
WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CONGESTION MANAGEMENT FOR LOSSLESS ETHERNET OPERATION

by

Jinjing Jiang

Prepared under the direction of Professor Raj Jain

A thesis presented to the School of Engineering of

Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

May 2008

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

CONGESTION MANAGEMENT FOR LOSSLESS ETHERNET OPERATION

by

Jinjing Jiang

ADVISOR: Professor Raj Jain

May 2008

Saint Louis, Missouri

IEEE 802.1 standards committee is working on a new specification for congestion notification in
Ethernet networks. The goal of this work is to enable applications of Ethernet in backend data
center networks. Such applications typically use Fiber Channel and Infiniband due to their loss-
free characteristics. In this thesis, an explicit rate control framework called Forward Explicit Rate
Advertising (FERA) for Ethernet applications, especially data centers, is described. The framework
guarantees zero packet drops at the congested switches and fast convergence to fair and stable state.
In order to manage the congestion, design choices on 2-point and 3-point architectures, the reactive
and proactive signaling, explicit and implicit rate controls are compared. Then the core component
of the framework, queue control, is carefully studied. Furthermore, we show that this framework
can seamlessly cooperate with IEEE 802.3x PAUSE mechanism to recover from severe congestion
scenarios. To demonstrate the strength of FERA, both analytic and simulation results comparing
with another existing scheme called Backward Congestion Notification (BCN) are provided to show
that FERA achieves the design goals.

Contents

List of Tables . iv

List of Figures . v

Acknowledgments . vi

1 Introduction . 1

2 Related Work . 3

3 Design Goals and Choices . 5

3.1 Performance Goals . 5

3.2 Design Choices for Congestion Management 6

3.2.1 2-Point and 3-Point Architectures 6

3.2.2 Proactive and Reactive Signaling 7

3.2.3 Explicit and Implicit Rate Control 8

4 FERA Model and Assumptions . 9

4.1 System Model . 9

4.1.1 Link Measurement . 10

4.1.2 Forward Marking and PAUSE Signaling 10

4.1.3 Source Tagging and Reaction 11

4.2 Assumptions . 11

5 FERA Switch and Source Algorithms 12

5.1 Queue Control Functions . 14

5.2 Analysis of Stability and Fairness . 14

6 Convergence to Fairness . 17

6.1 Convergence Time for FERA . 17

ii

6.2 Convergence Time for BCN . 18

7 Enhancement to Switch Algorithm 21

7.1 Exponential Moving Average . 21

7.2 Limited Increase . 23

7.3 Varying Capacity Enhancement . 24

7.4 Queue Control Enhancement

with Heavy Traffic . 24

7.5 Equivalence of Multiplicative and Additive

Queue Control . 25

7.6 Multistage Queue Control Function 26

7.7 FERA and PAUSE mechanism . 27

8 Simulation Results . 29

8.1 Simulation Configuration . 29

8.2 TCP Flows and FERA . 29

8.3 Simple Symmetric Topology . 31

8.4 Parking Lot Topology . 33

8.5 Large Symmetric Topology with Pareto

Distributed Traffic . 33

8.6 Asymmetric Topology and Multiple

Congestion Points . 35

8.7 Output Generated Hotspot Scenario 36

9 Conclusions . 38

References . 39

Vita . 41

iii

List of Tables

7.1 FERA with heavy traffic. 25

7.2 FERA with single stage and multistage queue control, Bernoulli and

Pareto traffic. 27

8.1 Comparison of reference sources between None Congestion Manage-

ment, BCN and FERA. (Tps means transaction per second, FCT

means flow completion time) . 31

8.2 Comparison of bulk traffic between None Congestion Management,

BCN and FERA. 31

iv

List of Figures

3.1 The architecture for congestion notification. 7

4.1 Simple FERA system model. 9

5.1 Illustration of rate calculation. 12

5.2 The queue control functions. 16

6.1 A sample path of rate convergence process in BCN. 19

7.1 Multistage queue control function with n = 2 27

8.1 A simple topology. 30

8.2 A simple symmetric topology. 32

8.3 UDP bernoulli traffic in simple symmetric topology. 32

8.4 A parking lot topology . 33

8.5 Simulation with parking lot topology: in(a)(b)(c), the one hop delay

is 0.5 µs, in (d)(e)(f), the one hop delay is 50µs. 34

8.6 A simple symmetric topology. 34

8.7 Pareto traffic in large symmetric topology. 35

8.8 A simple asymmetric topology. 35

8.9 Throughput and queue length for asymmetric topology. 36

8.10 One stage output generated hotspot scenario. 37

8.11 One stage hotspot scenario, variational capacity. 37

v

Acknowledgments

I would like to thank first my advisor, Professor Raj Jain, for bringing me to the

research area of congestion control, and guiding me in the past three years. I am

deeply grateful to him for his availability and help, not only in research, but also in

all other aspects of the life. I am also very grateful to him for taking so much care of

his student’s personal career and promoting their results.

I would like to extend my sincere thanks to Dr. John Z. Yu for the time he spent

assisting me with my research, from pointing me to important literatures to advising

me to attack a problem in the systematic manner.

Lastly, I would like to extend my greatest gratitude towards my family. Their endless

love is the only origin of all my courage.

Jinjing Jiang

Washington University in Saint Louis

May 2008

vi

1

Chapter 1

Introduction

Recently, due to the storm of data growth inside sizable enterprise, super servers, clus-

ters, bladed systems are interconnected where huge amounts of data are exchanged

or stored all the time. The IEEE 802.1 standards committee has been discussing the

possibility of using Ethernet as the infrastructure to enable the data center applica-

tions. For simplicity, in the following we call this kind of network as Data Center

Ethernets (DCEs). Furthermore, the necessity of traffic engineering in DCEs has

been discussed for over a year now and has approved a project authorization request

to develop a standard for congestion management. This specification when completed

will be known as IEEE 802.1Qau.

Generally speaking, DCEs are one kind of high speed network of limited network

diameter. The typical aggregate link throughput ranges from 10 Gbps to 100 Gbps.

On the other hand, DCEs require low latency for efficient communications. Due to

the large number of end stations configured in clusters, these networks are vulnerable

to link congestion. For example, in a typical star topology running TCP traffic,

the output link of the core switch could be congested frequently resulting in packet

losses and timeouts that can severely jeopardize the overall system throughput due

to the retransmission policy. This will lead to intolerable long latency for successful

transmissions. Empirical data shows that switch buffers can overflow resulting in

packet loss even when the average utilization is 50% due to bursty nature of the

traffic.

2

While significant amount of work has been done on congestion control in TCP/IP

networks, Ethernet networks, even after 30 years of their invention, run without con-

gestion control in the data link layer. This may be acceptable for elastic applications

but not tolerable for data center applications. The packet loss rate in data center

applications should be practically zero. This is why traditionally data centers have

used Fiber Channel and Infiniband networks that provide hop-by-hop flow control

and sophisticated congestion control mechanisms to avoid packet losses.

Data centers cannot rely solely on TCP to take care of network congestion. There

are many applications that use UDP and some don’t even use IP, e.g., Veritas Cluster

os. It is, therefore, important that Ethernet networks provide a congestion control

mechanism in the data link layer.

In this thesis, we mainly concentrate on the Forward Explicit Rate Advising mech-

anism (FERA) we proposed and the comparison to another existing proposal called

Backward Congestion Notification (BCN). The main contributions of this thesis is

summarized as the following.

• An explicit rate based congestion control mechanism is proposed for Ethernet

data center applications. To the best knowledge of the author, this is the first

working proposal using forward path probing (rate discovery) methodology in

Ethernet.

• Both analytical and numerical results are provided to show that FERA outper-

forms BCN in various metrics, especially in the convergence time and fairness.

The thesis is organized as follows. Chapter 2 reviews the related work in the litera-

ture. In Chapter 3, the design goals and choices for mechanism design are explained.

In Chapter 4 and 5, the detailed system model for FERA mechanism is described. In

Chapter 6, analytical results of convergence rate on both FERA and BCN are pre-

sented. Chapter 7 gives various enhancement on FERA in practical implementation.

The simulation results that support our claims are provided in Chapter 8. Then the

thesis ends with the conclusions.

3

Chapter 2

Related Work

In the literature, McAlpine and Wadekar [1] proposed the general architecture for

congestion management in Ethernet Clusters, where link level control, layer 2 subnet

control and end-to-end higher layer control protocols are discussed. Through simula-

tions, they endeavor to find the appropriate set of congestion management methods

that are compatible with IEEE802.1/802.3 standards. Santos et al[2] described a

simple switch-based ECN mechanism for Infiniband with a new source rate control

mechanism using window limit. It improves fairness and throughput for both static

and dynamic traffic. However, this scheme only works with TCP traffic.

In the IEEE 802.1 standards group, four proposals are currently being discussed.

First, a Backward Congestion Notification (BCN) was proposed by Davide Bergam-

asco and his colleagues at Cisco and is described in [3]. The BCN control messages are

sent from switches back to sampled sources when the congestion happens. The feed-

back contains current queue status including queue length and variation. Then the

sources basically adopts the Additive Increase and Multiplicative Decrease (AIMD)

mechanism used in TCP to adjust the sending rate[4][5]. We proposed a Forward Ex-

plicit Rate Advertising mechanism (FERA) and argued in favor of explicit feedback

of allowed rates to the sources. FERA uses the similar idea proposed in Rate Control

Protocol(RCP)[6]. However, FERA does not have per packet acknowledgement and

the queue control is quite different. A modification to BCN, called Explicit Ethernet

Congestion Management (E2CM) by IBM [7] was proposed as combining some of the

ideas of FERA and BCN. The fourth proposal is quantized congestion notification

(QCN) in which BCN queue feedback is quantized to a few bits and network provides

only negative feedback [7]. Generally, QCN is a simplified version of BCN. There

4

are no positive feedback messages allowing sources to increase the rate. Instead,

sources use a search algorithm to find the acceptable rate, which is very similar to

the BIC/CUBIC proposed in [8].

5

Chapter 3

Design Goals and Choices

3.1 Performance Goals

In designing a working scheme for data center applications, the following metrics are

of common interest.

• High Throughput and Low Queueing Delays : Since the demand for data ex-

change and storage in DCEs is extremely large compared with other networks,

the goodput of the network should be maximized. In other words, the aggregate

link throughput should also be maximized. Furthermore, in order to keep the

delays under some acceptable value even with high link utilization, we aim to

control the queue length at a constant level. Thus, the variation of the latency

is minimized.

• Stability, Convergence Rate and Fairness : The stability of a system is the com-

mon control target. Even for some very bursty traffic, the scheme possibly

has large oscillations. However, as long as the stochastic average of the queue

length is be bounded around the target level, we regard the system stable. Fur-

thermore, the time to converge to stable state is also an important metric of

system performance. For example, for bursty traffic, if the convergence time is

longer than the average busy period, the mechanism definitely cannot handle

the traffic dynamics properly. Also from the user side of view, some form of the

fairness should be guaranteed. Therefore each flows going through one bottle-

neck must achieve some form of weighted fairness [9], for example, max-min or

proportional fairness.

6

• Zero Loss at the Bottleneck : In order to eliminate the effect of retransmission,

zero loss at the congested switch is enforced. However, the traffic load in the

network is unpredictable, so it is almost impossible to ensure zero loss only

by a feedback mechanism. So the PAUSE mechanism used in IEEE 802.3x is

introduced to adopt the hop by hop link control by simply asking the upstream

neighbor to stop dequeuing packets when the queue length at the bottleneck is

already larger than some threshold. In this way, no packets will be lost.

• Easy Deployment : If a scheme has many sophisticated parameters or the pa-

rameters are hard to tune, the system administrators will find it difficult to

manage. Compared with other competing proposals, FERA has smaller num-

ber of parameters. It is easy to find the admissible values for these parameters.

Furthermore, these values are applicable to a wide range of network configura-

tions, such as link capacity, traffic types and number of sources.

In this paper, we provide both analytical and simulation results to show FERA works

better than BCN to achieve these goals.

3.2 Design Choices for Congestion Management

In the IEEE802.1 standards group, architectures using either backward notification,

forward probing or both are under debate. This results in two types of architectures

as discussed below.

3.2.1 2-Point and 3-Point Architectures

In our proposed FERA scheme, sources periodically generate probing packets that are

modified by the switches along the path and then the probing packets are reflected by

the destinations back to the sources. The sources react to the feedback received in the

returning probes and set their rate accordingly. Thus, there are three types of points

in the control loop: reaction points at the sources, congestion points at the switches,

and reflection points at the destination. This is known as the 3-point architecture.

7

It is also possible to have a control loop without reflection points. In this case,

the sources react to the feedback received directly from the congestion point. The

feedback is sent in the backward direction from the switch to the source. This is the

2-point architecture as shown in Figure 3.1.

Figure 3.1: The architecture for congestion notification.

BCN uses 2-point architecture. If there are multiple congestion points on the path

of a flow, multiple backward control messages will be sent back while only one of

these - one with the highest level of congestion indication - will dominate the future

rate of the flow. Sophisticated mechanisms are needed for sources to respond to

messages from different congestion points. While in FERA, the sources do not have

to keep track of congestion points and can increase their rate as indicated the received

feedback immediately.

3.2.2 Proactive and Reactive Signaling

In some scenarios, a sudden change of the link capacity or traffic patterns will cause

the network to be severely congested. Since proactive probes are sent only period-

ically, at least one periodic interval is needed to respond to the sudden overload.

This may cause long queues in the switch buffer. In this case, reactive signaling with

feedback as soon as the congestion happens will help. In Fig. 3.1, BCN messages are

sent from the switch to sources as long as the queue length is above some predefined

level. The problem with this approach is that it reduces the rate of some flows too

much and then these flows may not recover by the random sampling method used at

the congested switch.

8

3.2.3 Explicit and Implicit Rate Control

BCN, QCN, E2CM, all three proposals send the queue dynamics back to the sources.

Then the sources perform the Additive Increase Multiplicative Decrease (AIMD) algo-

rithm to adjust their transmission rate. However, the queue based congestion sensor

cannot not tell directly what bandwidth the congested link can support since queue

length depends upon the queue service architecture, and is highly related to the bot-

tleneck link rate. For example, ten 1500B packets at a 1 kbps link are a big queue

while the same queue would be considered negligible at a 10 Gbps link. Therefore,

queue length feedback from different links cannot be compared.

On the contrary, FERA uses rate based sensor - the link utilization - to detect the

congestion. The switches calculate the fair share for each flow without maintaining

any per-flow information. Using the link utilization as congestion indicator is much

easier for the network administrator, since desired utilization is same at 1 Gpbs and

10 Gbps links.

Mathematically, queue length is an instantaneous random variable, while rate of

sources is a time averaged variable measured in a predefined interval. For the same

load, the instantaneous queue length can vary a lot. Consider a simple M/M/1

queue for example. Suppose ρ is the load factor (equivalent to link utilization), the

probability that queue length Q is equal to n is

P (Q = n) = (1 − ρ)ρn.

Therefore, rate based sensor is more stable (less variance) than queue-based load

sensor.

Furthermore, this explicit rate control messages are much simpler in terms of message

format since it is not necessary to indicate the identification of different congestion

points. In Chapter 6, we will show that FERA’s convergence time to fair and stable

state outperforms that of BCN.

In summary, considering both the system performance and complexity issues, the

forward explicit rate control is better than implicit rate control schemes.

9

Chapter 4

FERA Model and Assumptions

4.1 System Model

FERA is a close-loop explicit rate feedback control mechanism as shown in Fig. 4.1. It

is assumed that the sources are equipped with the rate regulators, which can be token-

bucket traffic shaper. If congestion happens, the switches can effectively measure the

current load of the output link, which generally requires several simple counters that

can be easily integrated in hardware.

Figure 4.1: Simple FERA system model.

As shown in Fig. 4.1, rate discovery packets are sent periodically in each flow. These

packets contain a rate discovery tag. The tags can also be piggybacked on data

carrying packets. The measurement unit in the switch monitors the length of its

output queue, the input rate and the output capacity. Based on the measurements,

the switch periodically calculates the current fair share of its output link and uses it

as the advertised rate for sources in the next measurement interval. When the tagged

packets go through the switch, the switch reduces the rate in the tag to its advertised

rate. When the sink receives these tagged packets, it simply marks it as a returning

tag and sends it to the source either as a separate packet or by piggybacking it on

10

the reverse traffic. Of course, the returning tags have a different protocol type to

distinguish them from forward tags. At the sources, when a returning tag is received,

the rate regulator updates its rate to that indicated in the tag.

Thus the FERA mechanism has 3 components: Measuring, Marking and Reacting.

In the following, each component is explained in detail.

4.1.1 Link Measurement

For each link, the network manager sets a target buffer utilization level at equilibrium

Qeq. This is the desired number of packets that should be in queue. Another severe

congestion threshold Qsc is also set by the network administrator to indicate high

congestion level on the link. The switches simply count the number of arriving packets

in each measurement interval T . From this count, the switch can calculate the link

utilization level in the last measurement interval and use it to set the advertised rate

for the next measurement interval. If the congestion is severe, i.e., the queue depth

is larger than Qsc, the switch may send a ”PAUSE” message on all input ports to

prevent loss of packets.

4.1.2 Forward Marking and PAUSE Signaling

FERA has two kinds of signals: PAUSE frames and FERA tags. PAUSE frames

are a hop-by-hop congestion control mechanism specified in IEEE802.3x. When the

queue length is larger than Qsc, the switch simply sends out PAUSE/ON to all its

uplink neighbors. The neighbors stop transmitting packets. This in turn results in

neighbor’s buffers getting filled up and a PAUSE/ON is issued to the previous hop.

Ultimately, PAUSE signal reaches the source end stations. When the queue length

in the switch becomes lower than some predefined level, a PAUSE/OFF frame is

sent out on the input ports to start transmission of packets. It is well known that

PAUSE mechanism can unfairly affect innocent traffic that is not going through the

bottleneck and also can reduce the network throughput, so it should be used only

rarely and for short time.

11

4.1.3 Source Tagging and Reaction

The source tags one packet every τ interval. Generally, τ ≤ T . The rate r in the tags

is initialized to the output link rate by the sources. When the FERA tagged packet

reaches the destination, the destination sends the tag back to the source with the new

rate r contained in the tag. When the source receives the tag, it updates the rate for

the corresponding rate regulator.

Note that FERA works in a defined FERA-aware region of the network. If the packets

exit this region, the edge bridges perform the corresponding end system functions and

remove the tags from forwarded traffic.

4.2 Assumptions

FERA control messages and tags are specially formatted packets sent through switches

in DCEs. It is important that the messages follow a format that is acceptable to legacy

switches that are FERA-unaware. Generally, the FERA message format should be

VLAN-tagged to ensure the coexistence and interoperability between FERA-aware

and FERA-unaware switches. Propagation delay in DCEs is generally small - of the

order of a few tens or hundreds of microseconds. This is because the diameter of the

network is only a few hundreds meters. Links are assumed to be of high capacity.

Most links are either 1 Gigabit per second or 10 Gigabit per second. In our analysis,

we assume that switch buffers are FIFO and output queued.

12

Chapter 5

FERA Switch and Source

Algorithms

We now describe the FERA mechanism in detail. Note that each switch allocates the

same advertised rate to all flows. It does not need any knowledge of the number of

active flows. There is no per-flow accounting in the switches. The switches perform

time-based measurement to monitor the load and queue length. Assume t0 = 0,

denote the sequential measurement time instants as t1, t2, . . . , ti, where T = ti − ti−1

is the fixed measurement interval. See Fig.5.1. Then, the following variables are

ti−1 ti ti+1

the ith interval

ri ri+1

Measure Ai and qi

Figure 5.1: Illustration of rate calculation.

defined for the ith interval (ti−1, ti]: ρi is the load factor for this interval; qi is the

number of packets in the buffer at the end of the interval (at time ti); ri is the

advertised rate for the ith interval; Ai is the average arrival rate during the interval.

In addition, assume that the link capacity is C, Pm is the packet size. Note that

we measure the queue length qi by the number of packets and use fixed-size packets.

However, FERA can handle random packet sizes simply by measuring queue lengths

in bytes. In brief, the notation rules are the following: if the value is effective for the

13

i + 1th interval, its subscript is denoted as i + 1; if the value is measured in the ith

interval (at time spot ti), its subscript is denoted as i.

The basic algorithm is as follows.

• Switch Side:

– Computation:

∗ Initialization: Initial advertised rate r0 = C
N0

; where N0 is a constant

determined by the network administrator.

∗ Measurement of effective load: ρi = Ai

f(qi)×C
;

∗ Bandwidth Allocation: ri+1 = ri

ρi
;

– Marking: If the ri+1 < r where r is the rate value in the rate discovery

tags, then r = ri+1.

• Source End:

– The sources start at the initial rate of r0 = C
N0

. Here C is the source link

capacity and N0 is the network wide parameter (same as that used in the

switches).

– Before the source starts its transmission, it sends out a rate discovery tag

(either piggybacked on the first data packet or as a separate packet) to

find out the bottleneck switch’s advertised rate.

– After the source receives the rate discovery tag, it sets its rate to that in

the tag received from the network.

– If no packets are sent and hence no tags have been received in the last 2T

time interval, the source resets its rate r to C
N0

.

Note that in the last measurement interval, Ai is the sum rate of all input flows at

the switch port, thus

ri+1 =
ri

ρi

=
Cf(qi)

Ai

ri

,

where Cf(qi) could be thought as the effective bandwidth available, N = Ai

ri
is the

effective number of flows. f(q) is the queue control function [10] to ensure that the

queue length is kept at a constant level.

14

An key feature in the FERA is that we do not need any information about the num-

ber of flows, while in ATM congestion control mechanisms, for example the standard

algorithm, ERICA [11], the estimation of the number of active flows is required.

While in FERA, we have built in the estimated number of flows into the algorithm,

which is the key novelty compared with ATM congestion control algorithms. Another

difference between FERA and ATM algorithm is that FERA does not need to main-

tain multiple states as ATM switch does, which leads much simpler operations for

Ethernet switches.

5.1 Queue Control Functions

The queue control function f(q) plays a key role in controlling the queue length. In

the following discussion, we focus on the linear and hyperbolic functions used in [10].

Generally, if f(q) is a linear function, it has the form

f(q) = 1 − k
q − Qeq

Qeq

, (1)

where Qeq is target equilibrium queue length measured by packets, k is some constant.

If f(q) is a hyperbolic function,

f(q) =

{
bQeq

(b−1)q+Qeq
, if q ≤ Qeq,

max(c, aQeq

(a−1)q+Qeq
), otherwise.

(2)

where a, b, c are constants. Note that in both (1) and (2), f(Qeq) = 1.

5.2 Analysis of Stability and Fairness

Proposition 1 Without considering the control loop delay, FERA can achieve sta-

bility and max-min fairness.

15

Typically in DCEs, the control loop delay is very small compared with measurement

interval. In the following analysis, we ignore the feedback delays.

ri+1 =
ri

ρi

=
f(qi)C

N
. (3)

Then

qi+1 = qi +
(Nri+1 − C)T

Pm

= qi + α(f(qi) − 1), (4)

where α = CT
Pm

, Pm is the packet size.

When f(q) is the hyperbolic function, (4) is a nonlinear discrete equation. However,

it is easy to show when the initial queue length q0 > Qeq, the sequence {qi} is

monotonically decreasing. Similarly, if q0 < Qeq, the sequence {qi} is monotonically

increasing. In both cases, the limit of the sequence is exactly Qeq as time goes to

infinity, i.e., limi→∞ qi = Qeq. On the other hand, when qi = Qeq, by (3), f(qi) = 1.

Therefore the queue length is kept stable at Qeq. Meanwhile, ri+1 = C
N

. It follows

that all flows get the fair share, even though we do not know explicitly how many

flows there are.

When f(q) is the linear function shown in (1), we can get a closed form solution for

qi, which is written as

qi+1 =

(

1 −
αk

Qeq

)

qi + αk,

then

qi =

(

1 −
αk

Qeq

)i

q0 + αk

i∑

j=0

(

1 −
αk

Qeq

)j

. (5)

With a sufficient condition that αk
Qeq

< 1, limi→∞ qi = Qeq. Note that this sufficient

condition is the key criterion to choose the queue control function parameters given

the length of measurement interval. With the similar argument for the hyperbolic

function, FERA still has the property of convergence to stable state with fair share

among each flows. Furthermore, by approximating the hyperbolic function using

piecewise linear functions, the above sufficient condition can be used to determine

the proper values for a, b and c.

16

f(q)

1

Qeq q

linear function

hyperbolic function

Figure 5.2: The queue control functions.

17

Chapter 6

Convergence to Fairness

In this chapter, we will provide the analytical results on the convergence time for

both FERA and BCN.

6.1 Convergence Time for FERA

Since the hyperbolic queue control function leads to a nonlinear discrete function, it

is not trivial to analyze the rate of convergence. However, we can use the linear queue

control function to get an approximation (or lower bound) for the rate of convergence.

See Fig.5.2. At every point of q, the linear function has a larger value compared with

the one of hyperbolic function, hence the linear function has a faster convergence

rate. However, the hyperbolic function is much smoother and has smaller oscillations

in queue length. Due to the stochastic effects of arrival and departure rates in the

queueing system, we define that when qi

Qeq
∈ [0.9, 1.1], the system is in the stable

state. Thus, assuming after n steps, the queue is stable, we rewrite (5) into

0.9Qeq ≤

(

1 −
αk

Qeq

)n

q0 + Qeq

[

1 −

(

1 −
αk

Qeq

)n+1
]

≤ 1.1Qeq (6)

Assuming q0 = M × Qeq, using (6) we have

n ≥

log 1

10
˛

˛

˛
M−1+ αk

Qeq

˛

˛

˛

log
(

1 − αk
Qeq

) (7)

18

Now we show a simple example to calculate the convergence time for FERA. We

assume N0 is relatively large compared to the the actual number of flows in the

network. Therefore, at the very beginning, q0 = 0. Let us assume Qeq = 16, Pm =

1500 B, C = 10 Gbps, M = 0, T = 1 ms and k = 0.002. Using equation (7), we

have n ≈ 20, then the convergence time t = n × T = 20 ms. By increasing k, we

can achieve shorter convergence time, for example, if k = 0.008, we only need n ≈ 4

steps.

6.2 Convergence Time for BCN

Recall the AIMD algorithm implemented by BCN [5], at the ith source, assume tn is

the time at nth rate update event, then

ri(tn+1) =

{

ri + Gie(tn)Ru if e(tn) > 0;

ri[1 + Gde(tn)] if e(tn) < 0.

Here, e(tn) is the congestion index measured for time interval [tn−1, tn]. Gi is the

additive increase gain, Ru is the increase rate unit and Gd is the multiplicative decrease

gain.

By the above AIMD algorithm, we have the following discrete differential equation,

ri(tn+1) = ei(tn)†[1 − |ei(tn)|Gd]ri(tn)
︸ ︷︷ ︸

Multiplicative Decrease

+ (1 − ei(tn)†)[ri(tn) + Gi|ei(tn)|Ru]
︸ ︷︷ ︸

Additive Increase

,

where

ei(tn)† =

{

1, if ei(tn) < 0,

0, otherwise.

Assume the absolute value |ei(t)| is independent of the sign of ei(t), the above equation

can be rewritten as:

ri(tn+1) − ri(tn) = |ei(tn)|{GiRu − ei(tn)†(Gdri(tn) + GiRu)} (8)

19

t

ri

r∗i

t1

Figure 6.1: A sample path of rate convergence process in BCN.

Take the expectation on ei(tn)† over time, generally we can assume E[ei(tn)†] = 1
2

(In

fact, this value is correlated with the parameters Gi, Gd and Ru). In other word, if we

regard it as the expectation of the probability of generating negative BCN messages,

in fairness state, E[ei(tn)†] ≈ 1
2
, otherwise, the rate will either explode to infinity or

zero. A simple justification from Fig.6.1 is that the rate is always oscillating around

the fair share. Another observation is that the absolute difference between ri(tn+1)

and ri(∞) must vanish when time goes to infinity. Therefore we take expectations

on (8) and rewrite it into the following one,

|ri(tn+1) − ri(∞)| = {1 − E[|ei(tn)|]E[ei(tn)†]Gd} · |ri(tn) − ri(∞)|, (9)

where we have

r∗i := ri(∞) =
GiRu(1 − E[ei(tn)†])

E[ei(tn)†]Gd

. (10)

Note that (8)-(10) are only an approximation on the convergence process of the rate,

which is not rigorously accurate but provides us a way to lower bound the convergence

time for BCN. A similar approach for loss-based TCP AIMD algorithm can be found

in [12].

20

Based on the recursive relation in (9), denote E|ei(tn)|E[ei(tn)†]Gd as ei,n ∈ (0, 1) for

convenience, we have

ri(t) = r∗i + (ri(0) − r∗i)
∏

tn≤t

(1 − ei,n), (11)

where ri(0) < r∗i .

Assume e = min{ei,n}, then

ri(tn) ≥ r∗i +
ri(0) − r∗i

n + 1

1 − (1 − e)n+1

e
. (12)

Then assume averagely the source get one BCN message in T ′, we can have a lower

bound on time to convergence t = nT ′ by

r∗i +
ri(0) − r∗i

n + 1

1 − (1 − e)n+1

e
≥ βr∗i ,

where β = 0.9 is defined to be the lower bound of the range of the fair state.

By (1−x)n+1 ≤ 1−(n+1)x ≤ 1−(n+1)xn, x < 1, one has 1−(1−e)n+1

e
≥ (n+1)(1−e)n.

Thus

n ≥
log(1 − β)r∗i − log(r∗i − ri(0))

log(1 − e)
. (13)

For practical implementation of BCN, we use the well-tuned Gd = 2.6 × 10−4 [13].

Suppose there is a new flow injecting into the network, with initial rate 1.1 Gbps,

then assume the other 3 flows has total throughput around 9 Gbps, which means

that the network is slightly congested. Typically now, ei(tn) ≤ 3. Then using (13),

it will take 4416 steps for the new flow to converge to fair share. Assume that BCN

generates feedback one message per 100 packets for 10 Gbps link (T ′ ≈ 1.2 ms),

then the convergence time is around 0.529 seconds. Therefore the example shows an

example about the poor convergence property of BCN. However, this case is not a

problem for FERA because after one measurement interval, all the flows can send

data with the same rate. The convergence to fairness will not be affected by network

conditions.

21

Chapter 7

Enhancement to Switch Algorithm

Generally, the switch algorithm shown in Chapter 5 works well under good network

conditions like continuous traffic pattern, short delays, etc. However, the real network

traffic is very bursty and propagation delays are relatively long. In order to make

FERA robust, we introduce several enhancements to help FERA to maintain stability

and low queue length.

7.1 Exponential Moving Average

Since there are measurement noise and stochastic perturbations in the network, to

make the rate control robust, we introduce a simple exponential moving average

process on the advertised rate calculation. Assume that in the (i − 1)th and ith

interval, the advertised rates are ri−1 and ri, respectively. Then the new advertised

rate is written as:

ri+1 = λ
ri

ρi

+ (1 − λ)ri−1, (14)

where the constant λ ∈ (0, 1).

Proposition 2 With exponential moving average in (14), FERA can still achieve

stability.

22

Without loss of generality, assuming q1 < q2 < · · · < qi < . . . and substituting (14)

into (4), we have

qi+1 = qi + λα(f(qi) − 1) + (1 − λ)
(Ai−1 − C)T

Pm

, (15)

Note that (Ai−1−C)T
Pm

= qi−1 − qi−2, then

qi+1 = qi + λα(f(qi) − 1) + (1 − λ)(qi−1 − qi−2). (16)

With the linear queue control function (1), we have

qi+1 =

(

1 −
kλα

Qeq

)

qi + (1 − λ)(qi−1 − qi−2) + kλα, (17)

Let q′i = qi − Qeq, (17) can be rewritten as

q′i+1 =

(

1 −
kλα

Qeq

)

q′i + (1 − λ)(q′i−1 − q′i−2),

Then (

1 −
kλα

Qeq

)

q′i+1 <

(

1 −
kλα

Qeq

)

q′i + (1 − λ)(q′i−1 − q′i−2).

Since 0 < kα
Qeq

< 1, we have

q′i+1 − q′i
q′i−1 − q′i−2

<
1 − λ

1 − kλα
Qeq

< 1. (18)

(18) shows that limi→∞ q′i+1 − q′i = 0. In other words, {qi} is a Cauchy sequence and,

therefore, it converges. Letting i → ∞ at both sides of (14), we have limi→∞ qi = Qeq.

Hence, with the moving average, the system is still stable.

Heuristically, this moving average process generally prevents the system from jumping

too far away from the current position by using the historical information.

Furthermore, it helps overcome the effect of round trip delays. Assuming that the

average control loop delay is D < T , then for ith measurement interval, the average

23

arrival rate is

Ai =
N

T
[ri(T − D) + ri−1D] = N

(
T − D

T
ri +

D

T
ri−1

)

. (19)

Generally with long control loop delay, the measurement of ρi will be biased. However,

with the moving average, it can compensate the system in the reverse direction so

that the advertised rate can be pulled back to the unbiased value. For example,

if ri−1 < ri < ri+1, the arrival rate Ai is small compared with the value without

delay, so is ρi. The switch still uses ri to compute ri+1, but actually in the ith

interval, the average rate of individual flow is less than ri. Then the advertised rate

computed without moving average is larger than the expected value which is free of

delay. However, by the moving average, the advertised rate is smaller. In this sense,

the moving average process is very helpful in reducing the effect of control loop delays.

7.2 Limited Increase

In order to avoid very high queue lengths, we put an upper bound on the rate incre-

ment. Assume initially the number of flows in the network are estimated by N0, and if

the advertised rate increases by ∆r, then in the next measurement interval, the total

input rate on the congested link increases by N0∆r. When N0 is large, it can cause

the queue to build up very quickly. So it is helpful to limit ∆r ≤ δ. Note that the

smaller δ results in the longer convergence time. A further step to handling smaller

δ is to exponentially enlarge it when the queue length is lower than some threshold.

In particular, for each interval, we define the limited increase δi as follows. If at the

measurement time, the queue length is less that Qeq, set δi = ηδi−1, and if the queue

length is larger than Qsc, set δi = 1
η
δi−1, where η > 1. In this way, if the actual

number of flows in networks is n, we can get a good rate increment in approximately

logη(
N0

n
) steps.

24

7.3 Varying Capacity Enhancement

In some situations, link capacity can change suddenly. For example, if link aggregation

is used to create a 10 Gbps link from 10 one-Gbps links and if nine of those one-Gbps

links fail, the service rate can decrease suddently to 10%, i.e., 1 Gbps. FERA can

cope with such variations in the link capacity. Suppose the link capacity at time ti−1

is Ci−1 and at time ti the link capacity changes to Ci. If Ci < Ci−1, we simply scale

the advertised rate as

ri+1 =
Ci

Ci−1

[

λ
ri

ρi

+ (1 − λ)ri−1

]

, (20)

where we assume the use of moving average. Note that we do not scale the advertised

rate when Ci ≥ Ci−1. There are two reasons for this. First, it is always better for the

switch to be careful before increasing its rate since queue build up is very harmful.

Second, if the link service rate increases severely, the queue can build up very easily

simply because the scaling also magnifies the error between advertised rate and fair

share. For example, assume the link service rate increases from 1 Gbps to 10 Gbps

and there are 10 flows in the network. With link service rate of 1 Gbps, the system

achieves fairness when each flow’s rate is in [95, 105] Mbps. Now for 10 Gbps link

rate, if we scale these rates to [950, 1050] Mbps, and all 10 flows change their rate

to, say, 1050 Mbps, the queue can easily build up since the excess input of 50 × 10

Mbps in one measurement interval T = 1 ms is around 42 packets with a packet size

of 1500 bytes. In other words, [950, 1050] is actually not an admissible set of rate for

system stability with 10 Gbps link.

7.4 Queue Control Enhancement

with Heavy Traffic

Real world traffic is bursty, which can fill up the queue very quickly. One key obser-

vation is that when the initial queue length is larger than Qeq, and at the equilibrium

point (when every source sends out packets with fair share rate), the queue cannot

approach Qeq either. If the link load is equal or larger than 1, the queue can still build

25

γ Throughput(Mbps)
0.98 9154.14
0.99 9329.22
1.00 9154.14

Table 7.1: FERA with heavy traffic.

up to infinity by the theory of heavy traffic. In order to cope with heavy traffic, when

q > Qeq, we use γC to replace the link capacity, where 0.95 < γ < 1. Therefore, when

the queue length is high and sources get the fair share, the queue can continue to

drain. Simulation results with 100 CBR flows with 200 Mbps data rate going through

one switch output queue with 10 Gbps service rate are shown in the following table.

From Table 8.1, we see that γ = 0.99 is a good choice.

7.5 Equivalence of Multiplicative and Additive

Queue Control

An alternative to multiplying the capacity by f(q) is to subtract f(q) from the capac-

ity. Both of these will lead to reduction in capacity when the queue length is large.

Simulation results[7] show that multiplicative control performs well. In the following,

we show that the multiplicative and additive queue control are equivalent. Based

on the fluid model, we adopt the form of additive queue control which is extensively

studied in [6]. It is written as

ri+1 = ri

[

1 +
α(γC − Ai) − β qi−Qeq

T

γC

]

, (21)

where α, β, γ are moving average parameters. γC − Ai is the available capacity to

share among flows. If γC − Ai > 0, there is spare capacity; Otherwise, the link

is overloaded. (qi − Qeq)/T is used to drain the queue to Qeq in one measurement

interval. γ < 1 gives some additional space for the queue to drain as we discussed in

last section to cope with heavy traffic. Note that large α helps in utilizing available

spare bandwidth and large β helps in draining the queue aggressively.

26

Recall that the advertised rate update in FERA is

ri+1 =
ri

ρi

= ri

(

1 +
1

ρi

− 1

)

. (22)

Without loss of generality, assume q > Qeq, then (3) can be rewritten as

ri+1 = ri

[

1 +

C
Ai

(C − Ai) −
C
Ai

kT
Qeq

(qi−Qeq)
T

C

]

. (23)

Comparing (21) and (23), we can find that they are quite similar except for the moving

average parameters. Note that C
Ai

< 1 when there is congestion. Hence, there is no

substantial difference between the multiplicative and additive queue control. In other

words, since multiplicative queue control still follows the fluid model, the system will

eventually converge to stable state given proper conditions.

7.6 Multistage Queue Control Function

When a switch is congested, the queue length in the switch is a big concern in data

center applications. In this section, we further refine the queue control into a multi-

stage function shown in Fig.7.1, which enables fast queue draining when the queue

length is larger than a predefined threshold, such as 2Qeq. Here the nth stage is defined

as the piecewise control defined on (nQeq, (n + 1)Qeq]. For larger n, the queue drain

is faster. For simplicity, only piecewise linear queue control functions are considered.

It is straightforward to extend them into hyperbolic multistage queue controls. For

100 flows with average rate 200 Mbps injecting into one switch output queue with

10 Gbps service rate, the link utilization for the multistage queue control function

is shown in Table 7.2. Both non-bursty Bernoulli UDP traffic[7], and bursty UDP

traffic with Pareto ON/OFF bursts of 10 ms and shape parameter 1.5 are simulated.

Here, we use k = 0.002n for the nth stage. Comparing with the previous results, we

see that multistage queue control improves the link utilization. For the bursty traffic,

the improvement is smaller than that for the continuous traffic.

27

1

Qeq nQeq q

f(q)

Figure 7.1: Multistage queue control function with n = 2

Queue Control Throughput(Mbps)(Bernoulli) Throughput(Mbps)(Pareto)
Single Stage 9329.22 9376.32

Multi Stage n = 2 9446.28 9366.78
Multi Stage n = 3 9814.68 9401.22

Table 7.2: FERA with single stage and multistage queue control, Bernoulli and
Pareto traffic.

7.7 FERA and PAUSE mechanism

IEEE 802.3x PAUSE mechanism is a hop by hop flow control mechanism, which is

used in DCEs to ensure zero loss when there is a sudden surge of link load due to

link failure or traffic rerouting. When the queue length is larger than a threshold

Qon, the switch sends out PAUSE/ON to all its uplink neighbors. The neighbors stop

transmitting packets. This in turn results in neighbor’s buffers getting filled up and

PAUSE/ONs are issued to their previous hops. Ultimately, PAUSE signal reaches the

source end stations. When the queue length in the switch becomes lower than some

predefined level Qoff , a PAUSE/OFF frame is sent out on the input ports to restart

transmission of packets. Note that in each PAUSE interval, the number of dequeued

packets is at most L − Qoff , where L is the buffer size in packets. Therefore, the

28

PAUSE interval tP is

tP =
(L − Qoff) × Pm

C
.

For a typical DCE with 10 Gbps link, Qon = 90, Qoff = 80, Pm = 1500 B and

L = 100, each PAUSE interval lasts 20×1500×8
10×109 = 0.000024 s, which is much shorter

than one measurement interval (typically 1 ms). Therefore, in one measurement

interval, there could be multiple PAUSE intervals. Meanwhile, due to the effect

of PAUSE mechanism, no packets are dropped. During that measurement interval,

the average load is around 1, otherwise, the congestion has already been controlled.

Note that the queue control function still take effects since the queue length at the

measurement time is at least Qoff , which leads to ρ > 1. Typically for the queue

control function shown in Fig. 5.2, ρ ≈ 1.4. Clearly, after several measurement

intervals, the advertised rate will be exponentially reduced to the equilibrium rate.

29

Chapter 8

Simulation Results

In this chapter, we provide some simulation results to support our claims in former

sections. For extensive simulation results on FERA and comparisons, refer to [7].

8.1 Simulation Configuration

We used Network Simulator V2 (NS2)[14] for our simulations. Unless noted otherwise,

all simulations presented in this paper use the following parameters and configura-

tions. Link propagation delays are 0.5 µs, which are typical for optical fiber lengths of

100 m. Node processing delay is 1 µs. Link speeds are 10 Gbps. Drop-tail mechanism

is used when buffers overflow. Generally we assume the switch output buffer size is

100 packets. The PAUSE ON/OFF thresholds are 90/80 packets, respectively. The

FERA parameters are: Qsc = 80, Qeq = 16, a = 1.1, b = 1.002, c = 0.1, For the simple

topology, N0 = 20, for the large topology, N0 = 200. The measurement interval

T = τ = 1 ms. All packets are 1500 bytes. The settings of BCN is standardized in

[7].

8.2 TCP Flows and FERA

First, FERA can protect fragile sources with lower rates. We use the simple topology

shown in Fig. 8.1, where sources SR1 and SR2 are reference sources with relative

lower rates, whose sinks are DR1 and DR2, respectively. The reference sources SR1

30

and SR2 have one connection which periodically sends out 10 KB data, then idle

for several microseconds and transmit again. CS is the core switch. ES1, . . . , ES6

are edge switches, and ST1, . . . , ST4 are TCP sources with bulk traffic, whose sink

is DT . Each of ST1, . . . , ST4 have 10 continuous connections simultaneously. In

the simulation, TCP Reno with Selective Acknowledgements (SACK) is used. The

maximum timeout for TCP is tuned to 1 ms to enable fast recovery from segment

losses. Since the timeout period is very small, the interaction between transport layer

and IP layer is negligible. For TCP Reno, the maximum receive window is set to 44

packets, which is approximately equivalent to a window of 64 kB.

Figure 8.1: A simple topology.

The results with and without FERA are shown in Table 8.1 and 8.2 for a simulation

run of 1 s.

From Table 8.1 and 8.2, it is seen that FERA improves the throughput of reference

source 1 which suffers the congestion, and its flow completion time is shortened signifi-

cantly. FERA presents a fairly allocated stable link to each source and so the variation

in the TCP performance of the four sources is significantly reduced resulting in very

high fairness. Also, FERA performs better than BCN, especially, FERA achieves

perfect fairness considering the throughput variation between bulk TCP flows.

31

Reference Flow 1
CM Throughput(Tps) Throughput(Gbps) FCT(µs)
None 556 0.060 1780.78
BCN 6686 0.578 133.51
FERA 6970 0.604 127.63

Reference Flow 2
CM Throughput(Tps) Throughput(Gbps) FCT(µs)
None 16634 1.4398 59.11
BCN 16624 1.4390 59.16
FERA 16630 1.44 59.16

Table 8.1: Comparison of reference sources between None Congestion Management,
BCN and FERA. (Tps means transaction per second, FCT means flow completion

time)

CM Average Throughput Standard Deviation/Mean (%) Link Utilization(%)
None 2.49 16.6% 99.9
BCN 2.35 16.8% 99.9
FERA 2.35 0.2% 99.9

Table 8.2: Comparison of bulk traffic between None Congestion Management, BCN
and FERA.

8.3 Simple Symmetric Topology

The goal of this experiment is to show that FERA can achieve perfect fairness and

stability compared with BCN. We start with a simple symmetric topology shown in

Fig. 8.2. The traffic generation model is Bernoulli[13], which has traditionally been

used in IEEE 802.1Qau group to model UDP traffic over Ethernet. If the average

rate of Bernoulli UDP flow is r, packets are generated at rate 2r and then a Bernoulli

trial with probability 0.5 is performed for each packet to decide whether it is dropped.

Therefore, the instantaneous peak rate of Bernoulli flow with average rate r could be

2r. In the following simulation, the average data rate for each of 4 flows is 5 Gbps.

Four flows simultaneously are injected into the network at 5 ms. Then two flows

goes away from 80 ms. In the simulation, the whole simulation duration is 100 ms.

From the results, it is seen that the source throughput with FERA converges to the

32

Figure 8.2: A simple symmetric topology.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

SU1
SU2
SU3
SU4

(a) Throughput with BCN

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
Pk

ts
)

Time(s)

Queue Length
Qeq

(b) Queue Length with BCN

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

SU1
SU2
SU3
SU4

(c) Throughput with FERA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
Pk

ts
)

Time(s)

Queue Length
Qeq

(d) Queue Length with FERA

Figure 8.3: UDP bernoulli traffic in simple symmetric topology.

fair share in around 10 ms, the queue goes to the Qeq in much longer time, which

somehow matches the analysis results in Section 6.1 when k = 0.002. However, as

long as the source throughput is near the fair share, though the queue does not reach

Qeq, the link is fully utilized. In the same case, there is large difference between the

throughput of each flow for BCN, which shows the unfairness of BCN in short time

scale.

33

Figure 8.4: A parking lot topology

8.4 Parking Lot Topology

In this part, we show that for parking lot topology Fig. 8.4, FERA can achieve max-

min fairness and stability. We still use the Bernoulli traffic. In Fig. 8.5, the results

for both short and long control loop delay are presented, which clearly show FERA

achieves max-min fairness and works well under long control loop delays. With long

control loop delays, the oscillations in queue length are larger but still stable.

8.5 Large Symmetric Topology with Pareto

Distributed Traffic

In this experiment, we simulate a configuration with a large number of flows and

bursty traffic. We use the topology shown in Fig. 8.6, where L = 25. The traffic

ON/OFF times are both Pareto distributed with an average of 10 ms. So all the 100

flows are very bursty, resulting in a severe test case for congestion management.

The following results show that FERA works very well with the bursty traffic. It

achieves good fairness and stability of the source throughput. Even though there

are oscillations in the queue length, the average queue length is still around Qeq.

This means that the system is robust with the bursty traffic. Also the maximum

34

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

ST1
ST2
ST3
ST4
ST5
ST6

(a) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
Pk

ts
)

Time(s)

Queue Length
Qeq

(b) Queue Length at SW1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
Pk

ts
)

Time(s)

Queue Length
Qeq

(c) Queue Length at SW2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

ST1
ST2
ST3
ST4
ST5
ST6

(d) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
Pk

ts
)

Time(s)

Queue Length
Qeq

(e) Queue Length at SW1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
Pk

ts
)

Time(s)

Queue Length
Qeq

(f) Queue Length at SW2

Figure 8.5: Simulation with parking lot topology: in(a)(b)(c), the one hop delay is
0.5 µs, in (d)(e)(f), the one hop delay is 50µs.

Figure 8.6: A simple symmetric topology.

queue length here is generally less than 90 packets, i.e., the PAUSE mechanism is not

triggered.

35

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gp

ut
(M

bp
s)

Time(s)

SU1
SU26
SU51
SU76

(a) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
P

kt
s)

Time(s)

Queue Length
Qeq

(b) Queue Length

Figure 8.7: Pareto traffic in large symmetric topology.

Figure 8.8: A simple asymmetric topology.

8.6 Asymmetric Topology and Multiple

Congestion Points

In the previous experiments, we assumed that all the links have the same capacity.

This is, of course, not true in practice. Therefore, in this experiment, we simulate a

scenario with an asymmetric topology in which some links in the network have low

capacity, say, 1 Gbps. The topology we use is shown in Fig. 8.8. Now two congestion

points are likely (the two right most links). The sink for ST1 and ST2 is DT1 while

the sink ST3 and ST4 is DT2. From the throughput plot, it is seen that two flows

have throughput of around 4.5 Gbps, and the other two have 0.5 Gbps. This is

optimal. Note that the queue at ES5 builds up much slowly, it is simply because

36

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

ST1
ST2
ST3
ST4

(a) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
P

kt
s)

Time(s)

Queue Length
Qeq

(b) Queue Length at CS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
P

kt
s)

Time(s)

Queue Length
Qeq

(c) Queue Length as ES5

Figure 8.9: Throughput and queue length for asymmetric topology.

the link capacity is slow and in turn leads to longer convergence time. However, the

throughput of the sources converges to fair share very fast.

8.7 Output Generated Hotspot Scenario

IEEE 802.1Qau group has selected many special configurations to compare different

proposals. One such configuration is the so called ”one stage output generate hotspot”

configuration shown in Fig. 8.10. The link capacity is 10 Gbps, the service rate of

ST0 decreases suddenly to 1 Gbps due to component link failures in the aggregated

link. On each node, there are 9 flows destined to the other 9 nodes. For example, ST1

has 9 flows sending data to ST0, ST2, . . . , ST9, respectively. The average rate of each

flow is 0.945 Gbps. The throughput on the links, queue length and rate of individual

flows are shown in Fig.8.11. It is clear that FERA can take care of the sudden link

rate changes very quickly. Note that here one PAUSE event happens, but it takes

effect only for 1 ms and so does not degrade the link throughput significantly.

37

Figure 8.10: One stage output generated hotspot scenario.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

Link 1(Uncongested)

(a) Throughput on link from ST1 to CS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

Link 10(Congested, HS)

(b) Throughput on link from CS to ST0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t(

M
bp

s)

Time(s)

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6
Flow 7
Flow 8
Flow 9

(c) Throughput of each flow from CS to
ST0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q
ue

ue
 L

en
gt

h(
P

kt
s)

Time(s)

Queue Length
Qeq

(d) Queue length at port from CS to ST0

Figure 8.11: One stage hotspot scenario, variational capacity.

38

Chapter 9

Conclusions

IEEE 802.1Qau group is developing a standard for congestion notification in data cen-

ter Ethernet networks. The forward explicit congestion notification (FERA) scheme

presented in this thesis is one of the proposed scheme discussed by the group. This

thesis is the complete description of our proposal. In the thesis, we have presented

both the analytical and simulation results for FERA mechanism and compare it with

another scheme BCN. It is shown that FERA generally has better performance com-

paring BCN in convergence time and fairness.

39

References

[1] G. McAlpine, M. Wadekar, T. Gupta, A. Crouch, and D. Newell, “An architec-
ture for congestion management in ethernet clusters,” in IPDPS ’05: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 9. Washington, DC, USA: IEEE Computer Society,
2005, p. 211.1.

[2] J. Santos, Y. Turner, and G. Janakiraman, “End to end congestion control for
infiniband,” IEEE INFOCOM, 2003.

[3] Y. Lu, R. Pan, B. Prabhakar, D. Bergamasco, V. Alaria, and A. Baldini, “Con-
gestion control in networks with no congestion drops,” Allerton, Sept 2006.

[4] D. M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks,” Comp Networks and ISDN System,
1989.

[5] J. Jiang and R. Jain, “Analysis of backward congestion notification (bcn) for
ethernet datacenter applications,” IEEE INFOCOM Minisymposium, May 2007.

[6] N. Dukkipati and N. McKeown, “Why flow-completion time is the right metric
for congestion control,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp.
59–62, 2006.

[7] 802.1Qau - Congestion Notification, IEEE 802.1au Working Group,
http://www.ieee802.org/1/pages/802.1au.html.

[8] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control for fast
long-distance networks,” IEEE INFOCOM, 2004.

[9] R. Srikant, “The mathematics of internet congestion control,” Birkhauser, 2004.

[10] B. Vandalore, R. Jain, R. Goyal, and S. Fahmy, “Design and analysis of queue
control functions for explicit rate switch schemes,” IEEE IC3N, Oct 1998.

[11] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore, “The er-
ica switch algorithm for abr traffic management in atm networks,” IEEE/ACM
Transactions on Networking, Feb 2000.

40

[12] D. X. Xie, P. Cao, and S. H. Low, “Fairness convergence of loss-based tcp,”
Paper Draft, 2006.

[13] D. Bergamasco, “Cn-sim: A baseline simulation scenario,” IEEE 802.1 Meeting,
2006.

[14] NS2, “Network simulator,” available at http://www.isi.edu/nsnam/ns/, 1991.

[15] S. Golestani and S. Bhattacharyya, “End-to-end congestion control for the in-
ternet: A global optimization framework,” IEEE ICNP, Oct 1998.

41

Vita

Jinjing Jiang

Date of Birth March 7, 1981

Place of Birth Huaiyin, China

Degrees B.E. Electrical Engineering, July 2002

M.S. Electrical Engineering, January 2005

Related Publica-

tions

Jinjing Jiang, Raj Jain and Chakchai So-In, ”Congestion Man-

agement for Lossless Ethernet Operation,” submitted to El-

sivier Computer Communications, 2008.

Jinjing Jiang, Raj Jain and Chakchai So-In, ”An Explicit Rate

Control Framework for Lossless Ethernet Operation,” to ap-

pear at IEEE ICC 2008.

Jinjing Jiang and Raj Jain, ”Analysis of Backward Congestion

Notification (BCN) for Ethernet In Datacenter Applications,”

IEEE INFOCOM 2007 Minisymposium, May 2007.

May 2008

Note: Use month and year in which your degree will be conferred.

Short Title: Congestion Management for Lossless Ethernet OperationJiang, M.S. 2008

