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ABSTRACT OF THE THESIS 

 

 

Simulation of WiMAX Networks and Allocation Systems 

by 

Christopher Thomas 

Master of Science in Computer Science 

Washington University in St. Louis, 2011 

Research Advisor:  Professor Raj Jain 

 

Simulation is a powerful tool for analysis and improvement of networking technologies, 

and many simulation packages are available.  One that is growing in popularity is NS-3, 

the successor to the popular NS-2.  It is a significant departure from NS-2, and offers 

many advantages and disadvantages.  In this thesis, we translate and update a 

sophisticated WiMAX simulation model from NS-2 to NS-3, and use this experience to 

investigate the major differences between NS-2 and NS-3, and the relative strengths of 

each package.  We then use the NS-3 simulation model to provide analysis on a new 

WiMAX OFDMA downlink subframe mapping algorithm. 
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Chapter 1  
Introduction 
 

There are many reasons that simulations are useful in the study and development of 

computer networks.  For large-scale wireless networks, such as WiMAX networks, 

deployments are expensive and cover very large areas, making simulation models very 

important both for development and planning purposes. 

 

The WiMAX Forum has developed a simulation model for use with the popular NS-2 

simulator.   While it is extremely popular, NS-2 has become somewhat dated, and a new 

simulator, NS-3, is being developed to replace it.  Because there are significant 

architectural differences between the simulators, translating NS-2 models for use in NS-

3 is an extremely involved process. 

 

In this thesis, we discuss the process of translating the WiMAX Forum’s NS-2 model to 

NS-3, and updating it to reflect a newer version of the WiMAX standard.  This involves 

retrofitting the model to account for differences ranging from the programming 

languages used to define the model and specific simulation scripts to a vastly different 

packet architecture.  The improvements involve changes to the transmission system to 

allow multiple nodes to send data simultaneously, as defined in newer revisions to the 

802.16 standards WiMAX networks are based on. 

 

The thesis is organized into seven chapters including this introduction.  The second 

chapter provides a description of NS-2 and NS-3, highlighting differences between 

them.  In the third chapter, an overview of WiMAX networks, with a particular focus 

on the elements involved in the changes to the simulation model is provided.  The 

fourth chapter details the new NS-3 based WiMAX model.  The fifth chapter provides 

details on the major issues encountered during the process of translating and improving 
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the model. The sixth chapter provides a sample application of the model to compare a 

new downlink-mapping algorithm to previously available alternatives.  Finally, the 

seventh chapter summarizes the major points discussed in the thesis. 
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Chapter 2  
NS-2 and NS-3 Systems 
 

Both NS-2 and NS-3 are discrete event network simulators.  This means that the 

simulation consists of a series of independent events that change the state of the 

simulation.  Events are actions such as a packet being sent, a new node being added to 

the network, or a timer expiring.  Each scheduled event runs until completion without 

advancing the simulation time, and then the simulation time is increased to the start 

time for the next scheduled event. 

 

In both simulators, there is a core consisting of a scheduler and several useful classes 

defining nodes on a network, packets, and other similarly near-universal concepts.  

Various models use portions of this core package to implement specific network types, 

such as WiMAX, or simple wired Ethernet networks.  Scripts then define network 

topologies of nodes connected using the networks defined in these models, and 

generate traffic between them. 

 

However, while share this very basic architecture, they are very different.  NS-2 is based 

heavily on the original NS, which started development in 1989 [6].  The architecture is 

starting to show it’s age, and NS-3 was designed to avoid problems caused it [5].  

Because the architecture changes are so significant, a decision was made to start from 

scratch rather than trying to update NS-2.  This has resulted in a completely 

incompatible package that should be considered a successor to NS-2, rather than an 

evolution of it [4], and porting a NS-2 based model to NS-3 is an involved process.  

Significant differences include the programming languages used for development [8], 

the addition of a smart-object and memory management system [7], a more efficient and 

realistic data storage and packet system [7], a more realistic Node model [5], notable 

improvements to both memory usage and computational requirements to run a 
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simulation [10], support for industry standard trace files [4], and support for standard 

application interfaces such as POSIX sockets [ 5]. 

 

2.1 Programming Languages 

NS-2 is implemented using a combination of oTCL, an object oriented extension to 

TCL, and C++.  The core of the simulator and the various models are written entirely 

in C++, with the scripts describing the network topology and traffic generation written 

in oTCL by invoking objects automatically generated from the C++ base.  This system 

was chosen in the early 1990s to avoid recompilation of C++ code, as that was very 

time consuming using the hardware available at that time [10].  Using oTCL for the 

much more frequently modified scripts allowed researchers to save time by very rarely 

needing to recompile the C++ base of the model. 

 

Using oTCL does have significant disadvantages in that there is notable overhead 

introduced that causes scaling issues with large simulations [10].  As modern hardware 

makes compilation time less of an issue than when NS-2 was in it’s early design phase, 

NS-3 can be developed entirely in C++.  This also makes NS-3 somewhat more 

accessible to new users, as concerns about interfacing between multiple languages are 

eliminated, and only knowledge of C++ is required.  A simulation script in NS-3 is 

written as a C++ program with a main() function, which is not possible in NS-2. 

 

NS-3 does include limited support for Python in scripting and some related high-level 

tasks such as visualization.  A set of bindings can be generated to allow a Python script 

to interact with the NS-3 API that would normally be accessible from a C++ script.  If 

used, this reintroduces some issues that NS-3’s removal of oTCL sought to avoid, but it 

is worth noting that using Python as a scripting language is optional in NS-3, and oTCL 

was the only available scripting language in NS-2.  
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2.2 Smart Objects and Memory Management 

C++ Objects are reasonably simple compared to many newer languages.  There is no 

automated garbage collection mechanism, and down casting is required to access 

members of subclasses.  NS-2 requires basic manual C++ memory management.  

Because NS-3 is implemented in C++, all normal C++ memory management functions 

such as new, delete, malloc, and free are still available.  However, the NS-3 core module 

includes several classes that can be used to automate these processes [7]. 

 

The ns3::Object class serves as the parent (or in many cases grandparent or higher) of 

most classes in NS-3 models.  It contains functions to allow for reference counting with 

automatic deallocation of the object when the reference count reaches zero.  This is 

especially useful when dealing with Packet objects, which are frequently created, 

destroyed, and copied when processing traffic.   

 

NS-3’s Object class also provides an aggregation system, by which Objects can be 

attached to other Objects at runtime [5].  This is useful for removing bloat from classes 

like Node.  The NS-3 node has, by default, very little included.  Other objects such as 

NetDevices (interfaces), internet stacks, and routing protocols are added only as needed.  

This means that, for example, a node on a wired network that has no use for location 

information does not waste storage space with parameters to track that.  Similarly, if a 

user requires a customized internet stack, that user simply aggregates the custom class to 

the Node instead of the default IPv4-based stack, and there is no ambiguity or 

confusion over which is present. 

 

2.3  Packets 

In NS-2, a packet consists of two distinct regions.  The first is reserved space for 

headers, and is shown in Figure 2.1; the second stores payload data.  This includes a 

header common to all NS-2 packets including such data as a parameter specifying the 
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amount of data considered to be stored in the packet object (including headers) that has 

no direct relation to how much data is actually used.  By default, the header region 

includes all headers defined as part of the protocol in use, regardless of whether or not 

that particular packet will use that particular header.  This is done in part because NS-2 

never frees memory used to store packets until the simulation terminates, but instead 

reuses the allocated packets repeatedly.  Therefore, there must be space for not only the 

current header, but any header that may potentially be needed when that packet 

allocation is reused any number of times during the remainder of the simulation. 

 

 

Figure 2.1 NS-2 Packet Structure 

Because it is trivial to access the location a specific header will be stored if present, it is 

trivial to determine exactly which headers are attached to a given packet.  In an actual 

network where what comes off the connection is basically just a stream of bits, the 

packet must be decoded and the headers that are present at the start allow a node to 

determine which headers are and are not present. 

 

The data region of an NS-2 packet is dynamically allocated, with a void pointer 

provided to access the new data.  By casting this pointer to whatever structure the 

developer wishes to add to the packet and then setting the members of the structure to 
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the desired values, access to this region is very simple.  This system is very similar to 

using malloc to dynamically allocate memory from the heap.  Directly accessing the data 

in this way also allows the values to be easily and quickly changed. 

 

In many cases the structures allocated into the data region of a packet cover a variety of 

information which may or may not included in that particular instance of the packet 

type.  For example, in the NS-2 WiMAX simulation, there is a structure representing a 

single bandwidth grant in an allocation map.  In most cases this information element is 

only 4 bytes in size, but in some cases, as defined based on the value of one of the 

members of the structure, more data may be included.  The structure contains fields for 

every possible point of data, for a total of 184 bytes.  In the NS-2 model of a packet this 

does not especially matter, as the field defining the total packet size as far as the 

simulation cares will only be increased by 4 bytes unless more data is required, and that 

is what the scheduling and transmission logic will work with. 

 

At no point is the specific stream of bits that would be transmitted over a real network 

determined.  Instead, the data is added in whatever order and with however much extra 

as is convenient, and the size that the stream would be is maintained. 

 

The NS-3 approach to packet storage is extremely different from NS-2’s.  A packet 

consists of a single buffer of bytes, and optionally a collection of small tags containing 

meta-data.  This means that when a packet is received, or even when it is passed around 

internally in a given node, there is no easy to way to determine what headers or data is 

or is not present, or where any present data is located in that buffer.  The idea is that the 

buffer corresponds exactly to the stream of bits that would be sent over a real network.  

All information that is to be added to the packet is done by use of subclasses of either 

Header, which adds information to the beginning of the buffer, or Trailer, which adds 

to the end.  These classes consist of whatever data storage is convenient when working 

with them, and several specific functions to write the data to or read it from the byte 

buffer.  More information on exactly how this works can be found in Section Chapter 4. 
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Unlike NS-2, there is generally easy way to determine if a specific header is attached.  

Knowledge of both the headers that have been serialized into the buffer and the order 

in which they were added is necessary to access a given header.  To modify the contents 

of a specific header, a developer must remove all headers added after it, then remove it 

from the packet, modify it as desired, and add everything back in the reverse order. 

 

The size that the simulator considers the packet to be is determined by the size of the 

buffer.  Since adding a header or trailer adds exactly and only the bytes that would really 

be transmitted, there is no need to maintain a count of the size outside of this.  This 

system also results in significantly less wasted memory, as each packet does not contain 

empty space that could be used for every possible header, or for portions of included 

frame structures that are unused.  In the example given in the previous subsection 

regarding the 184-byte structure when only 4 bytes are actually used, in NS-3 only the 

four bytes are generally added.  Only in the rare cases where one of the expanded forms 

of the information element is needed will that extra data be added. 

 

2.4 Nodes 

To facilitate easily creating realistic network topologies, NS-3 uses a Node system 

designed to emulate real computers [5].  A Node in NS-3 is very basic at first, and then 

using the aggregation system described in Section 1.2, NetDevices, Applications, Stacks, 

and other objects are added in much the same way that components would be added to 

a computer in a real network.  A NetDevice can be viewed as network interface 

hardware, Applications that run on nodes interface with Stacks (which, in turn, interface 

with NetDevices) using an API that closely resembles the implementation of sockets on 

Unix systems [7].  Much like on a real system, different NetDevices will work with 

different stacks depending on whether they expect IPv4, IPv6, or any other stack-

dependent parameters.   
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One of the design goals of this system was to make NS-3 code portable with real 

devices [11], something which was not easy with NS-2.  NS-2’s Node model needed to 

be specifically subclassed to add much of this functionality, and the interfaces were 

different enough that code reuse between real applications and simulation was not 

common. 

2.5 Performance 

NS-3 offers substantially and consistently superior performance both in required 

computation and memory footprint compared to NS-2 [10].  The source of the memory 

footprint gains are fairly straightforward, as discussed above the aggregation system 

prevents unneeded and sometimes very large parameters from being stored when they 

are unnecessary, and packets do not contain large amounts of meta-data and unused, 

reserved header space. 

 

The total computation time required to run a simulation scales better in NS-3 than NS-

2.  This has been attributed to the removal of the overhead associated with interfacing 

oTcl, and the overhead associated with the oTcl interpreter. 

 

2.6 Simulation Output 

One of them most useful tools available for presenting the results of a simulation is 

animation.  Generally speaking, an animation package would be able to show both the 

network topology and data flow through that topology.  This can either be displayed as 

the simulator is running or after the fact from a trace file generated by the simulator. 

 

NS-2 comes with a package called NAM, or The Network Animator.  It is a Tcl based 

animation system that processes a specialized trace file generated by NS-2 and produces 

a visual representation of the network described.  As it is based on a trace file, the 

animator can easily control the exact speed of simulation, from slow enough to see 
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individual packets to fast enough to see overall throughput.  It is also very simple to 

rewind the animation, as it can simply move backwards through the file. 

 

NS-3 employs a package known as PyViz, which is a python based real-time 

visualization package.  It takes input directly from trace hooks in the simulation as it 

runs rather than parsing a trace file after the fact.  This comes with several advantages 

and disadvantages.  The first notable advantage involves the fact that, as the simulation 

data is displayed as it is being generated, it is possible to change simulation parameters 

in real time.  For example, by middle clicking a node on the display and dragging, the 

user can dynamically change it’s position.  This will be immediately reflected in any 

calculations involving position.  The second advantage comes from the ability to directly 

access the assorted objects representing parts of the simulation via the full set of python 

bindings generated to allow the Python module to interact with the compiled C++ 

code.  This means that even data that would not generally be included in a trace file can 

be easily accessed, and displayed via plug-in.  A good example of this is found in a plug-

in that displays the full IPv4 routing table for any node in the network, which is 

included with PyViz. 

 

PyViz has two significant drawbacks compared to NAM.  The first is that, as it only 

displays the current state of the network, it is only possible to hold time steady or move 

it forward.  Rewinding is not possible.  The second, and much more limiting drawback 

is found in the mechanism by which PyViz parses input from trace sinks.  It 

accumulates data for one tenth of a second of simulation time and displays an aggregate 

of that data.  This is not an issue when viewing general data flow at real time, but it 

limits the ability to slow the visualization down to greatly.   There is no viable way to see 

a single packet being transmitted, much less show it propagating across the radio 

channel of a wireless simulation. 

 

The useful interface with the WiMAX NS-3 model is therefore composed primarily of 

two parts.  Viewing overall throughput and wide-scale data flows is accomplished via 
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PyViz, but anything involving time resolution higher than one tenth of one second must 

be accomplished by examining trace files.  

 

When animation is not sufficient or available to display some piece of data involved in 

the simulation, trace files are generally employed.  NS-2 employs it’s own custom trace-

file format.  Analysis using an NS-2 trace will generally involve creating code to 

manually pull the required information out of the trace file.  NS-3 supports the 

generation of standard pcap trace files, which are used for analysis of real networks and 

are employed by many tools.  This makes NS-3 potentially much more useful when 

trying to analyze network performance, as the vast array of tools available to analyze real 

networks are generally available. 
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Chapter 3  
Overview of  WiMAX 
 

Consumers are increasingly using mobile devices such as smart phones and tablets to 

access the Internet while away from wired or relatively low-range Wireless Local Area 

Networks.  This has led to demand for longer-range wireless networks that provide 

similar data rate to users.  The Institute of Electrical and Electronics Engineers (IEEE) 

has therefore developed a family of Wireless Metropolitan Area Network (W-MAN) 

standards collectively referred to as IEEE 802.16 to deliver bandwidth at large ranges to 

highly mobile users. 

 

The WiMAX Forum standardizes implementation requirements for IEEE 802.16 

networks, and provides testing and certification of products to ensure interoperability 

[1]. 

 

3.1 OFDMA Physical Layer 

Transmissions in WiMAX networks are organized into frames.  Each frame consists of 

two subframes, one for downlink traffic (from the base station (BS) to the subscriber 

station (SS)), and the other for uplink traffic (from the SS to the BS).  The frames are 

divided into these subframes using Time Division Duplexing (TDD), whereby the 

entire downlink subframe is transmitted then the entire uplink subframe is transmitted. 

There is a small amount of time separating the subframes.  These gaps are known as the 

Receive Transition Gap (RTG) and the Transmit Transition Gap (TTG) [9].  The 

subframes may be equal length, or the downlink subframe may be longer, which is the 

standard configuration [9].  Figure 3.1 and Figure 3.2 show sample WiMAX frames. 
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All WiMAX networks use some variant of Orthogonal Frequency Division Multiplexing 

(OFDM).  The general idea behind this form of modulation is that instead of 

modulating a single carrier spanning the entire available band (which, in the case of 

WiMAX ranges from 1.25MHz up to 20 MHz) [9], that large band is divided into many 

separate subcarriers (up to 2048).  Adjacent subcarriers are chosen such that they are 

orthogonal to each other, and therefore a given subcarrier’s signal will not interfere with 

any other subcarriers. 

 

As each subcarrier is obviously granted only a small fraction of the total bandwidth, the 

maximum baud rate is substantially lower than what was available before the spectrum 

was divided.  This effectively results in many relatively slow connections transmitted in 

parallel instead of a single faster connection, with similar total throughput.  The actual 

overall modulation to be used in the final radio transmission is determined by running 

the set of outgoing symbols in a given time slot through an inverse Fast Fourier 

Transform (FFT).  The receiving station then employs a standard FFT to decode the 

signal into the set of subcarriers. 

 

In practice, subcarriers are grouped into subchannels.  Allocation is then done in units 

of one symbol duration by one subchannel.  Subchannels are generally not composed of 

adjacent subcarriers, and this type of grouping simplifies assigning a set of subcarriers 

spread over the spectrum.  Even though in a standard OFDM implementation all 

subchannels, and therefore all subcarriers, are assigned to the same user at any given 

point in time, this system ensures that even if many of these subcarriers are not 

employed, transmission is still spread across the available band. 
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Figure 3.1 OFDM Frame 

 

Figure 3.2 OFDMA Frame 

The simple version of OFDM defined in the 802.16d standard grants all subcarriers to a 

single station at a given point in time (see Figure 3.1).  This can result in substantial 

wasted bandwidth if that station only has a small amount of data to transmit and leaves 

most subcarriers vacant.  This system brings several advantages over a simple 

modulation system.  Notably, it can function well in situations involving interference 

over some subset of the subcarriers.  Unaffected subcarriers continue to use higher 

modulation rates, while the affected subcarriers are either rendered unusable or simple 
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encoded at a lower rate.  Also, since any given symbol (transmitted on a single 

subcarrier) has a relatively long transmission time compared to a simple modulation 

system, there is less potential for a symbol to interfere with subsequent symbols due to 

Doppler shift when mobility is an issue. 

 

A natural extension of this idea is to avoid letting subcarriers go unused by granting 

only as many subchannels as are needed for a given transmission, and dividing the rest 

between one or more other users.  This is referred to as Orthogonal Frequency Division 

Multiple Access (OFDMA) (see Figure 3.2).  This variant is employed in IEEE 802.16e 

networks.  A frame in an OFDMA network can be visualized as a two dimensional grid.  

Each block along the horizontal axis representing the time it takes to transmit a single 

signal, and each block along the vertical axis representing a subchannel. The specific 

implementation varies slightly depending on whether the communication occurs in the 

uplink or downlink subframe.  If it is in the downlink subframe, a given transmission is 

assigned a rectangle on the grid.  In the uplink subframe, transmissions are allocated as a 

series of blocks starting in the upper left corner of the grid, and filling in one row at a 

time from left to right.   

 

3.2 Media Access Control Layer 

WiMAX networks employ a scheduling system that only allows a given node to transmit 

when it has explicitly received a bandwidth grant from the Base Station.  Much of the 

job of the MAC layer in a WiMAX network involves tracking the origin, destination, 

and purpose of packets.  This information is used to request and grant bandwidth 

allocations. 
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3.2.1 Connections 

Every entry in both the uplink and downlink subframe schedules in a WiMAX network 

has a connection identification number (CID) associated with it.  A CID refers either to 

a specific connection between a BS and SS, or to one of several reserved, universal 

connections for initial network entry and broadcast packets. 

 

During the Subscriber Station network entry and registration process, four connections 

are negotiated in pairs of uplink and downlink connections.  These pairs are used for 

MAC layer signaling.  The “Basic” connections are used for regularly scheduled packets 

that require exact timing, such as the Ranging packets.  The “Primary” connections are 

used for other MAC layer traffic, including bandwidth requests.  

 

3.2.2 Service Flows 

Communication between the upper layers in WiMAX networks employs service flows.  

These are requested by either the SS or BS after full MAC layer connectivity is 

established [12].  Successful negotiation of a service flow results in two additional 

Connections be allocated for that pair of nodes.  These are referred to as “Data” 

connections, and will only carry data from the upper layers and, in the case of the uplink 

connection, bandwidth requests.  A Service Flow codifies a set of Quality of Service 

(QoS) parameters, most notably including bandwidth assurances or lack thereof.  

 

3.2.3 Scheduling 

Avoiding transmission collisions is an issue on any network, and many schemes have 

been employed to accomplish this.  On wired networks where it can be reasonably 

assumed that all directly connected nodes can sense transmission from any other very 

quickly, a node can simply listen on the network and, if no transmissions are detected, 
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start transmitting.  In the rare event that propagation time causes this to fail, both nodes 

wait a random period of time and try again. 

 

In wireless networks this does not always work well, as it is possible that two nodes may 

be in range of the same Base Station but out of range of each other.  This means that 

the base station will receive overlapping, unreadable transmissions from both, but 

neither will know the other is transmitting.  Smaller scale wireless networks can 

overcome this reasonably well by having each node send a short Request To Send 

(RTS) to the base station, and waiting for permission in the form of a Clear to Send 

(CTS) message containing a duration before continuing.  Since all nodes will receive the 

CTS message, and therefore know how long that node will be transmitting, none will 

attempt to transmit during that period.  This means that the only packets that should 

ever run into collision problems are the very small RTS packets.  However, this system 

does not hold up well under the large numbers of users found in WiMAX networks, as 

too many nodes would be competing for the contention-based RTS slots. 

 

WiMAX networks expand upon the general concept of the RTS/CTS mechanism by 

creating explicit schedules with specific pre-assigned bandwidth grants.  Bandwidth 

must be explicitly requested.  The Base Station considers the bandwidth requests from 

all connected nodes, creates a global schedule that may or may not take specific Quality 

of Service (QoS) guarantees into account.  Time is then organized into frames, each of 

which starts with the transmission by the base station of the new schedule.  In most 

cases, once a node is connected, it can re-request bandwidth by adding a short message 

to the end of it’s scheduled transmission period.  However, in the event that a node 

does not have a bandwidth grant in a given frame, or if it is beginning the network entry 

process and is currently unknown to the Base Station, there is a short contention period 

in each frame that can be used to send un-scheduled transmissions. 

 

Given a set of allocations, the problem of generating the final 2 dimensional mapping is 

non-trivial, and discussed farther in Chapter 5. 
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Chapter 4  
NS-3 WiMAX Model 
 

This Chapter provides a detailed description of the NS-3 based WiMAX simulation 

model developed as the majority of the work for this thesis.  The first section details the 

important classes in the model, and the second discusses the flow of data through the 

simulator. 

 

4.1 Class Structure 

This section contains descriptions of significant classes in the model.  Classes are 

grouped into several categories: the state machines, the classification system, the 

physical layer, the scheduling system, timers, headers, and several additional classes that 

do not fit into any of these categories.  The descriptions will first provide a general view 

of what the class does, along with any other pertinent information about it, followed by 

a list of important or otherwise significant functions and data members, and brief 

descriptions of them.  Accessors and similarly simple, straightforward functions will not 

be mentioned. 

 

4.1.1 State Machines 

Wimax2NetDevice 

This is a template class for the Base Station and Subscriber Station NetDevices.  It 

should never be directly instantiated.  Any new subclasses of this NetDevice should 

implement transmit, receive, sendUp, the higher layer callback, tracing hooks, 

start_dlsubframe, start_ulsubframe, sendDown, init, and expire functions. 
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Subclasses serve as the state machines for the MAC layer of the type of node in 

question (either a BS or SS).  As such, there are many data members of the superclass 

that hold important pieces of the simulation model, such as the connection manager, 

scheduler, classifier, and PHY layer.  In the case of the scheduler, while a generic 

Wimax2Scheduler pointer is stored by the Wimax2NetDevice, subclasses actually store 

the location of a subclassed scheduler in this pointer.  Significant functions 

implemented in this class are described in  

 
 

Table 4.1 Wimax2NetDevice Functions 
Function Name Function Description 

Send Takes a packet from the upper layers, adds header 

information, calls sendDown from the subclass 

Receive This function is called by the subclass.  It is the final 

function in the MAC layer before a packet is passed up 

to the higher layers 

Classify This function invokes the classification system to 

determine the appropriate CID given information 

about a packet’s destination and what data it contains 

(MAC layer signaling information or data bound for 

the higher layers) 

sendUp This function receives a Packet object containing a 

chunk of a logical packet corresponding to what is 

transmitted in a single OFDMA allocation grid block, 

and stores it for later assembly. 

TagIncomingMACPacket This adds the appropriate MAC_TAG, designating 

which layer the packet is destined for, to a Packet 

received from another node based on the CID 
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associated with it. 

Assemble_incoming_packet Based on the schedule either generated locally or 

received in a MAP packet, this concatenates the 

contents of the blocks comprising a single allocation to 

re-assemble a packet for processing 

Process_received_packet After a packet is assembled, this handles fragmentation 

and packing issues, as well as piggybacked bandwidth 

requests. 

 

Wimax2BSNetDevice 

This subclass of Wimax2NetDevice defines a Base Station’s MAC layer.  It manages 

connections to many Subscriber Stations, and decides if a given Subscriber Station will 

be allowed to connect to the network. It is also responsible for handling bandwidth 

requests, and uses a Wimax2BSScheduler to create scheduling information for each DL 

and UL subframes, and then transmits these schedules to all connected Subscriber 

Stations.  It communicates with the upper layers using the Send and Receive functions 

defined in the superclass, and communicates with the PHY layer using the local transmit 

function and the superclass’s sendUp function. 

 

The class has two trace hooks, one when a packet is received from the upper layers for 

transmission, and another when a packet is about to be passed up to the upper layers. 

 

 

Table 4.2 Wimax2BSNetDevice Functions 
Function Name Function Description 

sendDown This function takes a packet originating in the upper layers, 

adds necessary header data and enqueues it to the 
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appropriate connection 

transmit Perform tracing functions and pass packet with correct, 

minimal set of headers to PHY layer 

receive Called after superclass’s processing function completes.  

This either sends a packet to the upper layers or processes 

an incoming MAC-layer signaling packet 

process_mac_packet This checks the type field that starts every MAC frame, and 

sends the packet to the appropriate processing function 

process_ranging_request Used to process periodic or initial ranging requests, the first 

step of newtwork entry for a new SS.  This allocates the 

Basic and Primary CIDs 

process_bw_req Processes a standalone (as opposed to piggybacked) 

bandwidth request.   

process_reg_request Allocates Seconday CID, and sends registration response, 

completing network entry for a new SS 

Start_dlsubframe Determines if DCD and UCD should be sent in this frame, 

and sets PHY to transmit mode 

Start_ulsubframe Puts PHY in receive mode and schedules the start of the 

next frame 

 

Wimax2SSNetDevice 

This class defines the state machine employed in Subscriber Stations.  It handles 

automatic detection and entry into WiMAX networks, uses a Wimax2SSScheduler to 

generate and fill bursts for uplink transmission, and processes incoming downlink data.  

A description of important functions can be found in  
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Table 4.3 Wimax2SSNetDevice Functions 
Function Name Function Description 

sendDown This function takes a packet originating in the upper layers, adds 

necessary header data and enqueues it to the outgoing data 

connection for this SS. 

transmit Perform tracing functions and pass packet with correct, minimal 

set of headers to PHY layer. 

expire Called when several types of timer expire, including DL and 

ULMapTimers to ensure synchronization, T3 and T6 timers to 

handle ranging and registration request timeouts, respectively. 

receive Called with a packet is fully assembled, after superclass has 

processed fragmentation and packing.  Sends into the MAC 

frame processing system or to upper layers, depending on CID. 

process_mac_packet This checks the type field that starts every MAC frame, and 

sends the packet to the appropriate processing function 

process_FCH Called at the start of every DL-Subframe.  Assembles Frame 

Control Header, which defines the DL-MAP’s allocation and 

always occupies the same allocation, and the DL-MAP 

process_dl_map Uses information in DL-MAP to determine which downlink 

packets are being sent to this node (including broadcast packets), 

and schedules assembly. 

process_ul_map Uses information in UL-MAP to construct the data structures 

used by the SS Scheduler class for creating the UL Allocations 
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process_dcd Processes Downlink Channel Descriptor packet, which defines 

the meaning of the Downlink Interval Usage Code (DIUC) used 

to specify encoding for DL Packets.  Necessary early in network 

entry. 

process_ucd Processes Uplink Channel Descriptor packet, which defines the 

meaning of the Uplink Interval Usage Code (UIUC) used to 

specify encoding for UL Packets.  Necessary early in network 

entry. 

process_ranging_rsp Processes a response to either an initial or periodic ranging 

request, adjusting transmission power if necessary and an 

essential step in network entry. 

process_reg_rsp Completes network entry. 

 

4.1.2 Classification System 

Both Base and Subscriber Stations track which nodes they are connected to, and 

maintain several connections with each.  They also maintain systems for determining 

which of these connections should be used for a given packet, and for traffic originating 

from the upper layers they employ service flows to perform QoS operations. 

 

Connection 

An instance of this class represents a Layer 2 connection between nodes.  A pair of 

connected nodes (one BS and one SS) will have several connections between them that 

are used for different purposes.  Each connection has a sixteen-bit identification 

number that is unique within the network referred to as a Connection IDentifier (CID).  

Connections also maintain a queue of packets waiting for transmission.  Note that it is 

actually a deque, as occasional time sensitive messages must be put on the front of the 
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queue.  Almost all connections fall into one of four categories: Basic, Primary, 

Secondary, or Data.  A handful of others that have very restricted uses, such as an initial 

ranging and broadcast, also exist.  Significant functions of the Connection class are 

listed in Table 4.4 

Table 4.4 Connection Functions 
Function Name Function Description 

Enqueue Adds a packet to the internal connection transmission queue 

Enqueue_head Adds a packet to the front of the internal connection queue – used 

to reinsert remaining fragments 

Dequeue Removes the packet at the front of the queue for transmission or 

processing 

 

 

ConnectionManager 

This class is used to manage the various Connections associated with a particular 

Station.  It maintains lists of both incoming and outgoing connections, and can find a 

Connection based on the CID and direction (in or out of the current station). 

 

SDUClassifier and destClassifier 

SDUClassifier is an abstract base class from which classification systems can be derived.  

The classifier’s job is to associate MAC addresses with CIDs. 

 

DestClassifier is a simple subclass of SDUClassifier that only uses the origin of the 

packet (Layer 2 vs higher layers) and the destination MAC Address.  Unlike some 

potentially elaborate classification systems, there is only one instance of this class per 

Base Station or Subscriber Station, and so long as a more elaborate classification system 

isn’t developed and inserted at higher priority, the Classifier List will consist of only one 

element. 
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PeerNode 

The PeerNode serves as an index for the Connection objects associated with a single 

other station.  A Subscriber Station will only have one PeerNode, for the Base Station it 

is associated with.  A Base Station will have one PeerNode for each Subscriber Station 

associated with it.  A single PeerNode will contain six connections in most cases.  These 

are three pairs of outgoing and incoming Connections, one pair represents the basic 

connections, one the primary connections, and the last represents the data connections. 

 

4.1.3 Physical Layer and Channel 

Wimax2Phy 

This class represents the PHY layer of either a BS or SS.  It is responsible for breaking a 

packet into small pieces corresponding to a specific block of one subchannel by one 

symbol-duration on the OFDMA allocation grid, scheduling calls to the channel’s Send 

function, and receiving single blocks from the channel for caching and eventual 

assembly in the MAC layer. 

 

It also contains many functions that provide information about the size of the allocation 

grid, slots, and individual blocks in the allocation grid.  

 

Wimax2Channel 

This class represents that physical channel over which radio transmissions are sent.  It 

expects to use the built-in ns3 defined COST-231 propagation model, but can accept 

other models that are children of the ns3::PropagationModel class.  It sends every 

transmission to every node except the one that is transmitting, though many of these 

nodes will ignore the incoming data.  The channel model simulates propagation loss and 

propagation time. 
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4.1.4 Scheduling 

Wimax2Scheduler 

This class serves as a base class for the BS and SS Scheduling classes.  In the NS-2 

model, it contained the functions responsible for filling bursts and managing packing 

and fragmentation.  However, due to these functions being much simpler to implement 

using NS-3’s packet architecture, and the number of conditionals required to insert 

bandwidth requests only for uplink traffic, the relevant functions are now located in the 

subclasses. 

 

Wimax2BSScheduler 

This class is responsible, via the Schedule function, for allocating bandwidth in both the 

uplink and downlink subframes.  It does this based on data in local queues for the 

downlink subframe, and from received bandwidth requests in the uplink subframe.  

These schedules are transmitted to Subscriber Stations via the UL_MAP and DL_MAP 

messages that it schedules for the start of every frame.  It is also responsible for 

allocating and filling bursts for outgoing transmission from the Base Station that owns 

this scheduler using the transfer_packets_for_dl_subframe function.  This function 

handles packing and fragmentation. 

 

Wimax2SSScheduler 

This class is responsible for examining the allocations granted in the uplink subframe, 

and creating bursts for any with CIDs corresponding to the Subscriber Station that 

owns this scheduler.  If an allocation is found, it determines the maximum size based on 

the Uplink Interval Usage Code (UIUC) and duration, and transfers the appropriate 

amount of data out of the Connection’s queue and into the newly created burst using 

the transfer_packets_for_ulsubframe function.  This function handles packing, 

fragmentation, and adding piggybacked bandwidth requests as appropriate. 
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Burst 

A burst object is created by a Scheduler to define an allocation.  They correspond to 

specific regions on the OFDMA allocation grid, and have a maximum byte allocation. 

Because they are associated with specific allocations, they are also associated with 

specific connections.  Functions in the scheduler subclass are used to transfer packets 

out of the queues in Connection objects and into a Burst.  While the Burst class 

supports multiple packets being enqueued, this functionality is not used in the current 

version of the simulator.  It was used extensively in NS-2, as storing multiple distinct 

Packet objects was necessary for simulating packing.  As discussed in Section 2.3  

Packets, NS-3’s packet architecture allows packing to be easily performed in a single 

Packet object.  Therefore, only one packet will be enqueued to a given burst. 

 

Profile 

This class defines serves to link a specific modulation rate with a specific Interval Usage 

Code (IUC).  It is created in the subscriber stations based on the contents of the 

Downlink Channel Descriptor (DCD) and Uplink Channel Descriptor (UCD) messages 

sent periodically. 

 

Subframe 

This class manages information associated with a given subframe in a specific node.  It 

stores the profiles, and stores data scheduled to be transmitted in the frame in the form 

of PhyPdu objects. 

 

Framemap 

This class is responsible for storing subframe objects for the current UL and DL 

subframes, parsing received Downlink-Map (DL-MAP), Uplink Map (UL-MAP), 
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Uplink Channel Descriptor (UCD), and Downlink Channel Descriptor (DCD) frames, 

and generating those messages for transmission. 

 

4.1.5 Timers 

Timers are used to schedule events when that event may need to be canceled.  They 

effectively serve as wrappers for the Scheduler’s management system.  When a timer is 

started, the event in question is scheduled, and its unique EventId is stored.  If the timer 

is paused or stopped, this is used to cancel the scheduled operation.  Otherwise it 

executes as any normally scheduled function call would and the EventId is discarded 

upon completion. 

 

Wimax2Timer 

The WiMAX specification defines many operations that must be completed at regular 

intervals.  The Wimax2Timer class is subclassed for many of these, with appropriate 

function calls to complete the required tasks. 

 

DlSubframeTimer and UlSubframeTimer 

These expire at the beginning of a new Subframe.  They are responsible for constructing 

the PHY_INFO_Headers detailing which OFDMA allocation blocks will be employed 

as part of the allocation being used, and scheduling calls to the transmit function for 

packets being transmitted in the appropriate subframe.  

 

4.1.6 Headers 

The 802_16headers.h file contains definitions for 35 classes encapsulating the assorted 

header and frame definitions found in the 802_16pkt.h file in the original NS-2 
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simulation.  These classes are listed in Table 4.5 Headers.  The original structures are 

preserved for the sake of making integration of the old code with the new packet and 

header formats simpler.  There are five classes defined in this file that do not have direct 

counterparts in the NS-2 model. 

 

The first is the All_Headers class, which serves to keep track of all relevant header data 

within a given station.  It is simply an encapsulation of assorted headers and some 

metadata regarding a packet, and is stripped off prior to transmission (and regenerated 

upon receipt), being replaced with only the appropriate set of headers for that particular 

packet. 

 

The second is the MISC_OTHER_HEADER class, which simply serves to make 

serializing and deserializing All_Headers instances somewhat simpler.  It should never 

be instantiated outside the All_Headers class’s functions. 

 

The third is the Type_Check class.  This is used to examine incoming MAC layer 

packets to determine which frame type the packet contains based on the one byte type 

field found at the beginning of every MAC frame.  In the NS-2 model, the pointer to 

the data portion of the packet containing the frame in question could simply be cast to 

the structure representing any frame type, and so long as that was the only member 

accessed there was no danger of mismatching frame sizes and causing a Segmentation 

Fault.  However, in NS-3 where in order to access the contents of a packet it must be 

deserialized, we must be careful not to try to deserialize a frame from the packet that 

would pull more data from the packet than it contains.  Therefore, we use the 

Type_Check class with the PeekHeader function to only deserialize the first byte 

corresponding to this field, then choose the correct frame type to deserialize based on 

the contents. 

 

The fourth class is the MAC_TAG class.  This is not a header that is serialized into a 

packet’s data buffer, but rather a piece of meta data applied to the packet.  This is used 
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to track whether the packet was passed down from a higher layer or generated by the 

MAC layer.  This is stripped before transmission in the interest of realism, as in an 

actual network this metadata could obviously not be transmitted without taking any 

room in the stream of bytes composing the packet.  On receipt of a packet from 

another station, a new copy of this tag is generated based on which connection ID is 

listed on the packet’s header. 

 

The final class is the UL_Protocol_Header class, which stores the 16-bit protocol field 

used by higher layers in NS-3 to classify traffic into the correct application.  This 

parameter must be preserved from the input to the MAC layer in the transmitting node 

to the argument in the call to the upper layers in the receiving station. 

 

As all of these classes save MAC_TAG are subclasses of the Header class included as 

part of the core simulator, they all have the same set of significant functions.  The 

MAC_TAG class has the same set of functions, as the Tag and Header classes are 

similar. 

 

Table 4.5 Headers 
Name Description 

Frame_Prefix_Header Stores information about DL_MAP allocation.  

Always sent at start of Dl-Subframe 

Generic_MAC_Header Also called GMH, first 6 bytes of almost every 

packet transmitted.  Stores CID, length, and flags 

for packing and fragmentation 

Signaling_MAC_Header An alternative to the GMH used for bandwidth 

requests in a granted allocation 

RANGING_RESPONSE_ 

FRAME 

Stores a Ranging Response 
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Name Description 

DL_MAP_IE A single entry in the DL_MAP known as an 

Information Element (IE) 

Fast_Ranging_IE  

UL_MAP_IE A single entry in the UL_MAP known as an 

Information Element (IE) 

CDMA_MAP_IE Extension to UL_MAP_IE for CDMA entries 

with top and code 

DCD_FRAME_HEADER Stores a DCD 

DL_MAP_FRAME_ 

HEADER 

Stores a DL_MAP 

DSA_REQ_FRAME_HEADER Stores a Dynamic Service Flow Request 

DSA_RSP_FRAME_HEADER Stores a Dynamic Service Flow Response 

DSA_ACK_FRAME_HEADER Stores a Dynamic Service Flow Ack 

UCD_FRAME_DATA Stores a UCD 

UL_MAP_FRAME_HEADER Stores a UL_MAP 

REGISTRATION_ 

RESPONSE_FRAME 

Stores a Registration Response – receipt of this 

completes network entry 

REGISTRATION_ 

REQUEST_FRAME 

Stores a Registration Request 

RANGING_REQUEST_FRAME Stores a ranging request to be transmitted in an 

allocated (non-contention) slot 
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Name Description 

CDMA_REQUEST_HEADER Alternate MAC Header for transmission in 

contention slots for Initial Ranging or Bandwidth 

Requests 

PHY_INFO_Header Stores information about which blocks are 

included in burst transmission 

FRAG_SUBHEADER Stores a Fragmentation Subheader – not used 

when both Fragmentation and Packing are 

enabled 

GRANT_MAP_SUBHEADER Stores a Grant Map Subheader, used for 

piggybacked bandwidth requests 

PACKING_SUBHEADER Stores a Packing Subheader – used when both 

Fragmentation and Packing are enabled 

FFB_SUBHEADER Stores a Fast Feedback Subheader 

ARQ_FB_IE_HEADER Stores an ARQ feedback information element 

mac802_16_mob_scn_req_frame SS Scanning request frame.  Multiple BS can 

respond to this to decide on Handover 

mac802_16_mob_scn_rsp_frame BS Scanning response frame.  One SS may 

receive more than one of these per request. 

NEIGHBOR_ 

ADVERTISEMENT_ 

FRAME_HEADER 

Stores a BS->BS neighbor advertisement frame 

MOB_HO_IND_ 

FRAME_HEADER 

SS Handover indicator frame 
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Name Description 

BSHO_RESPONSE_ 

FRAME_HEADER 

BS Handover Response Frame 

MSHO_REQUEST_ 

FRAME_HEADER 

SS Handover Request Frame 

MISC_OTHER_HEADER Stores a subset of the data in All_Headers to 

make Serialization and Deserializeation cleaner 

Type_Check A single byte, used to check the type of received 

MAC packets.  The first byte of the payload of 

these packets is always a type code 

UL_Protocol_Header Stores the unsigned 16 bit integer used by higher 

layers to represent the protocol for the packet 

All_Headers Large aggregated meta-header used internally to 

conveniently store many potential headers.  It 

should never be on a packet that is being 

transmitted. 

 

 

GetSerializedSize 

This returns the total size that will be written to or read from a Packet’s byte buffer if 

this packet is serialized or deserialized.  For simple headers this is generally simply a 

return [constant] statement.  For frames that contain a variable number of information 

elements or TLV encoded data, some calculation may be necessary.  This is called by 

NS-3 when Serializing a Header to a packet to expand the byte buffer by the 

appropriate amount. 
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Serialize 

This writes the contents of the Header to the byte buffer in a Packet.  This is done by a 

set of functions that write integers or unsigned integers of varying sizes (correcting for 

network byte order when necessary).  Note that this means everything must be written 

in full bytes.  Since the layout of a given header or frame structure will generally use the 

minimum number of bits necessary to store a given piece of information, many of these 

functions employ bitwise operations to either pack several members of a structure into 

one larger temporary variable to be written or to fragment large members of a structure 

for writing across multiple temporary variables. 

 

Deserialize 

This is the inverse of the Serialize function.  It reads data from a packet’s byte buffer 

and stores that data in the appropriate members of the data structure representing the 

Header that had been Serialized to the packet previously.  Similarly to Serialize, the 

functions used to read data from the byte buffer only work in one or more full bytes, so 

for structures that do not map cleanly to bytes, temporary variables and bitwise 

operators are used to unpack the data correctly.  The value returned is the total number 

of bytes removed from the packet’s byte buffer, which is generally accomplished in this 

model by simply calling the GetSerializedSize function, but can also be accessed from 

the Buffer::Iterator used to pull the data out of the buffer. 
 

4.1.7 Miscellaneous Classes 

Wimax2Common 

This file does define a small class, but the main purpose of this file is to provide a place 

where certain commonly referenced enumerations and define commands can be placed 

without risking circular dependencies.  The most notable definitions found in this file 

are debug2 and debug10 to printf, and “NOW” to the current simulation time in 
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seconds.  Significant enumerations include those defining the modulation rate, and 

direction of traffic. 

 

Two simple functions are defined here.  The first gets a string representation of a 

Mac48Address, and the second returns a c-string representation of the type of MAC 

header included with a packet.  Both of these are commonly used for printing 

debugging information. 

 

Mac802_16MIB 

The MAC MIB, or MAC Management Information Base is defined as a class with many 

public simple data members.  It is passed from the simulation script to specify a large 

number of simulation parameters.  It is used because passing a single object around is 

much easier than passing all 48 members independently.  Also, the constructor allows a 

simple way to set default values for these parameters that are still very easy to change in 

the script.  It is passed into the simulation by calling setMacMIB on each NetDevice 

when it is created. 

 

PHY_MIB 

Similarly to the MAC MIB, the PHY MIB, or PHY Management Information Base 

contains several simple data members representing simulation parameters.  They are 

passed in through a single object rather than individually because it is easier to pass a 

single object than 9 independent parameters.  It is passed into the simulation by calling 

setPhyMIB on each NetDevice.  The NetDevices then pass the information stored in 

the class down to their PHY layers.  
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4.2 Data Flow 

A network is, basically, a system for passing data from one node to another.  In that 

light it is useful to look at the WiMAX Network model as a path along which packets 

are moved.  This section serves to illustrate the path a packet will take through the class 

structure from the time it enters the model until the time it is either passed up to higher 

layers or processed and discarded.  Each subsection describes the path for a particular 

segment of the model. 

 

4.2.1 Subscriber Station Send Procedure 

A graphical representation of this procedure can be found in Figure 4.1.  Data 

originating from a subscriber station, either from the higher layers or from Layer 2 for 

management purposes, is initially added to a specific connection’s outgoing packet 

queue.  A subscriber station will generally have four outgoing connections, two for 

management messages of varying priority, one for data from the higher layers, and one 

that is used by every node during initial ranging and network entry.  The origin of the 

specific packet from either the higher layers or the MAC layer determines which 

connection is used to send it. 

 

Once a packet is enqueued, it sits in the queue until the subscriber staiton’s scheduler 

finds an allocation for that specific connection in the UL_MAP for a particular frame.  

When this happens, the scheduler transfers packets out of the connection queue and 

into a burst of the specific size granted in the UL_MAP.  In the NS-3 version of the 

simulator, a burst will usually only contain a single packet in its queue.  This is because, 

as described in Chapter 2, NS-3’s packet structure allows for much greater simplicity in 

packing and fragmentation, so a queue of separate packets is unnecessary.   The packet 

in the burst will have all headers properly in place, including packing and fragmentation 

subheaders, and a single Generic or Signaling MAC Header at the start.  
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Figure 4.1 SS->BS Transmit Procedure 

 

The now fully assembled packet sits in the burst until the start of the UL Subframe, at 

which point the UlSubframeTimer associated with that particular node expires.  The 

expiration function on that timer schedules the transmission of each burst based on the 

transmission time determined by the scheduler.  The transmission function in turn calls 

the PHY layer’s send function, which breaks the assembled packet into small blocks, 
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each corresponding to a single allocation block of one subchannel by one symbol in the 

OFDMA allocation grid.  It then schedules each block to be transmitted at the 

appropriate time based on the block’s x-axis value in the OFDMA allocation space.  

 

4.2.2 Base Station Send Procedure 

A graphical representation of this procedure can be found in Figure 4.2.  It is very 

similar to the Subscriber Station send procedure with a few slight differences.  First, 

selecting the appropriate connection for a packet is somewhat more difficult.  This is 

because instead of there being only four connections as described above, there are a set 

of broadcast connections, and then data and MAC signaling connections for each 

connected subscriber station.  The other primary difference is found in the lack of a 

need to send bandwidth requests.  This is because the Base Station performs scheduling 

locally, and therefore can directly examine the amount of data sitting in each 

connection’s queue.  If an allocation is not granted, no explicit request must be made, as 

the scheduler will directly observe the length of the queue when the next subframe 

schedule is generated, and grant an allocation if possible. 
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Figure 4.2 BS->SS Transmit Procedure 

 

4.2.3 Receive Procedure for Base Station and Subscriber 

Station 

A graphical representation of this procedure is found in Figure 4.3.  The procedure is 

effectively identical for both Base Stations and Subscriber Stations, as the same 

functions are called in each subclass.  What varies between them is, of course, the 
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contents of several of these functions.  Most notably, process_mac_packet handles a 

different set of messages for each. 

 

As each individually transmitted allocation block is received at the appropriate time, 

they are stored for the remainder of the frame in a grid with dimensions corresponding 

to the OFDMA Allocation Grid.  This grid also stores information about whether a 

collision occurred at that block, or if there was any other kind of reception error. 

 

Based on the contents of the subframe schedules, which are transmitted to the 

Subscriber Stations in the same position in every frame, facilitating their decoding 

without the need for the map to have already arrived, each node knows when any 

relevant packets may arrive, and on what specific allocation blocks they will be 

transmitted.  This allows a call to a packet assembly function to be scheduled for just 

after the last block is received.  The assemble_received_packet function examines each 

block that should have been received.  If all have been received and none suffered 

errors or collision, then the packet is reassembled.  As soon as reassembly is complete, 

the packet is checked for fragmentation or packing, with each being handled 

appropriately by enqueueing the fragment to the Connection object or sending the 

unpacked, complete packet to the reception system.  In the case of fragmentation, once 

the last fragment is received, the assembled packet is sent up in the same manner.  From 

there the packet is either sent into the functions that decode and process Layer 2 

signaling packets or passed up to the higher layers, as appropriate. 
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Figure 4.3 Receive Procedure 
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4.2.4 Network Entry Procedure 

Due to the fact that several connections, a service flow with a QoS profile, and a variety 

of ranging information must be determined before regular higher layer communication 

can proceed, the network entry procedure is somewhat involved.  It spans a total of 9 

frames for each Subscriber Station, though these may overlap entirely if multiple 

stations try to connect at the same time and do not choose the same random contention 

slot for early messages. 

 

A summary of which station sends which message at which time can be found in Table 

4.6.  This table also includes information about the progression of states the SS passes 

through between being created and being ready to accept communication from the 

higher layers. 

 

Table 4.6 Network Entry Procedure 
Frame 
Number 

Base Station 
Activity 

Subscriber Station Activity Subscriber Station 
State Machine State 

1 Send DCD and 
UCD 

Send Contention-based 
Ranging Request Frame 

DISCONNECTED 
SYNC_DCD 
SYNC_UCD 
RANGING 
 
WAIT_ANON_ 
RNG_RSP 

2 Send Ranging 
Response – 
Allocated Basic and 
Primary CID 

BW-REQ for Ranging 
Request using new CID 

RNG_ALLOC 

3 Grant Allocation 
for Ranging 
Request 

Send Ranging Request using 
new PRMARY CID 

WAIT_RNG_RSP 

4 Send Ranging 
Response 

Generate Registration 
Request and send Bandwidth 
Request for it 

REGISTER 
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5 Grant Allocation 
for BW-REQ 

Send Registration Request  

6 Send Registration 
Response  

 CONNECTED 

7  Bandwidth Request for 
Dynamic Service Addition 
(DSA_REQ) Request 

 

8 Grant Allocation 
for DSA_REQ 

Send DSA_REQ  

9 Send DSA_RSP 
and grant allocation 
for DSA_ACK 

Send DSA_ACK  
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Chapter 5  
Key Issues in Translation and 

Improvement 
 

This Chapter describes the significant challenges and required changes needed to move 

from the NS-2 model to the NS-3 model.  It includes both issues involving replicating 

the functionality of the original model and changes made to add new functionality. 

 

5.1 Packet and Header Differences 

The single most significant and time-consuming issue centered on the differences in the 

packet and header architecture in NS-3 and NS-2.  An overview of the differences can 

be found in Section 1.3.  While the changes seem as if they would be fairly 

straightforward, a number of issues complicated the matter, and the frequency with 

which Packet objects are used in the model made this a very significant issue. 

 

One major problem is that, in NS-2, when a header is accessed, it is modified in-place in 

the packet.  In NS-3, a header must be removed and added back later for any changes to 

persist outside the immediate scope.  Essentially, almost every path through the code 

had to be examined, with headers needing to be removed and replaced before and after 

most function calls using a packet.  Considering the size of the model and the number 

of functions that take packets as arguments, this was very time consuming to retrofit. 

 

Even once all the additions and subtractions of headers were added, there was the issue 

that much of the extant code assumes access to the entire set of potential headers.  

Since code was written assuming easy access to every header, especially the GMH and 

PHY_INFO_Headers, it made sense to find a way to keep these easily accessible 
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without needing to explicitly add and subtract both of them in every function.  The 

All_Headers class is used to solve this problem.  It contains effectively the same set of 

headers that the NS-2 packet structure includes, so within a given node, the remaining 

NS-2 code can function reasonably well.  It is stripped off before transmission and only 

the correct, minimal subset of headers is used in the transmitted assembly.  This means 

that for transmission purposes we still get the benefit of having the actual exact set of 

bytes to be transmitted, fragmented, or packed with other packets, but for processing 

tasks internal to the node we can safely assume access to any and all headers.  

 

5.1.1 Fragmentation and Packing 

One of the chief advantages of the NS-3 packet architecture is found just prior to and 

just after transmission.  Packets are transferred to and from bursts, and packing and 

fragmentation processing occurs. 

 

Due to the fact that in NS-2, there is exactly one copy of each header attached to every 

packet, some tasks are extremely awkward.  For example, WiMAX stations can 

optionally employ a packing system in which several logical packets are packed into one 

transmission.  This is specified by a flag in the Generic MAC Header, and then each 

packet is preceded by a small subheader giving the duration of the following segment.  

Because the Packing Subheader must be included multiple times in a single 

transmission, NS-2 cannot easily assemble individual packets for transmission when 

packing should be employed.  This leads to the necessity of managing lists of packets 

that must be transmitted together.  Each of these packets will have a Packing Subheader 

associated with it, as it should, but also a full set of other headers including a Generic 

MAC Header with it’s length field, and an NS-2 common header with yet a third length 

field.  These fields will generally not all agree, due to each potentially assuming different 

headers are present in addition to the payload.  This leads to some confusion, and 

multiple calculations for the total amount of data contained in a burst. 
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NS-3’s model by which all packet objects are simply a string of bytes makes packing 

multiple data units into a single Packet object straightforward.  It is extremely simple to 

copy data from one packet onto the end of the buffer in another, or to create a new 

packet containing a specific subset of the data in an original packet.  Because individual 

packets being packed into a burst do not have their own Generic MAC Headers, and 

the packing subheader’s length field is set based on the current byte length of the 

packet’s buffer, there is no ambiguity over size. 

 

Because the packing and fragmentation works in a completely different way, the 

functions used to do this processing are completely new in the NS-3 model.  The NS-2 

version of this function, Wimax2Scheduler::transfer_packets1, is nearly 800 lines of 

code long (with very few of those lines being comments).  The NS-3 version, which 

performs exactly the same tasks, is around half the length with extensive commenting.  

The NS-3 version generates a burst of completely unambiguous size, and the general 

process is extremely intuitive.  Packing is accomplished by copying the contents of the 

packet buffer and adding it to the end of another packet, while fragmentation copies 

regions out and deletes them. 

 

5.2 Python Bindings Generation 

NS-3 has optional support for scripting in Python in addition to C++, which is required 

to use the PyViz visualization module included with NS-3.  Support for python is 

facilitated through the use of compiled binding files mapping a portion of the C++ 

API.  While the code from which these are compiled can be generated by hand, it is 

impractical for a model as large as this simulation.  A tool known as PyBindGen is 

included with NS-3 that tries to automatically generate binding files by scanning the 

C++ API, and it works reasonably well but there are issues. 
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The most notable issue is that only a subset of C++ is actually supported.  Most current 

features are well supported, but several prominent exceptions were found, mostly 

centering around the older C-style coding practices which are relatively common in the 

NS-2 model. 

 

Most of these do not cause issues.  While it is uncommon to see this style of coding in 

newer C++-based libraries, it is all still legal in the language.  However, Support is 

notably lacking for anonymous types, functions generated by macro such as the 

<sys/queue.h> linked list modules, and double pointers.  The need to avoid using these 

led to a substantial portion of the code base being rewritten to employ newer 

alternatives, mostly from the C++ Standard Template Library. 

 

The other large issue centering on this packing is the lack of useful output.  Many errors 

are generated both for new code and the existing NS-3 API, some of which can be 

safely ignored and some of which can’t.  There is little to no documentation on which 

type of error is which.  Even finding errors can be time consuming, as they rarely stop 

scanning, and may not appear until attempting to compile the bindings, or run a 

simulation using them. This makes retrofitting code into the subset of C++ that can be 

properly scanned using this tool extremely time consuming as it involves rescanning and 

recompiling large portions of the simulator repeatedly, while relying on vague error 

reports which may or may not actually cause problems in the simulation. 

 

5.3 OFDMA 

The NS-2 model implements the OFDM PHY layer defined in the 802.16 standard 

instead of the OFDMA PHY layer.  As discussed in Section 2.1, there are certain 

drawbacks to this compared to the OFDMA system implemented in the NS-3 model.  

This is especially noticeable when dealing with small packets, such as those used in the 

Layer 2 Network entry procedure described in Section 3.2.4.  Most of these messages 

are around 50 Bytes or less, but each message is still granted use of every subchannel at 
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a given time slot.  Depending on the allocation used, this can result in extremely 

significant (greater than 90%) of the allocation being unused. 

 

Based on a number of notes in the code, it seems clear that the NS-2 model’s 

developers were in the process of implementing an OFDMA PHY layer, but it was a 

distinctly unfinished task.  Changing this required an overhaul of the Base Station and 

Subscriber Station schedulers, several changes to the UL- and DL- MAP information 

elements, and a redesigned transmission and collision detection system. 

 

The NS-2 model uses a system in which a single packet can be received at a time.  

Receiving parts of two packets at once will cause the simulator to assume a collision and 

drop both.  However, in OFDMA allocations, multiple simultaneous receptions are 

entirely allowed, and frequently specifically scheduled for.  Therefore, a scheme in 

which data from multiple sources can be received simultaneously is necessary. 

 

For each frame, the NS-3 model builds a grid of received blocks.  Each time a node 

receives a block of one subchannel by one OFDM Symbol, that block is stored in the 

appropriate location in the grid.  This allows a node to easily detect collisions on a 

specific block in the allocation grid, and also allows a more realistic simulation of 

OFDMA transmission.  Packets are actually split into many pieces sized appropriately to 

fill one block with the assigned modulation, and pieced together later based on the 

regions defined by the schedule. 
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Chapter 6  
Sample Application of  NS-3 Model 
 

During the scheduling process, most of the steps are relatively simple.  However, the 

process of taking a set of allocation sizes and mapping them to rectangular allocations 

on a two dimensional grid as is required in the downlink subframe is very difficult to do 

in an ideal fashion.  In fact, it is a relatively straightforward variation on the bin packing 

problem [3], which is known to be NP-Complete.  This means that the only known 

method for determining a solution guaranteed to be ideal is to generate every possible 

solution and check each one.  This process scales exponentially with the number of 

potential solutions, making it impractical to rely on for a process that is required to be 

reliably completed for every frame, each of which lasts only 0.005 seconds.  

 

Because of this impracticality, several heuristic algorithms have been devised that 

generate reasonably good mappings quickly.  These heuristics can be objectively 

evaluated by comparing the number of unallocated and over allocated slots to the ideal 

solution found using the exponential time full-search algorithm.  Two related algorithms 

that provide good approximations to the ideal mapping with much faster run times are 

known as the One Column Striping with non-increasing Area first mapping (OCSA) [3], 

and enhanced OCSA, a modification of that algorithm.  After discussing these, a new 

modification will be presented and then analyzed using data gained from the NS-3 

simulation model. 

 

All modeling and examples, unless otherwise noted, will be performed on an allocation 

grid of 14 slots by 30 subchannels.  This assumes that a single slot in the downlink 

subframe is two symbol-times in duration, that the total downlink subframe size is 33 

symbol-times by 30 subchannels, and that the first 5 symbol columns are used for the 

preamble, the FCH/DL_MAP, and the UL_MAP and the DCD and UCD if they are 
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transmitted in this frame.  These are scheduled as such because failing to schedule any 

of these can result in serious problems, including subscriber stations assuming they have 

lost the connection and exiting the network. 

 

To quantify the results of these algorithms compared to the ideal mapping, both are 

generated and the following two parameters are calculated for each.  First, the number 

of allocation blocks that are allocated to a burst, but provide bandwidth past what is 

needed to fully transmit the burst.  Second, the number of allocation blocks that are not 

allocated to any burst, when one or more bursts could not be transmitted due to 

allocation space in large enough blocks not being available.  The relative quality of 

mappings produced by a heuristic is determined by comparing normalized averages of 

these parameters. 

 

6.1 OCSA 

The basic goal of this heuristic is to enumerate all possible allowed (not larger than the 

bounds of the subframe) sizes to map a given burst, then position the minimum-waste 

options in descending size order, while packing smaller packets in to leftover space.  

The more specific description is that after enumerating the possible mappings, and 

sorting the allocations in descending order by size, each allocation starting with the 

largest is mapped using it’s lowest-waste mapping, starting from the bottom-right hand 

side of the allocation grid.  After an allocation is mapped, if there is any space left above 

it, all remaining allocations are checked to see if any will fit into the leftover space.  

Note that to ensure that future allocations will not be height limited by this mapping, 

allocations mapped to the leftover regions here cannot exceed the width of the initial 

mapping below it.  This process is repeated, stacking more allocations until the top of 

the frame is hit.  At this point the next largest allocation is mapped immediately to the 

left of the first, and the process repeats. 
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Based on testing in [3], this algorithm produces, on average, a normalized value of 

0.0422 unallocated slots, and 0.0059 over-allocated slots.  The computational 

complexity in the worst-case scenario is O((rn)2), where n is the number of allocations 

and r is the number of enumerated possible rectangular mappings per allocation. 

 

6.2 eOCSA 

eOCSA is a variation on OCSA designed to decrease computational complexity.  

Instead of enumerating every possible rectangular allocation for each allocation, it 

considers only the minimum-width allocation.  For a specific allocation i of total size Ai, 

the width Wi, and Height Hi. are calculated using equations Wi = ⎡Ai / H⎤ and Hi = ⎡Ai 

/ Wi⎤ on a subframe of total height H, where ⎡ ⎤ represents a ceiling function.  This 

does not ensure an ideal mapping, but provides a reasonably good approximation and 

saves computation time enumerating all possible allocations.  Because we allocate the 

minimum possible height for the narrowest mapping of a given burst, we know that the 

number of over allocated blocks in a mapping will never be higher than that width.  

This leads to very low over-allocation amounts despite the very efficient method used to 

choose the sizes.  The mappings of allocations above the top of a given column seek to 

minimize height instead of width, while maintaining a maximum width equal to the 

initial allocation as before. 

 

According to [2], the average normalized performance relative to the ideal mapping for 

eOCSA is 0.0614 unallocated slots, and 0.0088 over-allocated slots.  Both of these are 

roughly 1.5 times larger than the equivalent parameters in the OCSA simulation, but the 

computational complexity of finding this solution is only O(n2), since enumeration 

simply does not occur. 
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6.3 mOCSA 

Both OCSA and eOCSA work well when only relatively small packets are added to the 

regions at the top of each column.  Small packets can easily be added to the top of 

columns of even relatively small widths.  However, larger packets may not fit in these 

narrow regions, even if the total allocation space remaining above all the columns 

combined could easily fit them. 

 

The goal in these algorithms of allowing the packets at the top of the subframe to only 

be as wide as the large allocation at it's base is to avoid impacting future allocations by 

limiting their potential height.  Given that these allocations are larger than others, it 

makes sense to give them priority in allocation shape to limit over-allocation as much as 

possible.  However, this can be accomplished without limiting the allocation in the 

higher-area to the extent that they do. 

 

Merging OCSA (mOCSA) is a new algorithm designed to allow better use of the higher 

areas of the subframe.  In mOCSA, the entire lower-region is allocated first, and the 

unallocated region above each column is tracked.  Once no further packets can fit along 

the bottom of the subframe, we analyze these regions, and modify them to increase our 

allocation options.  Because we can only allocate rectangles, and adjacent regions may 

be different heights, combining them will generate one area spanning the width of both 

regions, and one that occupies the leftover space.  If the wider of these regions is larger 

than either of the originals, we perform the merge.  Otherwise we leave them 

unchanged. 

 

Once any merges occur, we allocate bursts into these regions in the same way that 

eOCSA allocates bursts into the regions above individual columns.  That is to say given 

a burst of length l and an allocation space Ai of width Wi and height Hi, we map it to a 

height Ha = ⎡Ai / Wi⎤ and width Wa = ⎡Ai / Ha⎤.  This is the narrowest allocation 

possible at the minimum possible height.  The remainder of the allocation space can 
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then be used for subsequent mappings if there is room.  As bursts are mapped into a 

region, that region’s remaining height is updated appropriately, and a new region 

composed of any leftover width is created.  A more computationally intensive version 

of this algorithm would reexamine the entire set of allocation regions, merging them as 

appropriate, after each mapping and resulting reduction in the size of a given region. 

 

Like eOCSA, mOCSA is O(n2), though the coefficient is higher.  As the algorithm is 

effectively identical save the region-merging process in which each region is compared 

to each other region.  Because the set of regions corresponds to the set of bursts 

mapped to the bottom of the subframe, there will be at most n regions compared, 

yielding O(n2) total comparisons. 

 

6.4 Sample eOCSA and mOCSA Mappings 

In this section, we present a sample set of allocations and show how both mOCSA and 

eOCSA would map this set of bursts.  The list of allocation sizes is found in Table 6.1.  

The mapping produced by eOCSA is found in Figure 6.1, the mapping produced by 

mOCSA is found in Figure 6.2, and an ideal mapping is found in Figure 6.3. 

 

This example illustrates the problem with the strictly column-based approach used by 

eOCSA and OCSA.  While there is a very large unallocated region in the eOCSA-

generated mapping, the algorithm is limited to allocating blocks the same width as the 

columns at the bottom of the grid.  Since none of the unallocated bursts will fit in the 

portion of these columns remaining, none are mapped.  This results in a total of five 

bursts, numbers 15, 16, 17, 19, and 20 not being mapped to the allocation grid.  A total 

of 70 blocks are unallocated in this map, with no over-allocations. 

 

There are several differences in the mOCSA map.  The lower regions are distributed 

slightly differently, as the higher regions are ignored until the entire width is filled at the 
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bottom.  This means that allocation 5 is not mapped above allocation 2, and instead 

receives it’s own column.  The more significant difference is that the large region at the 

top of the frame that is unused in eOCSA is partially filled.  In this mapping, only 

allocations 18, 19, and 20 are unmapped.  This results in 39 unallocated blocks, with 2 

over-allocated blocks.  This is a clearly more effective map than the one generated by 

eOCSA. 

 

A more computationally intensive version of mOCSA would re-analyze the set of 

allocation regions after each burst is mapped, and recombine as appropriate.  This 

would allow the algorithm to generate a rectangle of 4 blocks by 3 blocks directly above 

the location that allocations 9-12 are mapped.  Allocation 20 would fit in this new 

region.  This reanalysis is computationally expensive, so it is not generally performed. 

 

Neither map is actually ideal.  As shown in Figure 6.3, it is possible to map all bursts 

into this subframe.  However, no known algorithm will generate an ideal mapping 

quickly enough to be employed. 

  



55 

 

 

 
Table 6.1 Sample Allocation Sizes 

Allocation Number Allocation Size (Slots) 

1 44 

2 36 

3 28 

4 26 

5 24 

6 22  

7 22 

8 21 

9 20 

10 20 

11 20 

12 20 

13 16 

14 16 

15 15 

16 15 

17 15 

18 14 

19 13 

20 12 

21 1 
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Figure 6.1 Sample eOCSA Mapping 
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Figure 6.2 Sample mOCSA Mapping 
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Figure 6.3 Sample Ideal Allocation 
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6.5 Performance Analysis 

In this section we present a comparison of the map quality generated by eOCSA and 

mOCSA.  Data was gathered using the NS-3 model.  The simulation script defined a 

network with a slowly increasing number of subscriber stations, each of which was sent 

a random amount of data.  All service flows used the best effort QoS class, which has 

no requirements.  In the event that all bandwidth requirements could not be filled, a 

round robin allocation system was employed.  As the number of SSs, and thereby the 

total required throughput increased, the wait for each SS between transmissions also 

increased.  This meant that more data was enqueued to each before it’s turn for 

transmission.  Once the network reached it’s maximum throughput, the wait times very 

quickly increased to the point where every SS could fill the entire subframe.  This led to 

single-burst subframes which are obviously trivial to map.  Similarly, as traffic was 

slowly increased from very low levels, early frames had low total allocation requests, 

resulting in many perfect frames.  To avoid either of these skewing the results, a 

segment of data comprising 2200 was selected in which the total requested allocation 

was high enough to make mapping non-trivial, but wait times were still low enough to 

provide frames with many bursts.  The simulation was run twice, once with mOCSA 

and once with eOCSA.  Random seeds were held constant so the same set of traffic was 

provided to both schedulers. 

 

There are several values that can be used to evaluate the quality of a map.  By plotting 

them against the number of bursts that we are trying to map into the allocation grid, we 

can see how they scale with increasing load on the network for each allocation system. 

The specific values we are examining are the total number of unmapped bursts (Figure 

6.4), the total number of unmapped blocks (Figure 6.5), and the total number of blocks 

that are wasted.  A wasted block is defined as a block that is either allocated to a burst 

beyond the total size of that burst, or is not allocated to any burst, despite at least one 

burst not being transmitted in that frame due to lack of space.  We ignore unallocated 
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blocks in frames where every burst is mapped, because there is no potential better use 

available. Data on the number of wasted blocks is shown in Figure 6.6. 

 

All data points are averages over many frames with the indicated number of requested 

bursts.  The data clearly indicates that mOCSA will usually have fewer unmapped 

bursts, which will each be somewhat smaller, and fewer blocks will go unused due to 

either over-allocation or un-allocation. 

 

 

Figure 6.4 Average Unmapped Bursts 
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Figure 6.5 Average Unmapped Blocks 

 

 

Figure 6.6 Average Wasted Blocks 
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Chapter 7  
Summary 
 

NS-3's architecture is a significant departure from NS-2.  This means that translation of 

NS-2 models to NS-3 requires major overhauls.  This thesis discussed the differences 

between the simulation environments, using the WiMAX Forum's NS-2 model as a case 

study. 

 

First we discussed the major differences between NS-2 and NS-3.  One of the most 

obvious is the use of different programming language used for scripting.  Others include 

the availability of smart objects, new architectures for Packets and Nodes, and the 

ability to output industry-standard trace files for analysis in a variety of different tools. 

 

We next provided a basic overview of major components in WiMAX networks, 

including the OFDMA-based physical layer and the scheduling mechanisms employed 

in the MAC layer.  After providing this overview, we discussed the NS-3 

implementation of these mechanisms in the translated model.  This included a 

description of the pre-transmission and post-transmission processing that occurs on 

packets, and a breakdown of significant sections of the model.  These sections include 

the state machines driving each base station or subscriber station on the network, the 

system used to classify traffic from IP and MAC addresses to WiMAX Connection IDs, 

the physical layer, the system used to generate and communicate bandwidth grants and 

the schedules for both downlink and uplink subframes, various timers and headers that 

are used, and several remaining classes that did not fit into any of the above categories. 

 

Having established the details of the NS-3 implementation, we discussed the specific 

changes required from the NS-2 version.  This includes the modifications required to 

achieve the same level of functionality, the enhancements made to provide OFDMA 
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support, and the issues involved with using NS-3 visualization system.  One of the key 

aspects of the necessary modifications involved NS-3’s new packet architecture, and the 

changes that it required.  NS-3 requires that packets be manually packed and unpacked 

between structures representing the data involved and a stream of bytes that could 

actually be transmitted, while NS-2 allowed direct access to the headers.  The new 

packet architecture did allow for a much more intuitive method for handling the 

fragmentation and packing of packets into bandwidth allocations by directly splitting 

and recombining series of bytes instead of using lists of independent packets.   

 

Finally, we provided a new OFDMA downlink subframe mapping algorithm called 

merging OCSA, or mOCSA.  It is a modification of eOCSA that allows for larger 

allocations to be mapped into the top-region of the subframe.  We then used the NS-3 

model to simulate eOCSA and mOCSA, and demonstrated that mOCSA produces 

consistently better maps in terms of average wasted blocks, average unmapped blocks, 

and average unmapped bursts. 
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