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2 Introduction to point-to-multipoint ABR

2 Basic ABR pt-mpt Resource Allocation

2 Extension/optimization of pt-mpt algorithms

2 Mpt-pt: What should be the goal of allocation?
2 Extension of ERICA to mpt-pt
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Point-to-Point ABR

2 Sources send one RM cell every n cells

2 The RM cells contain “ Explicit rate”

2 Destination returns the RM cell to the source
2 The switches adjust the rate down

2 Source adjusts to the specified rate
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ERICA+

2 Timeis dotted into averaging intervals
2 ABR capacity = [link capacity
- (VBR + CBR load)] x f(queue length)
2 Estimate input rate = S CCRJ
2 overload = input rate/ ABR capacity
2 ER]_efficiency = CCRj/overload
2 ER fairshare = ABR capacity/# of active sources
2 IFoverload £ 1+ d THEN ER| =
max (ER]_efficiency, ER fairshare, maxERprevious)
ELSE ER] = max(ER]_efficiency, ER fairshare)
2 maxERcurrent = max(maxERcurrent, ER))
2 ERin BRMj = min(ER in BRM|, ER))
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Point-to-Multipoint ABR




Basic Pt-Mpt: Results

2 ABR with ERICA (extended for multipoint) works ok
2 Efficiency, fairness, responsiveness is maintained

2 Consolidation noise due to asynchronous arrival of
feedback from different leaves appears as oscillations

2 Additional delay dueto FRM wait and BRM
consolidation
P dower transient response than point-to-point

2 Minimum of all pathsis allocated
P Somelinks are underutilized

2 Queue control (ERICA+) isrequired for stability
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Consolidation Noise

WAN Chain: ACRs
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Point-to-Multipoint
Connections: Isgues
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2 If you send BRM on every FRM, you may give
feedback without recelving any
P Need to ensure that at least one feedback has been
received before sending aBRM.
Otherwise, you may give PCR

2 Not all downstream feedbacks in an upstream
feedback P consolidation noise

2 Conclusion: Feedback should not be FRM driven
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Scalability

2 If the feedback is BRM driven:
Should we wait for BRMs from all branches?

Yesp Delay may be long. Non-responsive branches?
No P Number of BRMs>> FRMs
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Previous Algorithms

2 Algorithm 1: Simply turn around FRM cells with the
current minimum and reset minimum

o Feedback may be sent without recelving any
o Partial feedback b Noise

2 Algorithm 2: Turn around FRM only if at |east one
BRM has been received since last BRM was sent

o Solves “no feedback problem” but has noise

2 Algorithm 3: Do not turn around FRM cells. Simply
flag the receipt of the FRM, and return the first BRM
(with modified fields) to arrive after that

o Solves “no feedback problem” but has noise
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2 Algorithm 4: Walit till BRMs are received from all
branches after last BRM was sent, and return the last
one (with modified fields)

o Transient response too slow
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New Algorithms

2 Algorithm 5 (new): If the ER in the BRM is much
less than the last ER sent (or CCR), do not wait P
send the BRM, but do not reset the values:. reset when
feedback from all leavesisreceived

> BRM to FRM ratio may exceed one

2 Algorithm 6: For every premature BRM cell,
Increment a counter. Decrement the counter the next
time a BRM giving a higher rate than the last sent isto
be returned, but do not return the BRM

o Overload at the current switch may not be fedback
In atimely manner
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New Algorithms (Cont)

2 Algorithm 7: When aBRM isreceived, invoke the
switch algorithms for all outgoing branches before
deciding whether to send feedback
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Simulation Results 2

gorithms 1, 2, 3: noise, unfair, unstable
gorithms 4, 5, 6: no noise, but slow response
gorithm 7: no noise and fast response
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Performance Comparison

2 Studied 4 existing and 3 new algorithms.

Algorithm 1 2 3 4 5 6 /
Complexity |High| High| Low [ Med|>Med|>Med| >>Med
Transient Fast for [Very fast
Response |Fast | Med | Med | Slow | overload for overld
Noise High| Med [ High | Low | Low | Low| Low
BRM:FRM | 1 | <1 <1 ]| <1 [may>1lim=] lim=1
Sengitivity tc

branch points$

and levels | Hign High| Low | Med |>Med| Med| Med
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Multipoint
Consolidation: Results

2 Consolidation algorithms offer tradeoffs
between complexity, transient response, noise,
overhead and scalability

2 The new algorithms 6 and 7 speed up the transient
response, while eliminating consolidation noise and
controlling overhead
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Multipoint-to-Point VCs

2 Problem with AALS: Cell interleaving.

2 VP merge: VCI = sender ID
VPs are used for other purposes.

2 VC merge: Buffer at merge point till EOM bit = 1.
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Sources, VCs, and Flows
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~Al SNl _________ SNZ _________ | 3

2 Sw, hasto deal with
o Two VCs: Red and Blue

o Four sources: Three red sources and one blue
source

o Three flows. Two red flows and one blue
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Fairness Definitions

2 Source-based.
N-to-one connection = N one-to-one
connections P Use max-min fairness among sources

2 VC/Source-based: Allocate bandwidth among VCs
For each VC, allocate fairly among its sources

2 FHow-based: Flow = VC coming on an input link.
Switch can easlly distinguish flows.

2 VC/How-based:
1. Allocate bandwidth fairly among VCs
2. For each VC, dllocate fairly among its flows
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Example

2 How isthe bandwidth of LINK, allocated?

Q Source: {S, S,, S;, Spt— {37.5,37.5, 37.5, 37.5}

2 VC/Source: {S, S,, S3, Spt— {25, 25, 25, 75}

a Fow: {S,, S,, S;, Sp}— {25, 25, 50, 50}

a VC/How: {S;, S,, S;, Sa}— {18.75, 18.75, 37.5, 75}

LINK
(Sy—| Sy |——— Sw;

s s

All links are 150 Mbps

W Sw,

|_||\|K2L. LINK4
@y
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Mpt-pt Issues

2 Cdlls of sendersin the same multipoint-to-point VC
cannot be distinguished

2 Question: Can we achieve source-based fairness?
Answer: Yes!

0 We extended ERICA to achieve source based fairness

for mpt-pt VCs
100
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Changes to ERICA+

2 Remove fair share term (# active sources)
2 Options,

o Use CCRjmax instead of CCR]
Maximum Is calculated in successive intervals

o To minimize oscillations, use exponential
averaging options for:
o Input rate
2 ABR capacity
a2 maxERprevious
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Merging Point Algorithm

2 Maintain abit at the merging point for each flow
being merged
Bit=1b FRM recelved from this flow after BRM
sent to it

2 BRMsare duplicated and sent to flows whose bits are
set, then bits are reset

Leaf 1~ L[]
| ——= Merge W — " Root

HHH — point | <1 |
Leaf 2= §«
| |=FRM [ =daa |=BRM
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Simulation Parameters

2 Unidirectional traffic

2 RIF=1/32,1

2 Rule 6 disabled

2 Queue control: a=1.15, b= 1, drain limit = 50%,
target queuing delay =1.5s

2 Measurement interval =5 ms, 200 ns

2 One cdll long packets (Avoids VC merging issues)

2 Max CCR and averaging maxERprevious used

2 Link lengthsin kms: { LINK1, LINK2, LINK3} =
{50, 500, 5000}, {5000, 500, 50}
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0 Goal:{S1,52,53,H4,5A}

4
4

Upstream Bottleneck

- {16.7,16.7,58.3,58.3,16.7}

CRs:{ S1,S2,S3,54,SA} - { 20,20,30,80,10}

Results are ssimilar with different link lengths,
RIF=1/32, 1, interval length =5 ms, 200 ns (no RMs

for S1,S2 ,SA for 4 intervals; for S3,%4 for 1 interval)
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All links are 150 Mbps, except LINK; which is 50 Mbps
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Simulation Results

2 Upstream Bottleneck, LINK3 = 5000 km,
RIF=1, interval =5ms
WAN 4-leaf with upstream bottleneck: ACRs

T T T aACRforst |
128: ACR for S2 —
ACR for S3 —
g 120r ACR for S4 _—
O 100 ACR for SA S
< 8ot _
60-hyh-__________________————————————————————:
40}t :
20 |+ -
o

0200 400 600 800 1000 120 1400 1600 1800 2000
The Ohio State University Time |n milliseconds Raj Jain




Queue Lengths

WAN 4-leaf with upstream bottleneck
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Link Utilization

WAN 4-leaf with 11]1 stream bottleneck
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Cells Recelved

WAN 4-leaf with upstream bottleneck
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|_essons Learnt

2 Avoid determining the effective number
of active sources

2 Avoid estimation of rates of sources, or
determining If a source is bottlenecked at thislink

2 Use only per-VC or per-port measurements and not
per-flow or per-source

2 Do not use CCR vaues from BRM cdlls
CCR from FRM cdlls can be used
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e Summary
[

2 ERICA+ modified for pt-mpt works ok

2 Additional delay dueto FRM wait and BRM
consolidation P slower transient response than pt-pt

2 Two new agorithms 6 and 7 speed up the transient
response, while eliminating consolidation noise and
controlling overhead

2 Four Different Fairness Definitions: source, flow,
V C/Source, VC/flow

2 Source-based fairness can be achieved even though
sources can not be distinguished in an mpt-pt VC
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Thank You!

\@/\\\
é 1?‘@%\

a

<

Thiswork was partly sponsored by
Rome Laboratory/C3BC under
Contract #F30602-96-C-0156

Raj Jain

The Ohio State University
36




