Wireless are Security and Mobility

IEEE On-Line DLT 2005

Networking Trends: References

- □ References on Networking Trends,
 http://www.cis.ohio-state.edu/~jain/refs/ref_trnd.htm
- □ References on Optical Networking,
 http://www.cis.ohio-state.edu/~jain/refs/opt_refs.htm
- References on Residential Broadband,
 http://www.cis.ohio-state.edu/~jain/refs/rbb_refs.htm
- □ References on Wireless Networking,
 http://www.cis.ohio-state.edu/~jain/refs/wir_refs.htm

