Multimedia Networking

Raj Jain

Pr

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State U

Raj Jain

es

- □ Media Synchronization
- □ Multimedia over ATM
- □ Multimedia over IP: MBONE, RSVP,...
- □ Interesting applications on Internet

The Ohio State University

Raj Jain

2

Local Multimedia

- \square No bandwidth sharing \Rightarrow Constant bit rate
- □ Circuit switching ⇒ No buffering
 No delay variation
 No (negligible) loss

Multimedia Synchronization

- □ **Playout Synchronization**: Play signal generated at t at $t+\Delta$ inspite of variable network delay
- □ Inter-Media Synchronization: Between audio and video (Lip sync)
- □ Intra-Media Synchronization: All receivers play at the same time (simulations and wargaming)
- ☐ Playout is required for all continuous media. Intra- and Inter- may or may not be required.

The Ohio State University

Timestamps

Open at 10:30:3.123

Open at 10:30:3.223

- \Box **Unit**: frame (not good for variable frame rate), ms, μ s, s
- □ **Bits**: 10, 32, 33, 64 Wrap around may cause confusion
- □ MPEG uses 33-bit clock with a resolution of 90 kHz Divisible by 24 Hz, 25 Hz, 29.97 HZ, and 30 Hz However, 33-bits are one too many
- □ Network video protocol (NVP) uses 10-bit timestamps. For 20-ms audio packets, it wraps around in 20.5 s.

Error Control

- □ Options:
 - □ None
 - □ Error detection with no indication to application
 - □ Error detection with indication to application
 - □ Error detection with retransmission
 - □ Error Correction: Forward error correction
 - □ Error Concealment: Freeze frame
- ☐ Header errors: May cause mis-synchronization, wrong coding identification
- □ Data errors: Easier to tolerate
- □ Packet loss: Good to have sequence numbers
- ☐ Packet reordering: Need sequence numbers
 The Ohio State University

Multimedia over ATM

- □ Service Aspects and Applications (SAA) Group
 - □ MPEG2 over ATM
- □ Key Issues:
 - □ What Applications?
 - □ Transport stream or program stream?
 - □ Which ATM Adaptation Layer (AAL)?
 - □ What signalling parameters and values?

What Applications?

- □ MPEG1 for VHS-quality video/audio
- □ MPEG2 for theater-quality video/audio
- \Box Video on Demand \Rightarrow High-quality \Rightarrow MPEG2
- □ CBR encoded MPEG2 transport streams are most common
 - \Rightarrow Do we need CBR transmission?

CBR vs VBR

Compression

Transmission

Compression		
CBR	VBR	
No Buffering	Wasted Bandwidth	

Compression

The Ohio State University

Raj Jain

Buffering

Buffering

CBR

VBR

Which AAL?

ATM Application

ATM Adaptation Layer

ATM

- □ AAL1: Designed for CBR,
 - □ Provides forward error correction option
 - □ Contains time-stamp
 - □ Less overhead than AAL5
 - \Box Ideal fit: 188 byte MPEG2 transport packet = 4 cells
- \Box AAL5: Implemented universally \Rightarrow Low cost
 - □ Used for signaling and LAN emulation

Cell Delay Variation

- Instantaneous Cell-Delay Variation (I-CDV)
 Actual-Expected arrival time
- \Box Expected = Emission + Nominal delay
- □ Cell Delay Variation Window (CDV-W) CDV-W = |I-CDV(Max)| + |I-CDV(Min)|
- □ Cells arriving outside window are considered lost
- □ Large CDV \Rightarrow Large buffers \Rightarrow Higher cost

Status and Plans

- □ Send to Forum membership for approval in September 1995
- □ Future:
 - □ Select QoS parameters
 - □ VBR MPEG2
 - □ Other compression standards
 - Other applications

Multimedia over IP

- □ Multicast Backbone: MBone
- □ Protocols:
 - □ RSVP
 - □ RTP
 - □ ST2
- □ Applications:
 - □ CU-SeeMe
 - □ Internet Talk Radio
 - □ INETphone servers
- □ Other Audio-Visual Tools: vat, nv, ivs, ...

MBone

- □ Internet Multicast backbone
- □ A set of routers that implement IP multicasting
- □ IP multicast address: start with 1110... (binary), 224.0.0.0 to 239.255.255.255 (decimal)

MBone (Cont)

- ☐ Uses radio/tv station paradigm: Sender is allocated a multicast address and it starts transmitting on that address
- □ Anyone can listen by tuning into the multicast address by sending an Internet Group Management Protocol (IGMP) request to router to join the multicast
- ☐ The router provides a connection to the nearest point
- □ Sender has no idea of who is listening Sender controlled multicasts does not scale well.
- □ First audiocast in March 1992: IETF meeting to 20 sites
- □ Now over 600 hosts in over 15 countries
- □ Programs include space shuttle, conferences, IETF,...
- □ President Clinton and VP Gore have appeared
- ☐ Is a source of heavy traffic, congestion, and complaints

The Ohio State University

Mrouted

- ☐ The routing protocol that allows IP multicast
- □ Software available on the Internet. Join the MBone mailing list.
- Many vendors implement it already in their routers
- ☐ To connect find the nearest Mrouted.

 Maps available on the net.
- ☐ Mrouteds setup tunnels between them.

 Tunnel = direct connection
- □ Routers on the path of the tunnel donot need to know multicasting.

The Ohio State University

Tunnels

- ☐ Implemented by encaptulating the entire packet in another IP header.
- □ Each tunnel has a cost. Least cost path is found by exchanging distance-vectors with neighbors.

The Ohio State University

Tunnels Are Expensive

□ Each tunnel requires 100 to 300 kbps.

Use 500 kbps for design.

A few tunnels can saturate the host.

Four on SPARC 1, six on SPARC 10.

Fifteen tunnels can saturate an Ethernet.

Maximum two tunnels over T1.

□ Each packet has a time to live (TTL).

TTL is decremented at each router.

The packet is forwarded iff its TTL is over a threshold.

- □ Periodically, leaf mrouteds poll to see if there are any listers.
- □ Pruning: If a mrouted gets a packet for which it has no listeners, it sends a message to the upstream mrouted to stop sending.

MBONE: References

- □ H. Eriksson, "MBone: The Multicast Backbone," CACM, August 1994, pp. 54-60.
- □ RFC 1112, "Host extensions for IP Multicasting"
- S. Casner, et al, "Frequently Asked Questions (FAQ) on the Multicast Backbone (MBone)," http://www.research.att.com/mbone-faq.html
 See also http:://www.cs.ucl.ac.uk/mice/faq.html
- ☐ M. Macedonia and D. Brutzman, "Mbone Provides Audio and Video Across the Internet," Computer, April 1994, pp. 30-36.
- ☐ MBONE: List of available s/w and FTP sites http:://www.cs.ucl.ac.uk/mice/mbone-soft.html
- □ MBONE Routers and Links http:://info.arl.army.mil/ACIS/ACD/MBONE/mbone-routers.html
- ☐ MBone interest group mailing list: mbone-request@isi.edu
- ☐ Conference announcements mailing list: rem-conf-request@es.net

IP Multimedia Tools

- □ vat Visual audio tool (conferencing)by Steve McCane and Van Jacobsen of LBL
- nevot Network voice terminal (conferencing)by Henning Schulzrine of AT&T
- □ ivs INRIA video conferencing system by Thierry Thurle
- □ nv or NetVideo network video by Ron Frederick of Xerox
- □ vic Video conferecing tool
- □ wb White board (shared drawing space) by McCane and Jacobsen
- □ imm Image (JPEG) multicast client by Winston Dang of U. Hawaii
- □ sd Session directory tool for MBone programs

IP Multimedia Tools (Cont)

- mmcc Multimedia conference control by Eve Schooler of USC/ISI
- mmphone
- media on demand server by Anders Kelmets of RIT
 Stockholm (Allows unicast replays of past Mbone sessions)
- □ CuSeeMe Desktop video conferencing
- Multicast reflectors
- □ maven Audioconferencing tool

Ref: http://www.lbl.gov/ctl/vconf-faq.html

RSVP

- □ ReSource Reservation Protocol
- □ Simplex streams between sources and receivers
- \square Receiver initiated \Rightarrow Scalable
- □ Receiver requests are propagated upstream towards the senders
- □ Routers may merge requests from many receivers

RSVP (Cont)

- □ Routers maintain a soft state. The receivers have to refresh periodically.
- □ Routers have a packet classifier and a scheduler
- □ Provides many different reservation styles
 - □ Any source but a given multicast destination
 - ☐ List of sources (fixed or dynamic)
 Allows receivers to switch channels
- □ Routing trees from sources
- □ Sink trees from receivers

RSVP: References

- □ L. Zhang, et al, "RSVP: A New Resource ReServation Protocol," IEEE Network 1993.
- □ R. Braden, et al, "Resource ReServation Protocol (RSVP) -- Version 1 Functional Specification," Internet draft, March 24, 1995, ftp://ietf.cnri.reston.va.us/internet-drafts/draft-ietf-rsvp-spec-05.txt
- □ D. Mitzel, et al, "An Architectural Comparison of ST-II and RSVP," Infocomm'94. ftp://catarina.usc.edu/pub/mitzel/Infocom94/infocom94.ps
- □ RSVP, http://www.isi.edu/div7/rsvp/
- ☐ Mailing list: rsvp-request@isi.edu

CuSeeMe

- □ Video conferencing software
- Works on any system connected to Internet: PC, MACs, workstations
- □ Developed at Cornell University. Sponsored by NSF.
- □ Software available free on the net
- □ Provides one-to-one connection
- □ One-to-many connection feasible using a reflector
- □ Reflector software for Sun workstations is available
- □ Many public reflector sites

CuSeeMe (Cont)

- □ Receivers need only normal video cards
- □ Senders need a video capture card and a video camera
- □ Captures 8-bit 160X120 video images. Displays 4-bit grayscale video at a low frame rate.
- □ Audio sounds are occasionally broken.

Ref: http://magneto.csc.ncsu.edu/Multimedia/Classes/Spring94/projects/proj6/cu-seeme.html

Internet Talk Radio

- □ Like National Public Radio on the Internet
- □ Supported by Sun Microsystems and O'Reilly & Associates Run by Carl Malamud
- Covers networking topics
- Does not use MBone. Audio files are distributed.
- ☐ Geek of the Week program features key Internet personalities
- ☐ The Incidental Tourist features restaurant reviews
- □ Key sessions of the many conferences are rebroadcast
- □ For further info info@radio.com

Ref: http://www.cmf.nrl.navy.mil/radio/ITRintro.readme.html

INETPhone: Internet Phone Servers

- □ Being designed by Multiparty MUltimedia SessIon Control (MMUSIC) working group of IETF
- □ Open ownership of phone service (similar to internet)
- ☐ Telephone servers (similar to routers)
- ☐ Incoming and outgoing local phone lines on one side
- □ Internet connections on the other side

INETPhone (Cont)

- □ Receive local calls, determine the internet route and forward
- □ Accept remote calling requests
- □ Local call, Internet, local call
- □ Directory servers map INETPhone servers IP addresses to phone numbers

Ref: RFC 1789, "INETPhone: Telephone Services and Servers on Internet," April 1995.

Summary

- □ Constant bit rate MPEG2 video on demand
- ☐ Uses VBR AAL5 for CBR video
- □ TCP/IP protocols suite is being extended to allow multimedia on Internet.
- □ Multicast backbone (Mbone), Resource reservation (RSVP)
- ☐ Internet talk radio and Internet phone

Acronyms

AAL: ATM Adaptation Layer

ADSL: Asymmetric Digital Subscriber Line

AMS: Audiovisual Multimedia Services

ATM: Asynchronous Transfer Mode

AVIS: Audiovisual Interactive Services

BRI: Basic Rate Interface

CATV: Cable Television

CBR: Constant Bit Rate

CBT: Core-Based Trees

CDV-W: Cell Delay Variation Window

CDV: Cell Delay Variation

CELP: Code-excited liner prediction

CMMC: Conference Management and Multiplexing Center

CRC: Cyclic Redundancy Check

	CSMA/CD: Carrier Sense Multiple Access with Collision Detection	
	FEC: Forward Error Correction	
	FTTC: Fiber to the Curb	
	GSM: Groupe Special Mobile (cellular phone standard)	
	HDSL: High-Speed Digital Subscriber Line	
	I-CDV: Instantaneous Cell Delay Variation	
	IDMR: Inter-Domain Multicast Routing	
	IGMP: Internet Group Management Protocol	
	JPEG: Joint Picture Experts Group	
	LEC: Local Exchange Carrier	
	MBone: Multicast Backbone	
	MIME: Multipurpose Internet Mail Extensions	
	MMUSIC: Multiparty MUltimedia SessIon Control	
	MOSPF: Multicast Extensions to OSPF	
	MOSPF: Multicast Open Shortest Path First	
	MPEG: Motion Picture Expert Group	
	NVoD: Near Video on Demand	
	PCR: Program Clock Reference	
The Ohi	o State University	Raj Jain

PCR: Program Clock Reference
PDU: Protocol Data Unit
PIM: Protocol Independent Multicast
PIM: Protocol Independent Multicast
PRI: Primary Rate Interface
PS: Program Stream
PTS: Presentation Time Stamp
QoS: Quality of Service
RBB: Residential Broadband
RSVP: Resource ReServation Protocol
RTP: Real-time Transport Protocol
SAA: Service Aspects and Applications Group
SCMP: Stream Control Message Protocol
SDP: Session Description Protocol
SRTS: Synchronous Residual Time Stamp
ST2: Internet Stream Protocol Version 2
STC: System Time Clock

☐ TS: Transport Strea	m
-----------------------	---

□ TTL: Time to live

□ VBR: Variable bit rate

□ VCO: Voltage Controlled Oscillator

□ VoD: Video on Demand