Wireless Personal Area Networks (WPANs)

Raj Jain
Professor of CSE

Washington University in Saint Louis Saint Louis, MO 63130

Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/talks/wpans.htm

Washington University in St. Louis

CSE467S – April 24, 2006

- 1. Telecommunication Trends
- 2. Wireless Standards Overview
- 3. Bluetooth
- 4. Ultra-Wideband
- 5. ZigBee

Telecom Revenue

	Revenue in Billions						
	2003	2004	2005	2006	2007	2008	Annual
							Growth
Video	0.2	0.3	.05	1.0	1.6	2.5	65.7%
Consumer Broadband	2.8	3.5	4.0	4.2	4.6	4.8	11.4%
Consumer long distance	20.7	18.2	16.0	13.6	11.3	9.2	-15.0%
Business local	26.3	26.7	26.4	26.1	25.8	25.5	-0.6%
Business long distance	26.1	24.5	23.0	21.3	19.7	18.2	-7.0%
Business data	44.8	45.6	46.6	47.1	46.8	45.4	0.3%
Consumer local	46.9	42.2	39.0	36.2	34.0	32.3	-7.25%
Wireless	91.5	108.7	119.2	132.8	144.5	153.6	10.9%
Total	260.7	271.5	277.0	285.0	291.3	294.9	2.5%

- □ Long distance is disappearing.
- Most of the revenues are going to be from wireless.
- □ Source: Instat/MDR (Business Week, Feb 28, 2005)

Wireless Standards

Bluetooth Products

Headsets Audio Game Controller Keyboard GPS

□ Printers, faxes, digital cameras...

- □ 720 kbps to 10m
- □ Competes with infrared, which has a range of 1m, requires line of sight and has a low data rate

Washington University in St. Louis

CSE467S – April 24, 2006

Bluetooth

- Started with Ericsson's Bluetooth Project in 1994
- Named after Danish king Herald Blatand (AD 940-981) who was fond of blueberries

- Radio-frequency communication between cell phones over short distances
- □ Intel, IBM, Nokia, Toshiba, and Ericsson formed Bluetooth SIG in May 1998
- □ Version 1.0A of the specification came out in late 1999.
- □ IEEE 802.15.1 approved in early 2002 is based on Bluetooth
- □ Key Features:
 - > Lower Power: 10 μA in standby, 50 mA while transmitting
 - > Cheap: \$5 per device
 - > Small: 9 mm² single chips

Bluetooth: Details

- □ Frequency Range: 2402 2480 MHz (total 79 MHz band) 23 MHz in some countries, e.g., Spain
- □ **Data Rate:**1 Mbps (Nominal) 720 kbps (User)
- □ Channel Bandwidth: 1 MHz
- **Range:** Up to 10 m can be extended further
- Arr **RF hopping:** 1600 times/s \Rightarrow 625 µs/hop
- **Security:** Challenge/Response Authentication. 128b Encryption
- **TX Output Power:**
 - ➤ Class 1: 20 dBm Max. (0.1W) 100m
 - > Class 2: 4 dBm (2.5 mW)
 - > Class 3: 0 dBm (1mW) 10m
- □ **Ref:** http://www.bluetooth.com/

http://grouper.ieee.org/groups/802/15/index.html

Vashington University in St. Louis CSE46/S

Piconet

- □ Piconet is formed by a master and many slaves
 - > Up to 7 active slaves.
 Slaves can only transmit when requested by master
 - > Up to 255 Parked slaves
- □ Active slaves are polled by master for transmission
- Each station gets a 8-bit parked address
 - ⇒ 255 parked slaves/piconet
- The parked station can join in 2ms.
- Other stations can join in more time.
- A device can participate in multiple piconets
 - \Rightarrow complex schedule

Frequency Hopping Spread Spectrum

- Pseudo-random frequency hopping
- □ Spreads the power over a wide spectrum⇒Spread Spectrum
- Developed initially for military
- Patented by actress Hedy Lamarr
- Narrowband interference can't jam

Frequency Hopping Sequences

- 625 μs slots
- □ Time-division duplex (TDD)
 - ⇒ Downstream and upstream alternate
- Master starts in even numbered slots only.
- □ Slaves start in odd numbered slots only
- □ *lsb* of the clock indicates even or odd
- Slaves can transmit in one slot right after receiving a packet from master
- \square Packets = 1 slot, 3 slot, or 5 slots long
- □ The frequency hop is skipped during a packet.

Washington University in St. Louis

CSE467S – April 24, 2006

Bluetooth Operational States

Washington University in St. Louis

CSE467S – April 24, 2006

Bluetooth Operational States (Cont)

- □ **Standby**: Initial state
- Inquiry: Master sends an inquiry packet. Slaves scan for inquiries and respond with their address and clock after a random delay (CSMA/CA)
- Page: Master in page state invites devices to join the piconet. Page message is sent in 3 consecutive slots (3 frequencies). Slave enters page response state and sends page response including its device access code.
- Master informs slave about its clock and address so that slave can participate in piconet. Slave computes the clock offset.
- □ Connected: A short 3-bit logical address is assigned
- **□** Transmit:

Energy Management in Bluetooth

Three inactive states:

- 1. Hold: No ACL. SCO continues. Node can do something else: scan, page, inquire
- 2. Sniff: Low-power mode. Slave listens only after fixed sniff intervals.
- 3. Park: Very Low-power mode. Gives up its 3-bit active member address and gets an 8-bit parked member address.
- Packets for parked stations are broadcast to 3-bit zero address.

Sniff

Power per MB

Type	Bit rate	TX Power	mJoules/MB
802.11b	11Mb	50mW	36.4
802.11g	54Mb	50mW	7.4
802.11a	54Mb	200mW	29.6
802.15.1	1Mb	1mW	8.0
802.15.3	55Mb	200uW	0.03

Washington University in St. Louis

CSE467S – April 24, 2006

□ An impulse in time domain results in a ultra wide spectrum in frequency domain and essentially looks like a white noise to other devices

Washington University in St. Louis

CSE467S – April 24, 2006

Ultra-Wideband (UWB)

- □ FCC rules restrict the maximum noise generated by a wireless equipment (0 dBm = 1mW, -40 dBm = 0.1 μ W)
- □ It is possible to generate very short (sub-nano sec) pulses that have spectrum below the allowed noise level
 - ⇒ Possible to get Gbps using 10 GHz spectrum
- ☐ FCC approved UWB operation in 2002
- □ UWB will be used for high-speed over short distances
 - ⇒ Wireless USB
- □ UWB can see through trees and underground (radar)
 - ⇒ collision avoidance sensors, through-wall motion detection
- Position tracking: cm accuracies. Track high-value assets
 Washington University in St. Louis CSE467S April 24, 2006 high-value assets
 ©2006 Raj Jain

- Sub-nanosecond impulses are sent many million times per second
- Became feasible with high-speed switching semiconductor devices
- \square Pulse width = 25 to 400 ps
- □ Impulses may be position, amplitude, or polarity modulated
- \bigcirc 0.25 ns Impulse \Rightarrow 4 B pulses/sec \Rightarrow 100's Mbps
- Two leading proposals: DS-UWB and MB-OFDM

Advantages of UWB

- □ Very low energy consumption: Good Watts/Mbps
- □ Line of sight not required. Passes through walls.
- □ Sub-centimeter resolution allows precise motion detection
- Pulse width much smaller than path delay
 - ⇒ Easy to resolve multipath
 - ⇒ Can use multipath to advantage
- □ Difficult to intercept (interfere)
- \square All digital logic \Rightarrow Low cost chips
- □ Small size: 4.5 mm2 in 90 nm process for high data rate designs

ZigBee

- □ Ultra-low power, low-data rate, industrial monitoring and control applications requiring small amounts of data, turned off most of the time (<1% duty cycle),
 - e.g., wireless light switches, meter reading, patient monitoring
- □ IEEE 802.15.4
- □ Less Complex. 32kB protocol stack vs 250kB for Bluetooth
- Range: 1 to 100 m, up to 65000 nodes.
- □ Tri-Band:
 - > 16 Channels at 250 kbps in 2.4GHz ISM
 - > 10 Channels at 40 kb/s in 915 MHz ISM band
 - > One Channel at 20 kb/s in European 868 MHz band
- □ Ref: ZigBee Alliance, http://www.ZigBee.org

Network Topology

- Two types of devices:
 - > Full Function Devices (FFD) for network routing and link coordination
 - > Reduced Function Devices (RFD): Simple send/receive devices

Washington University in St. Louis

CSE467S – April 24, 2006

Millimeter Wave WPANs

- □ Millimeter = Approx. 60 GHz and up
- 9.9 GHz allocated by FCC between 57 to 95 GHZ
- License based on interference protection on a link-by-link basis for outdoor use
- No license required for indoor use
- Can send multi-gbps over short distances
- Wireless Gigabit Ethernet

- 1. Wireless personal area networks are used for 1-10m communications
- 2. Medium rate: Bluetooth 720 kbps, uses Frequency hopping, has application specific profiles
- 3. High rate: UWB 480 Mbps, 528 MHz bands,
- 4. Low rate: ZigBee 20 kbps, longer distance, includes routing

Washington University in St. Louis

CSE467S – April 24, 2006

References

□ See Reading list http://www.cse.wustl.edu/~jain/cse574-06/reading.htm