
Internet 3.0:

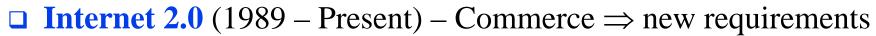
Ten Problems with Current
Internet Architecture and
Solutions for the Next
Generation

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

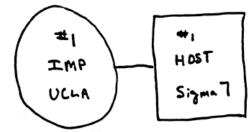
http://www.cse.wustl.edu/~jain/talks/in3_mc.htm

- What is Internet 3.0?
- Why should you keep on the top of Internet 3.0?
- What are we missing in the current Internet?
- Our Proposed Architecture for Internet 3.0: GINA


What is Internet 3.0?

- □ Internet 3.0 is the next generation of Internet
- □ Named by me along the lines of "Web 2.0"
- Also known as "Global Environment for Networking Innovations" or GENI (Internet 3.0 is more intuitive then GENI)
- National Science Foundation is planning a \$300M+ research and infrastructure program on GENI
 - ⇒ Most of the networking researchers will be working on GENI for the coming years
- □ Ref: http://www.nsf.gov/cise/geni/

Internet Generations


- □ **Internet 1.0** (1969 1989) Research project
 - > RFC1 is dated April 1969.
 - > ARPA project started a few years earlier
 - > IP, TCP, UDP
 - > Mostly researchers
 - Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS

- > Security RFC1108 in 1989
- > NSFnet became commercial
- > Inter-domain routing: OSPF, BGP,
- > IP Multicasting
- Address Shortage IPv6
- Congestion Control, Quality of Service,...

niversity in St. Louis Milcom 2006 – October 24, 2006

http://www.cse.wustl.edu/~jain/

Ten Problems with Current Internet

- Assumes live and awake end-systems
 Does not allow communication while sleeping
 Many energy conscious systems today sleep.
- Identity and location in one (IP Address)Makes mobility complex.
- Location independent addressing
 - ⇒ Most services require nearest server.
 - ⇒ Also, Mobility requires location

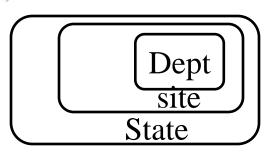
Milcom 2006 - October 24, 2006

□ Single-Computer to single-computer communication ⇒ Numerous patches need for communication with globally distributed systems.

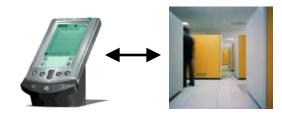
Problems (cont)

■ No representation for real end system: the human.

- Designed for research
 - ⇒ Trusted systems Used for Commerce
 - \Rightarrow Untrusted systems
- □ Control, management, and Data path are intermixed ⇒ security issues


Washington University in St. Louis

Milcom 2006 – October 24, 2006


http://www.cse.wustl.edu/~jain/

Problems (cont)

Difficult to represent organizational, administrative hierarchies with just two levels: domain and inter-domain

Symmetric Protocols⇒ No difference between a mote and a Google server.

Stateless ⇒ Can't remember a flow ⇒ QoS difficult.
 QoS is generally for a flow and not for one packet

Our Proposed Solution: GINA

- **□** Generalized Inter-Networking Architecture
- □ Take the best of what is already known
 - > Wireless Networks, Optical networks, ...
 - > Transport systems: Airplane, automobile, ...
 - > Communication systems: Wired Phone networks, Cellular networks,...
- Develop a consistent general purpose, evolvable architecture that can be customized by implementers, service providers, and users

Names, IDs, Addresses

Name: John Smith

ID: 012-34-5678

Address:

1234 Main Street Big City, MO 12345 USA

- □ Address changes as you move, ID and Names remain the same.
- **Examples**:
 - > Names: Company names, DNS names (google.com)
 - > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
 - > Addresses: Wired phone numbers, IP addresses

Washington University in St Louis

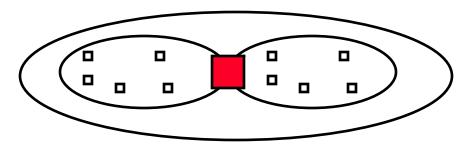
Milcom 2006 – October 24, 2006

http://www.cse.wustl.edu/~jain/

Objects in GINA

- Object = Addressable Entity
- □ Current: End-Systems and Intermediate Systems
- □ GINA:
 - > Computers, Routers/Firewalls....
 - > Networks
 - > Humans
 - Companies, Departments, Cities, States, Countries, Power grids
 - > Process in a computer
 - ➤ Recursive ⇒ Set of Objects is also one object, e.g., Networks of Networks

You can connect to a human, organization, or a department

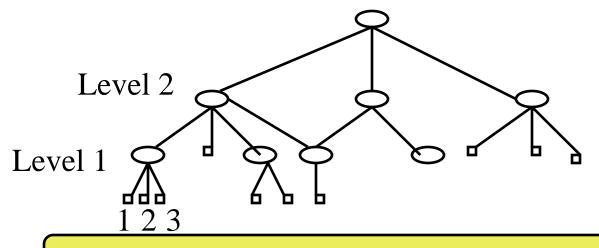

Names, Ids, Addresses, and Keys

- Each Object has:
 - > Names: ASCII strings for human use
 - > IDs: Numeric string for computer use
 - > Addresses: where the Object is located
 - □ Home Address, Current Address
 - > Keys: Public, Private, Secret
 - > Other attributes, Computer Power, Storage capacity
- Each object has one or more IDs, zero or more names, one or more addresses and zero or more other attributes

You connect to an ID not an address \Rightarrow Allows Mobility

Realms

- Object names and Ids are defined within a realm
- An object may be a member of multiple realms.
 - ⇒ One or more Ids in each realm of which it is a member
- Each realm has a set of exits. Objects with local realm Ids communicate to objects outside the realm only by simply communicating with server objects at the exit.
- Realms can be treated as single object and have Names, Ids, addresses. Realms are recursive.
- Boundaries: Technological, Governmental, ISP, Organizational



Milcom 2006 – October 24, 2006

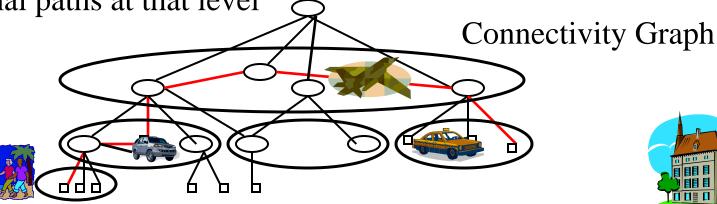
http://www.cse.wustl.edu/~jain/

Hierarchy of IDs

- Universe is organized as a hierarchy of realms
- Each realm has a set of parents and a set of children
- Parent Ids can be prefixed to realm ids
- \square A child may have multiple parents \Rightarrow Hierarchy is not a tree
- Any path to the root of a level gives the ID for the object at that level, e.g., level2_id.level1_id...object_id = level2 id of object

Realm Hierarchy = Organizational Structure

Object Addresses


- □ Address of an object indicates its *physical attachment point*
- Networks are organized as a set of *zones*
- □ Object address in the current zone is sufficient to reach it inside that zone
- Each object registers its names, addresses, IDs, and attributes with the registry of the relevant realms
- Zones are objects and have Ids, realms, addresses too
- An object's address at higher level zones is obtained by prefixing it with of addresses of ancestor zones

Zonal Hierarchy = Network Structure

Routing

- Based on connectivity
- Routing organized as paths through several levels of hierarchy
- At each level packets follow an optimal path from the entry point to that level to exit point in that zone
- Routing table exchanges at each level are used to find the optimal paths at that level ____

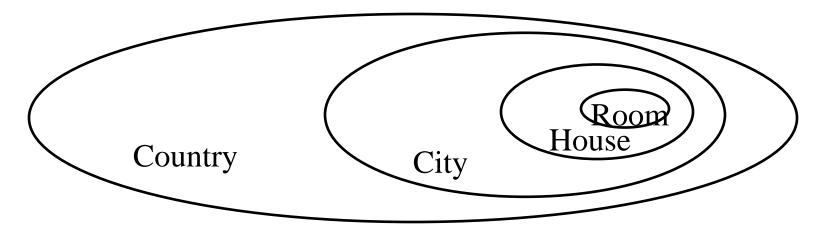
Milcom 2006 – October 24, 2006

http://www.cse.wustl.edu/~jain/

Server Objects

- Each realm has a set of server objects, e.g., forwarding, authentication, encryption,
- Some objects have built-in servers, e.g., an "enterprise router" may have forwarding, encryption, authentication services.
- Other objects rely on the servers in their realm
- □ Forwarding servers are located at the boundary of two realms
- Encryption servers encrypt the packets
- Authentication servers (AS) add their signatures to packets and verify signatures of received packets..
- Storage servers store packets while the object may be sleeping and may optionally aggregate/compress/transform/disseminate data. Could wake up objects.
- Persistent connections: Across system restarts, HW replacement, Object mobility

Servers allow simple energy efficient end devices


Packet Headers

- You have to know the name of the destination to be able to communicate with it.
- ☐ The destination name has to be up to the level where you have a common ancestor.
- □ The names can be translated to the ID of the destination by using registries at appropriate levels
- □ The packets contain either Ids or addresses of the destination
- Current level Ids are translated to address

Packets contain IDs ⇒ Network handles mobility

- Multi-level architecture. Gatekeepers on the entrance
- Authentication checked on entry to zone/realm. Not at every router.
- Authentication at multiple levels: country, city, home.
- □ Group Authentication: n-packets can be authenticated by one authentication
- VPN and firewalls are part of the architecture

Organizational control of security

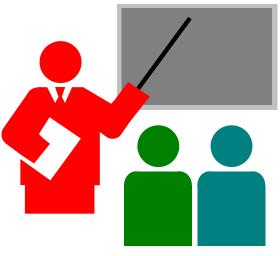
Milcom 2006 – October 24, 2006

http://www.cse.wustl.edu/~jain/

Gatekeepers

- Gatekeepers also enforce policies and do policing (Monitor bandwidth, type of traffic, contents)
- May provide storage for a limited time (Helps sleeping entities save energy)
- Add authentication headers (country, city, home, level)
- End systems can delegate the "TCP" responsibility on gatekeepers
- All services do not have to have reside in each gatekeeper.
- Gatekeepers may also delegate services to other servers
- Application-specific gatekeepers

Organizational control of all policies


Internet 1.0 vs. Internet 3.0			
	Feature	Internet 1.0	Internet 3.0
1.	Energy Efficiency	Always-on	Green ⇒ Mostly Off
2.	Mobility	Mostly stationary computers	Mostly mobile objects
3.	Computer-Human Relationship	Multi-user systems ⇒ Machine to machine comm.	Multi-systems user ⇒ Personal comm. systems
4.	End Systems	Single computers	Globally distributed systems
5.	Protocol Symmetry	Communication between equals ⇒ Symmetric	Unequal: PDA vs. Google ⇒ Asymmetric
6.	Design Goal	Research ⇒ Trusted Systems	Commerce ⇒ No Trust Map to organizational structure
7.	Ownership	No concept of ownership	Hierarchy of ownerships, administrations, communities
8.	Sharing	Sharing ⇒ Interference, QoS Issues	Sharing <i>and</i> Isolation \Rightarrow Critical infrastructure
9.	Switching units	Packets	Packets, Circuits, Wavelengths, Electrical Power Lines,
10.	Applications	Email and Telnet	Information Retrieval, Distributed Computing, Distributed Storage, Data diffusion

₩ashington University in St. Louis

Milcom 2006 – October 24, 2006

http://www.cse.wustl.edu/~jain/

Summary

- q Internet 3.0 is the next generation of Internet.
- q It must be green (energy efficient), secure, allow mobility.
- q Must be designed for commerce.
- q Active industry involvement in the design essential. Leading networking companies must actively participate.
- Q Our proposal Generalized InterNet Architecture (GINA) addresses many issues.

Washington University in St Louis