





- □ IP is good for routing, traffic aggregation, resiliency
- □ ATM for multi-service integration, QoS/signaling
- SONET for traffic grooming, monitoring, protection
  DWDM for capacity
- □ Problem: Restoration in multiple layers, Sonet Manual ⇒ Intersection of features and union of problems<sub>Rai Jain</sub>



### **Telecom vs Data Networks**

|                            | Telecom Networks   | Data Networks |
|----------------------------|--------------------|---------------|
| Topology Discovery         | Manual             | Automatic     |
| Path Determination         | Manual             | Automatic     |
| Circuit Provisioning       | Manual             | No Circuits   |
| Transport & Control Planes | Separate           | Mixed         |
| User and Provider Trust    | No                 | Yes           |
| Protection                 | Static using Rings | No Protection |





# **IP over DWDM Issues**

- 1. Circuits
- 2. Data and Control plane separation
- 3. Signaling
- 4. Addressing
- 5. Protection and Restoration

### **Multiprotocol Label Switching (MPLS)**



- □ Allows circuits in IP Networks (May 1996)
- □ Each packet has a circuit number
- Circuit number determines the packet's queuing and forwarding
- □ Circuits have be set up before use
- □ Circuits are called Label Switched Paths (LSPs)

#### **Issue: Control and Data Plane Separation**

- □ Separate control and data channels
- IP routing protocols (OSPF and IS-IS) are being extended Routing

Messages











## **GMPLS: Hierarchical View**

- Packets over SONET over Wavelengths over Fibers
- Packet switching regions, TDM regions, Wavelength switching regions, fiber switching regions



### **MPLS vs GMPLS**

| Issue                | MPLS         | GMPLS                         |
|----------------------|--------------|-------------------------------|
| Data & Control Plane | Same channel | Separate                      |
| Types of Nodes       | Packet       | PSC, TDM, LSC, FSC,           |
| and labels           | Switching    |                               |
| Bandwidth            | Continuous   | Discrete: OC-n, $\lambda$ 's, |
| # of Parallel Links  | Small        | 100-1000's                    |
| Port IP Address      | One per port | Unnumberred                   |
| Fault Detection      | In-band      | Out-of-band or In-Band        |

![](_page_13_Picture_2.jpeg)

![](_page_14_Picture_0.jpeg)

- □ Too many channels between crossconnects
- LMP allows connectivity verification, link parameter correlation, fault notification
- □ All communication takes place on control channel
- Only test messages on data channels to verify connectivity (optional)

#### **Issue: UNI vs Peer-to-Peer Signaling**

- **Two Business Models:** 
  - Carrier: Overlay or cloud
    - Network is a black-box
    - User-to-network interface (UNI)
      to create/destroy light paths (in OIF)
  - Enterprise: Peer-to-Peer

![](_page_15_Figure_6.jpeg)

# Addressing

- Many different client types IP, ATM, SONET, ... Each type has its own address: IPv4, IPv6, ATM, ...
- □ Should a client be addressed by Switch and Port #?
- Answer: Optical Network Assigned Address (ONA)
  Globally Unique. Like Phone Number.
- Address Resolution Protocol to register and resolve name to ONA. Connect using ONA.

![](_page_16_Figure_5.jpeg)

#### **Current Issues**

- Protection and Restoration
- □ Fault detection and isolation
- □ All-Optical networks
- Network-network Interface

#### **Protection and Restoration**

- □ Extent: SPAN vs PATH
- □ Topology: Ring vs Mesh
- □ Redundancy: 1+1, 1:1
- Finding Paths that do not share the same risk
  Each link has to be assigned a risk group
  Shared Risk Group (SRG) = All paths sharing a risk

![](_page_18_Figure_5.jpeg)

### **Fault Detection and Isolation**

- SONET: Remote Defect Indicator, Alarm Indication Signal, Bit Interleaved Parity
- □ Photonic: Loss of signal, Optical degradation of signal
- Solution: A protocol for active devices to communicate fault information to Photonic switches Examples: LMP-DWDM, NTIP

![](_page_19_Figure_4.jpeg)

![](_page_20_Figure_0.jpeg)

- NNI = Network to Network or Node-to-Node or Network-to-Node Interface
- Examples: Open Shortest Path First (OSPF)
  Private Network to Node Interface (PNNI)
- OIF is starting a new project on NNI

# **All-Optical Networks**

- □ All-Optical  $\Rightarrow$  No electronic conversion
  - $\Rightarrow$  No wavelength conversion
  - $\Rightarrow$  No 3R regeneration
- Optical degradations (attenuation, chromatic dispersion, Polarization Mode Dispersion, ...) limit the paths
- □ Non-linear function of distance and non-additive
- □ OIF is about to start a new project to address alloptical networks

![](_page_21_Figure_7.jpeg)

![](_page_22_Picture_0.jpeg)

- 1. Separation of control and data plane IP-Based control plane
- 2. Transport Plane = Packets  $\Rightarrow$  MPLS Transport Plane = Wavelengths  $\Rightarrow$  MP $\lambda$ S Transport Plane =  $\lambda$ , SONET, Packets  $\Rightarrow$  GMPLS
- 3. UNI allows users to setup paths on demand
- 4. Starting on all-optical networks, protection, fault management, and NNI

# **IP over DWDM: Key References**

- Detailed references in <u>http://www.cis.ohio-</u> <u>state.edu/~jain/refs/opt\_refs.htm</u>
- Recommended books on optical networking, <u>http://www.cis.ohio-state.edu/~jain/refs/opt\_book.htm</u>
- Optical Networking and DWDM, <u>http://www.cis.ohio-state.edu/~jain/cis788-</u> <u>99/dwdm/index.html</u>
- IP over Optical: A summary of issues, (internet draft) <u>http://www.cis.ohio-state.edu/~jain/ietf/issues.html</u>
- □ Lightreading, <u>http://www.lightreading.com</u>

# **Standards Organizations**

- □ IETF: <u>www.ietf.org</u>
  - Multiprotocol Label Switching (MPLS)
  - IP over Optical (IPO)
  - Traffic Engineering (TE)
  - Common Control and Management Plane (CCAMP)
- Optical Internetworking Forum (OIF): <u>www.oiforum.com</u>
- □ ANSI T1X1.5: <u>http://www.t1.org/t1x1/\_x15-hm.htm</u>
- ITU, <u>www.itu.ch</u>, Study Group 15 Question 14 and Question 12
- Optical Domain Service Interface (ODSI)
  - Completed December 2000