
Washington University in St. Louis

School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Raj Jain, Chair
Viktor Gruev
Chenyang Lu

Paul Min
Mohammed Samaka

Software Defined Application Delivery Networking

by

Subharthi Paul

A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

June 2014
Saint Louis, Missouri

copyright by

Subharthi Paul

2014

Contents

List of Tables . iii

List of Figures . iv

Acknowledgments . vii

Abstract . x

1 Introduction . 1
1.1 Objectives . 4
1.2 Approach . 5
1.3 Contribution . 10
1.4 Potential Impact . 11
1.5 Organization . 15

2 Background . 17
2.1 What does Software-Defined mean? . 17
2.2 Software-Defined Networking (SDN) . 22
2.3 Application-Delivery Networking (ADN) . 25

2.3.1 Virtual compute, network and storage infrastructures 27
2.3.2 Middleboxes and Middleware . 38

2.4 Next-generation Internet . 59
2.4.1 ID-locator split architectures . 60
2.4.2 Internet 3.0 . 65
2.4.3 Future Internet Architectures (FIA) projects 72

2.5 Other Related Work . 79

3 AppFabric High-level Architecture . 82
3.1 High-level Ideas . 82

3.1.1 Horizontal integration Platform . 82
3.1.2 Separation of control and data planes 86
3.1.3 ID/Locator Split . 93

3.2 High-level Goal . 95

4 OpenADN: The AppFabric Data Plane . 97

i

4.1 OpenADN: Architectural Requirements . 98
4.2 OpenADN: Architecture . 109

5 Lighthouse: The AppFabric Control and Management Plane System . . 122
5.1 The Management Subsystem . 125
5.2 The Control Subsystem . 130

5.2.1 The Global Controller . 130
5.2.2 The Local Controller . 134

6 AppFabric Prototype . 138
6.1 High-level Design Issues . 138
6.2 AppFabric Prototype: Structure . 143
6.3 AppFabric Prototype: Management Plane Configurations 145

6.3.1 Configuring the AppFabric Service Workflow (ASW) 146
6.3.2 Configuring the AppFabric Application Cloud (AAC) 159

6.4 AppFabric Prototype: The OpenADN Data Plane 165
6.4.1 AppFabric Service Conduit (ASC) Abstraction 166
6.4.2 The common packet and message switching substrate 174

6.5 AppFabric Prototype: Lighthouse Control/Management Plane 185
6.5.1 The Global Controller and Central Manager modules 187
6.5.2 The Local Controller . 190
6.5.3 The Name Server . 192

6.6 Prototype Validation . 193
6.6.1 Validating Functionality . 194
6.6.2 Performance Benchmarking . 208

7 Summary and Future Work . 218

References . 223

Vita . 234

ii

List of Tables

2.1 Middlebox Deployment in a large Enterprise Environment [120] 39

6.1 Top-level Directory Structure of the AppFabric Code 145
6.2 Attributes for a general node configuration and their meanings 149
6.3 Attributes for service configuration and their meanings 152
6.4 Attributes for the classifier configuration and their meanings 156

iii

List of Figures

1.1 Virtual Software-Defined Infrastructure . 3
1.2 A Schematic View of the AppFabric Platform 6
1.3 Schematic representation of an AppFabric Service Workflow 8
1.4 Schematic representation of an AppFabric Application Cloud 9
1.5 Distribute/Aggregate Topology for Iot/CPS use cases 12
1.6 Network Function Virtualization (NFV) use case 14
1.7 Virtual Worlds use case . 15

2.1 Schematic Diagram of the OpenStack Architecture 20
2.2 Software Defined Networking (SDN) Architecture 22
2.3 Schematic Representation of an Application Delivery Controller 26
2.4 Full Virtualization . 29
2.5 Para-Virtualization . 30
2.6 Hardware-assisted Virtualization . 31
2.7 Three Approaches to NIC Virtualization . 36
2.8 IEEE 802.1BR bridge port extension . 37
2.9 Virtual Machines on different VLANs . 38
2.10 Middlebox Deployment in Enterprise Datacenters 43
2.11 Application Delivery Controller Deployment in an Enterprise Datacenter . . 44
2.12 Under-the-Cloud (UtC) Application Delivery Services [101] 45
2.13 Over-the-Cloud (OtC) Application Delivery Services [101] 46
2.14 Hybrid (private-public) Application Deployment 48
2.15 Multi-Enterprise Datacenter Application Deployment 49
2.16 Multi-Cloud Datacenter Application Deployment 50
2.17 Subjective Plot of Opportunity-vs-Difficulty 51
2.18 IBM autonomic Computing: Structure of an Autonomic Element [67] 54
2.19 Schematic Representation of an Enterprise Service Bus (ESB) 57
2.20 Centralized Broker Architecture . 58
2.21 Distributed Broker Architecture . 59
2.22 Internet Generations . 66
2.23 Organization of ”Objects” in Internet 3.0 68
2.24 Internet 3.0 POPs enhanced with Context Routers 70
2.25 Context Router Design . 71
2.26 The new ”narrow waist” of NDN (right) compared to the current Internet

(left) . 73

iv

2.27 MobilityFirst Architecture . 75
2.28 NEBULA Architecture . 77
2.29 XIA Components and Interactions . 78

3.1 Schematic Representation of an Application Delivery Network (ADN) 84
3.2 High-level Architecture of AppFabric showing the distributed data plane, hi-

erarchical control plane and centralized management plane 92
3.3 PONA is part of the Internet 3.0 Architecture (redrawn from Fig. 2.23) . . 94
3.4 AppFabric Distributed Virtual Switch . 95

4.1 AppFabric Distributed Virtual Switch (reproduction of Fig. 3.4) 98
4.2 Middlebox Deployment in Enterprise Datacenters (reproduction of Fig. 2.10) 101
4.3 Middlebox Deployment in Cloud Datacenters 102
4.4 High-level Schematic Representation of the OpenADN Design 109
4.5 Generic ADVS Port . 110
4.6 An Example AppFabric Service Workflow . 116
4.7 Configuration of Nested Tunnels in OpenADN for the AppFabric Service

Workflow in Fig. 4.6 . 118

5.1 Lighthouse Interfaces . 124
5.2 Schematic Representation of the Global Manager 126
5.3 Sites and Zones . 128
5.4 Schematic Representation of the Global Controller 131
5.5 Schematic Representation of the pPort . 132
5.6 Schematic Representation of the Local Controller 134
5.7 Schematic Representation of an AppFabric VM 135

6.1 Schematic representation of an AppFabric Service Workflow. Reproduction
of Fig. 1.3 from chap. 1 . 147

6.2 Service Node Configuration . 149
6.3 Service Graph corresponding to Listing. 6.3 153
6.4 Message Routing . 154
6.5 Class Diagram of the Classifier System . 157
6.6 AppFabric Application Cloud(reproduction of Fig. 1.4) 159
6.7 Sites and Zones (reproduced from Fig. 5.3) 161
6.8 AppFabric Distributed Virtual Switch (reproduction of Fig. 3.4) 166
6.9 AppFabric Service Conduit Abstraction . 167
6.10 sPort - Service Port . 169
6.11 AppFabric Gateway Node - pPort interface 170
6.12 tPort Interfaces . 173
6.13 2-level Switching in tPort . 174
6.14 Layer 3.5 and Layer 4.5 Tunelling . 176

v

6.15 Case 1. Between two message-level services on the same host 177
6.16 Case 2. Between two message-level services with one or more intermediary

packet-level services . 178
6.17 Host Interfaces . 179
6.18 tPort Switch . 180
6.19 Case 3: Between two message-level services on different hosts 181
6.20 Case 4: Between two message-level services on different hosts thorough a

packet level service . 183
6.21 OpenADN: Overall Architecture (as implemented) 184
6.22 OpenADN: Overall Architecture (future implementation) 185
6.23 High-level Architecture of AppFabric showing the distributed data plane, hi-

erarchical control plane and centralized management plane (reproduction of
Fig. 3.2) . 186

6.24 Class Diagram of the Global Controller . 188
6.25 Class Diagram of the Local Controller . 191
6.26 Emulation Scenario 1 . 195
6.27 Service Graph to Demonstrate Application-level Routing 204
6.28 Dynamically Creating New Application Instances to Manage Long User Sessions206
6.29 Dynamically Creating and Destroying Application Instances to Manage Short

User Sessions . 207
6.30 Latency Tests - Different Scenarios . 209
6.31 Latency Tests - Relative Contribution of the Different Transports Across the

Three AppFabric Scenarios . 210
6.32 Latency Tests - Comparison of sPort vs tPort 212
6.33 Throughput Tests - Different Scenarios . 213
6.34 Throughput Tests - Relative Contribution of the Different Transports Across

the Three AppFabric Scenarios . 215
6.35 Throughput Tests - Comparison of sPort vs tPort 216

vi

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Raj Jain for granting

me the opportunity to be a part of his research group and for his support and guidance

throughout the research. I am extremely thankful to him for providing me the intellectual

freedom to work on the ideas I found interesting while at the same time teaching me how to

express abstract ideas in more concrete terms that may be more objectively evaluated.

I would like to thank my co-workers, lab-mates and friends with whom Ive worked, learnt and

have had fun together during the course of many different projects here. I would especially

like to thank Chakchai, Abdel, and Jianli with whom I have collaborated on several research

projects, many of which resulted in joint publications in leading journals and conferences. I

would also like to thank Gabor who contributed to the AppFabric project and to Lav and

Deval who will now lead this project forward.

I would like to thank all the amazing faculty members whose courses I took and learnt so

much. Special thanks to the members of my dissertation committee, Prof. Gruev, Prof. Lu,

Prof. Min and Prof. Samaka, who have reviewed my research and given invaluable advise

to making it better.

Another important part of my graduate life has been my internship at Intel where I was

mentored by Dr. Shi-Wan Lin. It was a tremendous learning experience for me and I cannot

thank Shi-Wan enough for guiding me through it and for being such an influence in my life.

I am fortunate to have many great friends who are no less than family to me. Special thanks

to Ritun, Sandip, and Saurav (wanted to avoid the possibility of any confrontation and so put

their names strictly in alphabetical order) for the spontaneous, long, intellectual discussions

on just about anything under the sun.

Also, I could not possibly be a researcher without the coffee and ambience of the Kayaks

coffee shop, at the intersection of Forest Park and Skinker, where I spent most of my graduate

life.

vii

I am thankful to my parents and my sister for everything they mean to me and everything

I mean to them. Also, I am fortunate to have an amazing extended family (parents-in-law

and brother-in-law) and would like to thank them for always supporting me and believing

in me.

I would like to thank James uncle for simply being ”amazing” and defining what ”amazing”

is.

Finally, I would like to thank Anu, my wife and my partner in crime. She is the reason I

am, and beyond that, nothing really matters.

Subharthi Paul

Washington University in Saint Louis

June 2014

viii

Dedicated to the rational mind that seeks.. and then seeks some more.

ix

ABSTRACT OF THE DISSERTATION

Software Defined Application Delivery Networking

by

Subharthi Paul

Doctor of Philosophy in Computer Science

Washington University in St. Louis, June 2014

Research Advisor: Professor Raj Jain

In this thesis we present the architecture, design, and prototype implementation details of

AppFabric. AppFabric is a next generation application delivery platform for easily creating,

managing and controlling massively distributed and very dynamic application deployments

that may span multiple datacenters.

Over the last few years, the need for more flexibility, finer control, and automatic man-

agement of large (and messy) datacenters has stimulated technologies for virtualizing the

infrastructure components and placing them under software-based management and control;

generically called Software-defined Infrastructure (SDI). However, current applications are

not designed to leverage this dynamism and flexibility offered by SDI and they mostly de-

pend on a mix of different techniques including manual configuration, specialized appliances

(middleboxes), and (mostly) proprietary middleware solutions together with a team of ex-

tremely conscientious and talented system engineers to get their applications deployed and

running. AppFabric, 1) automates the whole control and management stack of application

x

deployment and delivery, 2) allows application architects to define logical workflows consist-

ing of application servers, message-level middleboxes, packet-level middleboxes and network

services (both, local and wide-area) composed over application-level routing policies, and 3)

provides the abstraction of an application cloud that allows the application to dynamically

(and automatically) expand and shrink its distributed footprint across multiple geographi-

cally distributed datacenters operated by different cloud providers. The architecture consists

of a hierarchical control plane system called Lighthouse and a fully distributed data plane

design (with no special hardware components such as service orchestrators, load balancers,

message brokers, etc.) called OpenADN. The current implementation (under active devel-

opment) consists of 10000 lines of python and C code.

AppFabric will allow applications to fully leverage the opportunities provided by modern

virtualized Software-Defined Infrastructures. It will serve as the platform for deploying mas-

sively distributed, and extremely dynamic next generation application use-cases, including:

• Internet-of-Things/Cyber-Physical Systems: Through support for managing dis-

tributed gather-aggregate topologies common to most Internet-of-Things(IoT) and

Cyber-Physical Systems(CPS) use-cases. By their very nature, IoT and CPS use cases

are massively distributed and have different levels of computation and storage require-

ments at different locations. Also, they have variable latency requirements for their

different distributed sites. Some services, such as device controllers, in an Iot/CPS

application workflow may need to gather, process and forward data under near-real

time constraints and hence need to be as close to the device as possible. Other services

may need more computation to process aggregated data to drive long term business

xi

intelligence functions. AppFabric has been designed to provide support for such very

dynamic, highly diversified and massively distributed application use-cases.

• Network Function Virtualization: Through support for heterogeneous workflows,

application-aware networking, and network-aware application deployments, AppFabric

will enable new partnerships between Application Service Providers (ASPs) and Net-

work Service Providers (NSPs). An application workflow in AppFabric may comprise

of application services, packet and message-level middleboxes, and network transport

services chained together over an application-level routing substrate. The Application-

level routing substrate allows policy-based service chaining where the application may

specify policies for routing their application traffic over different services based on

application-level content or context.

• Virtual worlds/multiplayer games: Through support for creating, managing and

controlling dynamic and distributed application clouds needed by these applications.

AppFabric allows the application to easily specify policies to dynamically grow and

shrink the application’s footprint over different geographical sites, on-demand.

• Mobile Apps: Through support for extremely diversified and very dynamic appli-

cation contexts typical of such applications. Also, AppFabric provides support for

automatically managing massively distributed service deployment and controlling ap-

plication traffic based on application-level policies. This allows mobile applications to

provide the best Quality-of-Experience to its users without

This thesis is the first to handle and provide a complete solution for such a complex and

relevant architectural problem that is expected to touch each of our lives by enabling exciting

new application use-cases that are not possible today. Also, AppFabric is a non-proprietary

xii

platform that is expected to spawn lots of innovatins both in the design of the platfrom itself

and the features it provides to applications. AppFabric still needs many iterations, both

in terms of design and implementation maturity. This thesis is not the end of journey for

AppFabric but rather just the beginning.

xiii

Chapter 1

Introduction

Over the last few years, the need to have more flexibility, finer control and automatic man-

agement of large (and messy) datacenters has stimulated the development of new tech-

nologies, tools and software to virtualize the different infrastructure components including

compute, network and storage. Software-defined Infrastructure or SDI is a generic term that

is used to refer to such virtualized infrastructures with automatic software-based control

and management. Some examples of SDI implementations include OpenStack[94], EC2[35],

Eucalyptus[38] , CloudStack[28], OpenDayLight[112], and FloodLight[43]. Clearly, this

added flexibility and dynamism of the underlying infrastructure layer brings new oppor-

tunities to the way we deploy our applications over them. These include:

• On-demand, dynamic allocation and management of virtual resources: SDI

allows resources to be allocated dynamically. Therefore, unlike physical infrastructures,

applications do not need to pre-allocate all the resources, allowing them to scale-up

and scale-down on-demand. Also, virtualization can more effectively mask failures in

the underlying physical infrastructure providing the abstraction of an always-available

resource pool to the consumer.

• Service-oriented Interface for accessing virtual resources: SDI makes virtual

resources accessible through a service-oriented interface. This allows different resource

providers including Cloud Service Providers (CSPs) and Network Service Providers

(NSPs) to make their resources available by publishing service APIs for their virtual

resources. Application Service Providers (ASPs) consume these APIs to dynamically

launch their applications across resources leased from different resource providers. This

allows ASPs to dynamically distribute their applications across different providers to

1

build application deployment topologies optimizing the cost of deployment, reliability

and latency.

• Delegation of administrative control of virtual resources from resource provider

to resource consumer: Unlike physical resources, SDI allows the resource provider,

such as CSPs and NSPs, to safely delegate the administrative control of a virtual re-

source to the consumer. This allows the resource consumer (ASP) to create and manage

their own application clouds consisting of virtual compute and storage resources over a

programmable virtual network. It can setup its own application specific policies within

its private application cloud. For example, the application can now easily control traf-

fic priority (differentiated services) between its compute nodes by programming the

virtual network between them.

• Convergence of infrastructure layers: Convergence of infrastructure layers is one

of the most exciting possibilities that would be enabled by AppFabric. Presently,

the different infrastructure components including compute, storage and network are

managed separately, and often by separate ownerships. Each of these components try to

optimize their own specific context instead of optimizing jointly for the application that

runs on them. For example, the network is largely unaware of application requirements

and the applications try to use whatever the network provides to them and adapt in

application-specific ways (e.g. application overlays [30, 6, 134, 144] , multi-streams

[44, 128], differential compression [116, 22], intelligent and contextual degradation [114,

113], etc.) to handle situations where the network does not provide them with the

required support. With SDI, it may be possible to end this constant tussle between

the different infrastructure layers by creating virtual resources and placing them under

the direct control of the application.

2

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Cloud
Datacenter

OpenStack EC2 OpenDayLight

Enterprise
Datacenter

ISP Network

Virtual
Hosts

Virtual
Network

Virtual WAN
Services

Virtual
Storage

Virtual
Hosts

Virtual
Storage

Virtual
Network

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Network POP Micro-
Datacenters

Figure 1.1: Virtual Software-Defined Infrastructure

Therefore,in AppFabric we propose a 2-level control and management architecture. At the

bottom level, platform specific SDI controllers would be responsible for directly managing

the physical infrastructure and creating a virtual resource pool.These virtual resources are

then leased to different ASPs to deploy their applications on top of it. The ASP runs an

application controller that is responsible for creating a distributed resource pool for the

application by leasing virtual resources from multiple geographically distributed resource

providers. The application controller is also responsible for managing the deployment and

delivery of the application over this distributed virtual resource pool.

However, current applications are not designed to leverage these new opportunities provided

by SDI. In-fact current application delivery practices consists of a loose mix of several dif-

ferent techniques including manual configuration of infrastructure components, plumbing-in

specialized appliances (middleboxes), and use of (mostly) proprietary middleware solutions

together with a team of extremely conscientious and highly talented system engineers who

get the show running. Clearly, this traditional approach towards application delivery fails

to exploit fully the advantages of SDI over physical infrastructures.

3

1.1 Objectives

In this thesis we will describe the architecture, design and proof-of-concept implementation of

AppFabric. AppFabric is a next generation application delivery platform for easily creating

and managing massively distributed and very dynamic application deployments that may

span multiple datacenters. It is designed to allow future application deployments to fully

leverage the flexibility and dynamism of SDI. More specifically, the AppFabric architecture

seeks to achieve the following objectives:

• Automated creation and maintenance of an application delivery network or

ADN: An application delivery network or ADN is an integrated infrastructure compris-

ing of both, message-level devices and packet-level devices, that host application-layer

services as well as network-layer services. Application-layer services are those that

need to access and act upon application-layer data whereas network-layer services are

those that need to access only network layer (Layer 3 and below of the OSI stack)

information. Application-layer services may be hosted either on message-level devices

or packet-level devices. Examples of application-layer services on message-level devices

include application servers such as web servers, database servers, etc. and message-level

middleboxes such as Web-Application Firewalls (WAF), application transcoders, SSH

offloaders, etc. Example of application-layer services on packet-level devices include

intrusion detection and prevention systems(IDS/IPS), packet scrubbers, WAN opti-

mizers, etc. On the other hand, network-layer services, as the name indicates, perform

only packet-level functions such as packet routing and forwarding and therefore need

access to only Layer 3 (and below) packet headers. Therefore, network-layer services

are always hosted on packet-level devices. The AppFabric platform should be able to

seamlessly integrate these different service/device types and automatically create and

maintain an ADN over which the application can be deployed and delivered.

• Automated deployment of a distributed ADN over multi-datacenter envi-

ronments: The platform should not only be able to create an ADN on a single data-

center but should also support use-cases where the ADN may need to be deployed over

multiple datacenters. This will allow AppFabric to support massively distributed appli-

cation use-cases including Internet-of-Things/Cyber-Physical Systems, virtual worlds,

online games and mobile apps.

4

• Runtime automated control of a distributed ADN: The platform needs to allow

the application administrator to configure policies for distributing the ADN deployment

across multiple datacenters and managing and controlling the deployment at runtime.

These policies include specifying how to distribute the ADN deployment initially and

during the runtime when and where to instantiate/shutdown/move new/existing in-

stances to support change in the application context including user mobility, user access

patterns (load, location, etc.), planned maintenance, and infrastructure failures.

• Automatically create and manage a virtual resource pool for deploying the

ADN: The platform needs to automatically provision and manage a virtual resource

pool as required by the ADN. Also, it needs to be able to dynamically provision and

un-provision resources as required in order to optimize the cost of delivering the ap-

plication. There are two high-level technical challenges that it needs to address to

maintain this virtual resource pool:

– Leased vs. owned resources: The virtual resource pool could comprise of both

leased resources (from cloud providers and network providers) and enterprise-

owned resources (private datacenters and enterprise networks). During runtime,

the platform needs to automatically tradeoff between the security and cost at-

tributes of deploying the application on leased resources with the performance

of the application in terms of delay and distribution factors. Also, the platform

takes care of all the authentication, authorization and billing functions with the

different providers on behalf of the ASP.

– Interoperability across multiple SDI platforms: The virtual resource pool

could comprise of resources from multiple SDI platforms including OpenStack,

EC2, CloudStack, OpenDayLight, etc. The platform needs to be able to interop-

erate across these different platforms so that the ADN can be easily distributed

over resource from many different providers.

1.2 Approach

Fig. 1.2 shows the schematic view of the AppFabric platform architecture. As shown in the

figure, AppFabric sits between the virtual resource layer and the application, and creates the

5

necessary abstractions through its northbound (between the platform and the application)

and southbound (between the platform and SDI) interfaces.

Northbound Interface

Cloud
Datacenter

Cloud
Datacenter

OpenStack EC2 OpenDayLight

Cloud
Datacenter ISP Network

Virtual
Hosts

Virtual
Network

Virtual WAN
Services

Virtual
Storage

Application Service Developers Application Architects
Application Deployment

Administrators

Southbound Interface

Resource Providers

Application
Service Providers

AppFabric Service
Conduit (ASC) abstraction

AppFabric Service Workflow
(ASW) abstraction

AppFabric Application Cloud
(AAC) abstraction

AppFabric Platform

AppFabric Resource Driver
(OpenStack)

AppFabric Resource Driver
(OpenDayLight)

AppFabric Resource Driver
(EC2)

Virtual
Hosts

Virtual
Storage

Virtual
Network

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

ISP Smart
Edge

Figure 1.2: A Schematic View of the AppFabric Platform

• The northbound interface: The northbound interface is defined between the App-

Fabric platform and the application. It provides three key abstractions:

– The AppFabric Service Conduit abstraction: The AppFabric Service Con-

duit (ASC) abstraction provides a communication channel through which a service

may connect to the AppFabric platform and communicate with other services in

the application. The ASC frees the service developer from having to know the

service’ deployment context (the identity and location of the service(s) to which

it will need to communicate at runtime) at design time. Also, the service does

6

not need to statically bind the communication channel to any particular transport

mechanism. The service just reads and writes messages/packets from the conduit.

the platforms runtime mechanism will take care of binding the communication

channel to the appropriate destination(s) over the appropriate transport(s). It

may be noted that services need to be AppFabric-aware to connect the platform

thorough the ASC. AppFabric-unaware services can also connect to the platform

through a AppFabric Gateway Node (AGN) that is described in chapter 4.

– The AppFabric Service Workflow abstraction: The AppFabric Service

Workflow (ASW) abstraction allows the application architect to choreograph the

application over a set of independent services. These services could be both

application-layer services or network-layer services and maybe hosted over message-

level devices or packet-level devices. Some of these services may be implementing

application logic (e.g. application servers, web servers, etc.) while others may

be part of the deployment environment (e.g. Web-application firewalls, Intrusion

Detection Systems, etc.). Also, some of these services may not be directly under

the control of the ASP but operated by a third-party provider. The key mech-

anism underlying service choreography in AppFabric is application-level policy

routing or APR. The application architect may specify message/packet routing

policies based on application-layer content or context of the message/packet and

these policies are compiled into forwarding rules to be enforced by the platform

on the application traffic. Fig. 1.3 shows a schematic representation of an ASW.

7

IDS 1

App
Routing

(Message)

App
Routing
(Packet)

App
Routing

(Message)

App
Routing
(Packet) App

Routing
(Message)

 Proxy
Service

IDS 2

App
Routing

(Message)

Web
Service

Proxy Service

Packet-level
Middlebox (e.g. IDS)

Message-level
Middlebox

Application Service

Transcoder 2

Transcoder 1

Users/
AppFabric-unaware

services

Figure 1.3: Schematic representation of an AppFabric Service Workflow

– The AppFabric Application Cloud abstraction: The AppFabric Applica-

tion Cloud (AAC) abstraction allows the application administrator to specify

application deployment and delivery policies for delivering the application over

multi-datacenter environments. These policies might specify the rules for optimiz-

ing the application delivery over various cost and performance tradeoffs including

distributing the application instances across different geographical regions and

across multiple private/cloud dataceneters, optimizing for variable usage patterns

(load, distribution and context of users) and handling infrastructure failures and

planned maintenance situations. Fig. 1.4 shows a schematic representation of

an AAC where the application cloud spawns several ASW instances that are dis-

tributed over resources leased from multiple Cloud and Internet Service providers.

8

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Cloud
Datacenter

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

ISP Network

AppFabric Service Workflow
<instance #1>

AppFabric Application Cloud (AAC)

Figure 1.4: Schematic representation of an AppFabric Application Cloud

• The southbound interface: The southbound interface is defined between the App-

Fabric platform and SDI providers. It implements two types of interfaces:

– The AppFabric Southbound Management Interface: Through the south-

bound management interface, AppFabric talks to different SDI platform man-

agement planes (e.g. EC2, OpenSTack, OpenDayLight, etc.) to lease/allocate

resources and place them in the common virtual resource pool for instantiating

the ADN over them.

– The AppFabric Southbound Control Interface: Once the virtual resources

are allocated to the virtual resource pool, they are programmed through the App-

Fabric Southbound Control interface with the application runtime deployment and

delivery rules compiled from the ASP policies specified thorough the AppFabric

northbound interface.

9

1.3 Contribution

This thesis makes several key contributions.

• Definition and architectural framework for Application Delivery Network

(ADN): The term application delivery networking is often used by middlebox ven-

dors such as F5[39], Citrix[25], etc. to refer to their consolidated middlebox platforms

that provide essential security, performance and optimization services to application

deployments. However, it is clearly not appropriate to call such platforms ADN since

although these devices may be part of the network, neither do they create a network

nor are they the only components required for delivering the application. We re-define

the term ADN to refer to a network of all the different components including appli-

cations servers, storage servers, packet level middleboxes, message-level middleboxes,

and network transport services that are required to deliver an application. Also, we

provide a standard framework of creating and operating such ADNs over distributed

resources that may be leased from third-party providers.

• Automatically managed fabric-approach: Although the concept of a network-

fabric, referring to automatically managed distributed network infrastructure has been

around for quite some time, we are probably the first to propose the idea of an applica-

tion fabric. An application fabric is a single, flat, automatically managed distributed

application delivery and deployment infrastructure as against the existing application

delivery environments that are fractured across multiple administrative domains and

device/service types that are managed either thorough ad-hoc manual techniques or

through centralized (or logically centralized) orchestration services.

• Separation of control and data planes in application delivery: AppFabric is

probably the only solution as of now to extend the idea of control and data plane

separation proposed by the Software-Defined Networking (SDN) architecture beyond

network infrastructures to ADNs comprising of both, network-layer service as well as

application-layer services.

• Hierarchical control plane architecture: Unlike the centralized or logically cen-

tralized controller architecture proposed by most SDN architectures, AppFabric pro-

poses a hierarchical control plane architecture to be able to effectively manage and

10

control massively distributed ADN deployments that may be distributed across an ex-

tended geographical region. The centralized controller approach is not appropriate for

such use cases since there would be non-negligible communication latency between the

data plane entities and the centralized controller.

• Introducing a multi-datacenter application deployment platform: While cloud

computing has truly revolutionized the computing landscape, AppFabric will allow ap-

plications to truly leverage the opportunities provided by cloud computing. Many

application use-cases that involve massively distributed geographical presence with

dynamically changing application footprint such as Internet-of-Things/Cyber-Physical

Systems, virtual worlds, online games and mobile apps are expected to benefit im-

mensely from such a platform.

• Introducing the concept of cloud networking: The AppFabric architecture

motivates the need for cloud networking; that is applying the concepts of cloud com-

puting to networking, including virtualization and on-demand, dynamic provisioning

of services through a standard service-oriented interface.

• Prototype implementation: We have implemented a prototype of the AppFabric

that includes all the essential features discussed in this thesis. The prototype has

been implemented in a mix of Python and C and contains 10,000 lines of code. This

proof-of-concept implementation is quite extensive and helps validate the architectural

claims that we make in this thesis and also provide the basic framework that can be

easily extended to real, production-level implementation in the future.

1.4 Potential Impact

AppFabric is designed to provide a deployment and delivery platform for massively dis-

tributed and extremely dynamic application use-cases. In this section we will look at some

application areas where such application use-cases are relevant and how AppFabric supports

the deployment of these use-cases. It may be noted that as with any platform solution, all

the application use-cases discussed in this section is possible without AppFabric. AppFabric

just makes it easier by providing the required abstractions.

11

…

…

sensors, active/passive tags, etc.

 factory floor, house, car, etc.

network POPs. pico-cells, etc.

C
on

tr
ol

 T
he

or
y

(R
ea

l-t
im

e)

A
na

ly
tic

s,
 B

I

Realm	
 A	

enterprise/cloud DCs

B
ig

“g
er

”
D

at
a

Inter-realm data sharing
(analytics data)

D
at

a

Device-­‐facing	
 interface	

Node-­‐facing	
 interface	

E - W Interface

N
ea

r R
ea

l-t
im

e

A
na

ly
tic

s

H
ug

e
da

ta

E - W Interface
Things Social Network
(Collaborative Apps)

…

Distribution

Aggregation
Realm	
 B	

Figure 1.5: Distribute/Aggregate Topology for Iot/CPS use cases

• Internet-of-Things (IoT) and Cyber-Physical Systems (CPS): IoT and CPS

use-cases inherently have a hierarchical distribute-aggregate topology (as shown in

Fig. 1.5) with a large number of data collection points and a relatively fewer number

of data aggregation points. Also, the requirements at each level in the hierarchy vary

from latency-sensitive near real-time processing at the edge controllers to long-term big

data analytics at the core. Managing such a massively distributed application topology

with such a diversified set of service requirements is hard. This is especially true as

we approach next generation IoT and CPS use-cases that will see a lot of integration

across industry verticals. For example, in the future, vehicular networks will be con-

nected to public safety systems, the car manufacturers system for tracking the proper

functioning of the car, insurance companies for providing incentives for safe driving and

traffic monitoring and mapping systems to control smooth distribution of traffic. The

possibilities are limited only by ones imagination. AppFabric will provide a common

12

platform for deploying and managing these different application use-cases. AppFab-

ric makes it possible to easily manage massively distributed application deployments,

typical to these application use-cases. Also, AppFabric is designed to allow applica-

tion deployments to leverage SDI to setup application-specific clouds. For example,

assuming that resource providers make different classes of infrastructure services avail-

able through their SDI interfaces, AppFabric could select the right providers, at the

right locations to get the right types of resources required to support the application.

Finally, AppFabric allows the application cloud to be dynamic. Again this is typical

of many IoT and CPS applications where the topology of the application deployment

may need to change over time.

• Mobile Apps: Over the past few years, the popularity of smart phones and other

smart mobile devices has led to an explosion in the number of diverse applications

being created for these platforms. These mobile apps, as the name suggests, are mobile.

Access to these applications are extremely context-aware (type and capability of the

device and nature of the connectivity) and inherently distributed. Also, as users move,

the application cloud needs to adapt dynamically to be able to serve its users efficiently

and ensure that the quality of user experience. The mobile apps platform has opened

up the doors for innovations where any individual who has an idea can easily create an

app in a relatively small time and get into business. But, one of the limitations is that

it is difficult for an individual to provide a high quality app that requires substantial

back-end support due to the complexities and capital and operational expenditures

of maintaining a distributed service back-end. Therefore, creating and maintaining

such apps may in fact be more challenging than providing traditional online services.

AppFabric will help lead this innovation forward by providing a platform that would

easily allow the app provider to create and manage a dynamic application cloud that

automatically scales to the number of users and more importantly distributes the

application deployment on-demand. It would thus greatly reduce both, the CAPEX

and OPEX of providing a quality app that in-turn further reduces the risk of investing

in an idea.

• Network Function Virtualization (NFV): Telecom and network providers are try-

ing to virtualize their infrastructures to make them ready to handle the next generation

cloud-based application traffic. The primary goal is to virtualize network functions so

13

Network POPs
(Micro-datacenters)

VA
Virtual Appliances

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Datacenters

Access
Networks

VA VA VA VA

DPI Firewall NA
T

CDN

WAN
optimization

.
BRAS

Msg
Router

Wireless Edge)

Figure 1.6: Network Function Virtualization (NFV) use case

that they can be dynamically deployed anywhere and anytime. This requires moving

network services out of specialized hardware and deploying them over commodity hard-

ware in micro-datacenters distributed across the network operators points-of-presence.

Architecting POPs this way would be a huge revenue source for these operators and

they can provide a lot of services much more easily, cheaply and dynamically to dis-

tributed application deployments. AppFabric provides support for NFV in two ways.

First, the deployment of virtualized network services across multiple POPs dynamically

is itself another instance of massively distributed and dynamic application deployment

context that AppFabric is designed to address. Second, to an AppFabric-based appli-

cation deployment, NFV services are just another type of SDI provided by a network

provider. As we will see in our discussion, the AppFabric data plane will allow third-

party network services to be easily inserted into an applications service composition

context.

• Online Gaming, Virtual Worlds: Online gaming and virtual world (for example,

virtual office, next generation virtual meeting rooms, etc.) applications have been

around for quite some time but havent really been deliver to their full potential. These

applications have scaling and latency requirements that can only be solved by having

14

a massively distributed compute infrastructure. Another requirement is that the ap-

plication should be able to change its topology dynamically based on usage patterns;

similar to mobile apps. Also, for many such applications, communication between the

distributed servers may critical and also sensitive to latencies. These are exactly the

issues that AppFabric is designed to address.

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Cloud
Datacenter

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Application Cloud #1
(e.g. game session 1)

Application Cloud #2
(e.g. virtual meeting)

Application Cloud #3
(e.g. game session 2)

Virtual
Application

Figure 1.7: Virtual Worlds use case

1.5 Organization

The organization of this thesis is as follows. Chapter 2 provides additional background and

related work. In chapter 3, we present the high-level architecture of AppFabric, detailing

the requirements of such a platform and motivating the current design choices. Chapter 4

presents the details of the OpenADN (Open Application Delivery Network) design, which

is the data plane of AppFabric. In Chapter 5 we present the AppFabric control and man-

agement plane called Lighthouse. Chapter 6 details the proof-of-concept implementation

15

of AppFabric. Finally, we summarize our findings in chapter 7 and point to a number of

interesting avenues for future work.

16

Chapter 2

Background

In this chapter we will give some background on the various concepts that are directly or

indirectly related to the discussion in this thesis. AppFabric is a horizontal platform that

integrates several technology verticals.Therefore, the discussion in this chapter will touch

upon many different and seemingly unrelated areas. The high-level idea that connects all

these different areas is that they all contribute, either directly or indirectly, to advancing the

frontier of deploying and delivering large-scale, massively distributed and extremely efficient

applications in the future. Keeping this high-level idea in mind will allow the reader to better

understand the discussion in this chapter while at the same time appreciate the relevance,

challenges and enormity of the problem that we have set ourselves to address.

2.1 What does Software-Defined mean?

Currently, there seems to be a huge hype around the phrase software-defined and as typical

of all technologies in the hype phase, it is presented as the elixir to all system design problems.

All product vendors are touting their solutions to be software-defined-*, creating confusion

as to what these terms really mean. In order to be able to cut through the hype and get to

the real applicability of any technology it is important to have a more objective and practical

perspective. One of the ways to do it is to study the historical perspective of its origin and

try to objectively see how it is different from past efforts and what is unique in the current

approach that will make it better. Therefore, before delving into any specific discussion on

proposed frameworks and use-cases, it would be helpful to try and place software-defined-*

technologies in their right perspective.

17

The term software-defined was coined in the context of software-defined networks (SDN).

SDN is a new approach to manage and operate computer networks. Computer networks are

typical examples of large-scale distributed systems and hence extremely hard to design, de-

ploy and operate. This is because it is often tricky to ensure system stability, robustness,

correctness and optimality when dealing with distributed state management (synchroniza-

tion, update delays, etc.) and designing distributed algorithms under partial system-level

visibility. Also, it is extremely difficult to locate and debug problems arising from node fail-

ures, configuration errors and protocol design issues in such systems. SDN tries to address

these issues by proposing a new architectural design based on the separation of the control

and data planes. Currently, each network node runs an instance of the distributed control

plane algorithm that locally computes the data plane forwarding policies for that node. In

SDN, the distributed control plane is replaced by a centralized control plane; with all control

plane functions placed in a centralized node called the controller. The controller is responsi-

ble for computing per-node data plane policies and pushing these policies to the data plane

nodes. The OpenFlow protocol provides the standardized southbound APIs through which

the central controller can speak to the multi-vendor data plane nodes. Both, the advantages

and disadvantages of this architectural design choice are obvious. It is much easier to de-

sign control plane algorithms with full system visibility. Also, since the controller is not in

the data plane, its being centralized does not directly affect the performance, availability

and scalability of the system. However, controller failures may still severely impact the sys-

tem, especially if the controller remains unavailable for long durations, gets compromised or

looses sensitive state information. These are important open problems for the SDN research

to address.

Therefore, SDN greatly simplifies network management and control. However, it is not the

first of its kind. There have been similar proposals before such as centralized route controllers

[15] that compute the forwarding tables for each of the distributed switches and routers in the

network and centralized Path Computation Elements (PCE) [93, 9, 74] for traffic engineering

in MPLS networks. Sure enough, SDN is more generic (in terms of allowing many other types

of polices and at a finer level of granularity) than these previous proposals, but this is not

the only reason for its unprecedented popularity. Most of SDNs popularity is owing to its

(sort of) re-purposed role as the enabler of network virtualization.

18

Virtualization is another term that has become extremely popular lately in the context of

cloud computing, or more specifically in the context of the *-as-a-service paradigm. How-

ever, the concept of virtualization is not new to computing. Loosely defined, virtualization is

the technique of creating an emulated hardware or software resource(s) that may have very

different properties (in terms of size, complexity, functionality, representation, etc.) than

the actual underlying hardware or software resource(s) from which it is created. For exam-

ple, one of the earliest examples of virtualization is the concept of virtual memory. Virtual

memory presents applications with a much larger memory resource than the actual avail-

able physical memory by emulating a non-persistent memory device over persistent storage.

Another example is the concept of virtual LANs that emulate many logically separate layer

2 LAN segments sharing the same physical layer 2 network. Virtualization is implemented

through an abstraction layer, also called the virtualization layer that sits between the ac-

tual resource(s) and the emulated resource(s). Examples of this virtualization layer include

the hypervisor that creates one or more virtual machines over a single physical machine,

the RAID driver that presents an array of redundant storage disks as a single large storage

device, the memory management module within an OS implementing the virtual memory

abstraction, the VLAN tag header in network packets and the software in switches that can

interpret these tags, and the load balancer proxy that sits in front of a replicated software

service but exposes a single virtual IP (VIP) location for accessing the service.

Coming back to our discussion on SDN, although it was originally designed to ease the

pains of managing and controlling large-scale, distributed physical network infrastructures,

it was soon realized that it was very difficult to transform old and legacy networks including

enterprise, telecom and ISP networks. These networks have billions of dollars invested in

hardware-based networking equipment and therefore they are very resistant to any kind

of disruptive new technology. Clearly, SDN with its requirement of programmable data

plane switches and routers was not going to be easily adopted in these use-cases. Instead,

a more plausible use-case was data center networks. Modern datacenters with thousands

of computing and storage devices required a well managed and easy to control network

infrastructure. SDN fitted the bill perfectly. This was validated by Googles announcement

that it used OpenFlow and SDN -like technologies to operate its intra-datacenter and inter-

datacenter networks. These conditions helped in starting the hype around SDN. However,

this hype is not all empty. SDN does have the potential to considerably reduce the CAPEX

(by making the switching hardware commoditized) and OPEX (by making operations much

19

more easier and automated) of network infrastructures significantly and therefore has genuine

value as a technology. But, the real value of SDN is realized in the context of virtualized

datacenter architectures.

Standard Hardware

OpenStack shared services

Compute Network Storage

Nova Quantum

Swift: Object Storage
Cinder: Block Storage

APIs

Your Applications

Horizon

OpenStack
Dashboard

Glance: Virtual Disk Images
KeyStone: Identity

OPENSTACK
Cloud OS

Figure 2.1: Schematic Diagram of the OpenStack Architecture

Today, majority of the data centers, both cloud and on-premise, want to virtualize their

infrastructures.Virtualization allows them to improve resource utilization and the ability to

dynamically generate application-specific infrastructures for diverse application workloads.

In a virtualized data center all resources are virtualized including computing, network, stor-

age, software services and software platforms. However, it is extremely hard to manage this

large and distributed virtualized resource pool and be able to create and maintain higher-

level resource abstractions over them. But, this is the same problem that SDN was designed

to address in the context of distributed, physical networking resources. Therefore, the same

idea of a software-based centralized controller could be re-purposed for other types of re-

sources as well. This led to the popularity of the phrase software-defined that was borrowed

from SDN to refer to this generic architectural notion of software-based, logically-centralized

control and management. Fig. 2.1 shows a schematic representation of the OpenStack archi-

tecture. OpenStack is one of the most popular, open source datacenter management software

stack among others including Amazons EC2 (proprietary), CloudStack, Eucalyptus, etc. As

shown in Fig. 2.1, a virtualized datacenter is enabled by a three-layer virtualization stack.

20

At the bottom, layer 1, is the basic resource virtualization layer that creates a virtual or

emulated resource such as a virtual machine, virtual NIC, virtual disk, and virtual service,

over the actual physical resource. Layer 2 is the virtual resource management and control

layer that is responsible for efficiently consolidating this virtual resource pool and creat-

ing higher-level resource abstractions such as a virtual compute cluster, virtual three-tier

web infrastructure, virtual composed service or software platform etc. Layer 2 has stan-

dard southbound APIs to talk to layer 1 and standard northbound APIs to talk to layer

3. The topmost layer or layer 3 is responsible for exposing these virtual resources to appli-

cations through a set of standard APIs. Application deployments can add/remove/modify

(state)/update (state) resources to their deployment contexts through these APIs. Mostly

these APIs are designed to allow multi-tenancy (by including the identity of the tenant/user

in the API call) such that each tenant/user may operate their own, isolated virtual infras-

tructure context that share the same underlying physical infrastructure. Therefore, layer 3

also needs to implement API management functions including verifying the credentials of

the tenant/user, monitoring usage/rate limiting, and handling billing and SLA. It must be

noted that support for multi-tenancy needs to be built into the resource management layer

(Layer 2) as well in order to ensure performance and security isolation across tenants sharing

the same physical resources, optimizing resource allocation on per-tenant basis (e.g. imple-

menting rack affinity) and enabling differentiated services. This three-layer virtualization

stack implements the software-defined datacenter where the infrastructure is virtualized

and the control and management of the datacenter is fully automated. This is in contrast

to traditional datacenters that are mostly manually managed physical infrastructures.

Within this context, the key question now is how to leverage the flexibility and dynamism

of software-defined infrastructures to improve application deployment and delivery. There

are two ways of looking at this issue. The first is from the perspective of infrastructure

design- to determine what generic abstractions can a software-defined infrastructure provide

that will help applications benefit from it without having to make significant changes to

the application design itself. The second is from the perspective of the application design

to determine how application design can change to benefit from this new software defined

paradigm in general.

21

2.2 Software-Defined Networking (SDN)

In the last section, we touched upon the term Software-Defined Networking or SDN but did

not discuss it in much detail. In this section, we will discuss SDN in more detail and try to

give an overview of the key ideas underlying this architectural concept.

C
on

tro
l P

la
ne

Application Application Application …
ASP 1 ASP 2 ASP N

A
pp

lic
at

io
ns

Northbound
APIs

OpenFlow
Forwarding HW

Forwarding HW

Forwarding HW

Forwarding HW

D
at

a
P

la
ne

FlowVisor

OpenDayLight FloodLight …

C
on

tro
l P

la
ne

Network Controller Software

Southbound
APIs

East-West APIs

Figure 2.2: Software Defined Networking (SDN) Architecture

The SDN architecture comprises of four key ideas:

• Separation of control and data planes: Networking protocols are often arranged

in three planes: data, control, and management. The data plane consists of all the mes-

sages that are generated by the users. To transport these messages, the network needs

to do some housekeeping work, such as finding the shortest path using L3 routing pro-

tocols such as Open Shortest Path First (OSPF) [59] or L2 forwarding protocols such

as the Spanning Tree Protocol [110]. The messages used for this purpose are called

control messages and are essential for network operation. In addition, the network

manager may want to keep track of traffic statistics and the state of the various net-

working equipments. This is done via network management. Management, although

22

important, is different from control in that it is optional and is often not done for small

networks such as home networks. One of the key innovations of SDN is that the con-

trol should be separated from the data plane. The data plane consists of forwarding

the packets using the forwarding tables prepared by the control plane. The control

logic is separated and implemented in a controller that prepares the forwarding table.

The switches implement data plane (forwarding) logic that is greatly simplified. This

reduces the complexity and cost of the switches significantly.

• Centralization of the control plane: The U.S. Department of Defense funded

Advanced Research Project Agency Network(ARPAnet) research in the early 1960s to

counter the threat that the entire nationwide communication system could be disrupted

if the telecommunication centers, which were highly centralized and owned by a single

company at that time, were to be attacked. ARPAnet researchers therefore came up

with a totally distributed architecture in which the communication continues and pack-

ets find the path (if one exists) even if many of the routers become non-operational.

Both the data and control planes were totally distributed. For example, each router

participates in helping prepare the routing tables. Routers exchange reachability in-

formation with their neighbors and neighbors neighbors, and so on. This distributed

control paradigm was one of the pillars of the Internet design and unquestionable up

until a few years ago. Centralization, which was considered a bad thing until a few

years ago, is now considered good, and for good reason. Most organizations and teams

are run using centralized control. If an employee falls sick, he/she simply calls the boss,

and the boss makes arrangements for the work to continue in his/her absence. Now

consider what would happen in an organization that is totally distributed. The sick

employee, say John, will have to call all his co-employees and tell them that he/she is

sick. They will tell other employees that John is sick. This will take quite a bit of time

before everyone will know about Johns sickness, and then everyone will decide what, if

anything, to do to alleviate the problem until John recovers. This is quite inefficient,

but is how current Internet control protocols work. Centralization of control makes

sensing the state and adjusting the control dynamically based on state changes much

faster than with distributed protocols. Of course, centralization has scaling issues but

so do distributed methods. For both cases, we need to divide the network into subsets

or areas that are small enough to have a common control strategy. A clear advantage

of centralized control is that the state changes or policy changes propagate much faster

23

than in a totally distributed system. Also, standby controllers can be used to take

over in case of failures of the main controller. Note that the data plane is still fully

distributed.

• Programmable control plane: Now that the control plane is centralized in a cen-

tral controller, it is easy for the network manager to implement control changes by

simply changing the control program. In effect, with a suitable API, one can imple-

ment a variety of policies and change them dynamically as the system states or needs

change. This programmable control plane is the most important aspect of the SDN.

A programmable control plane in effect allows the network to be divided into several

virtual networks that have very different policies and yet reside on a shared hardware

infrastructure. Dynamically changing the policy would be very difficult and slow with

a totally distributed control plane.

• Standardized API’s: As shown in Fig. 2.2, SDN consists of a centralized control

plane with a southbound API for communication with the hardware infrastructure and

a northbound API for communication with the network applications. The control plane

can be further subdivided into a hypervisor layer and a control system layer. A number

of controllers are already available. Floodlight [43] is one example. OpenDaylight [112]

is a multi-company effort to develop an open source controller. A networking hypervisor

called FlowVisor [122] that acts as a transparent proxy between forwarding hardware

and multiple controllers is also available. The main southbound API is OpenFlow

[78, 46] , which is being standardized by the Open Networking Foundation. A number

of proprietary southbound APIs also exist, such as OnePK [24] from Cisco. These

later ones are especially suitable for legacy equipment from respective vendors. Some

argue that a number of previously existing control and management protocols, such

as Extensible Messaging and Presence Protocol (XMPP) [118, 119], Interface to the

Routing System (I2RS [57]), Software Driven Networking Protocol (SDNP)[63], Active

Virtual Network Management Protocol (AVNP) [14], Simple Network Management

Protocol (SNMP) [17], Network Configuration (Net-Conf) [36], Forwarding and Control

Element Separation (ForCES) [142, 34, 54], Path Computation Element (PCE) [93,

9, 74], and Content Delivery Network Interconnection (CDNI) [51], are also potential

southbound APIs. However, given that each of these was developed for another specific

application, they have limited applicability as a general-purpose southbound control

24

API. Northbound APIs have not been standardized yet. Each controller may have

a different programming interface. Until this API is standardized, development of

network applications for SDN will be limited. There is also a need for an east-west

API that will allow different controllers from neighboring domains or in the same

domain to communicate with each other.

Networking industry has shown enormous interest in SDN. SDN is expected to make the net-

works programmable and easily partitionable and virtualizable. These features are required

for cloud computing where the network infrastructure is shared by a number of competing

entities. Also, given simplified data plane, the forwarding elements are expected to be very

cheap standard hardware. Thus, SDN is expected to reduce both capital expenditure and

operational expenditure for service providers, cloud service providers, and enterprise data

centers that use lots of switches and routers. SDN is like a tsunami that is taking over other

parts of the computing industry as well. More and more devices are following the software

defined path with most of the logic implemented in software over standard processors. Thus,

today we have software defined base stations, software defined optical switches, software

defined routers, and so on. Regardless of what happens to current approaches to SDN, it is

certain that the networks of tomorrow will be more programmable than today. Programma-

bility will become a common feature of all networking hardware so that a large number of

devices can be programmed (a.k.a orchestrated) simultaneously. The exact APIs that will

become common will be decided by transition strategies since billions of legacy networking

devices will need to be included in any orchestration.

2.3 Application-Delivery Networking (ADN)

The term Application Delivery Networking or ADN is often used by middlebox appliance

vendors such as F5 networks [39], Citrix [25], Redback [115], Brocade [13], Layer 7 Technolo-

gies [73], Array Networks [8], and several other companies to market their products. In fact,

the ADN business is a burgeoning multi-billion dollar industry. Market reports project that

the size of the middlebox or network appliances market will grow from 1.5 billion dollars in

2009 to 2.25 billion by 2013 [131]. This projection is only for acceleration and optimization

middleboxes and does not include security appliances, which is projected to grow to a 10

25

billion dollar market itself by 2016 from 6 billion in 2010 [120]. Fig. 2.3 shows a block-level

representation of a device often sold under the name of an Application Delivery Controller.

As can be seen in this figure, rather than being a stand-alone middlebox serving a single

specific function, these new breed of devices consolidate many different services and are

hence marketed under the name of Application Delivery Networking Platforms. However,

we think that the term ADN is mis-used in this context; it describes a device rather than a

network. There is no doubt that these devices are essential components of todays application

delivery and deployment environments, but surely the term ADN should have a more generic

definition.

Full	
 Proxy	

High	
 Performance	
 Hardware	

Rules	

Control	

SS
H
	

Enterprise	
 Data	
 Center	
 Ap
pl
ic
a=
on
/D
at
ab
as
e	

	

Se
rv
er
s	

A
cc
es
s	

Ct
rl
	
 	

ID
S	

Co
m
pr
es
si
on

	

Tr
an
sc
od

er
	

W
A
F	

…
	

ADC	

Middlebox	
 	

Func7ons	

APR	
 	

Func7ons	

Figure 2.3: Schematic Representation of an Application Delivery Controller

In this thesis, the term ADN will refer to a distributed network architecture comprising of

many different components including; 1) Application servers, 2) Packet-level middleboxes, 3)

Message-level Middleboxes, and 4) Network transport services, that are required to deploy

26

and deliver modern applications. While we will see in the rest of this thesis how AppFabric

provides a consolidated platform for easily creating, managing and controlling such ADNs, in

this section we will look at some of the components that make up these ADN infrastructures.

2.3.1 Virtual compute, network and storage infrastructures

In our discussion in the last section on the meaning of the term software-defined, we

suggested that virtualization was the key mechanism underlying modern flexible and dynamic

software-defined infrastructures. In this section we will go into a little more detail into the

server, storage, and network virtualization technologies to give a little more idea of what it

takes to virtualize the infrastructure.

• Server virtualization: The concept of server virtualization has been around for

the last 40 years or so. For a detailed survey on server virtualization please refer to

[135, 23] . Here we provide a short wikipedia-ish [140] level discussion to provide a

quick summary of some of the key aspects.

There are several reasons why one would want to virtualize the server. Some of them

are:

– Isolation: Most modern operating systems provide a process abstraction for re-

source sharing among multiple (pseudo) concurrently running applications. How-

ever, the process abstraction enforces only a weak notion of security and perfor-

mance isolation. For example, a rogue application may easily jeopardize other

applications running on the same system. Virtualization, on the other hand en-

forces a much stronger notion of isolation where each virtual machine may have

exclusive access to a set of resources.

– Better utilization of physical compute resources: Sometimes, application

services may be distributed across many different servers such that the average

utilization per server is extremely low. In such cases, virtualization allows server

consolidation by creating many virtual machines over the same physical machine

and assigning a virtual machine to each application. Therefore, instead of running

on a separate physical machine, the applications run on separate virtual machines

consolidated over a few physical hosts. The resources allocated to the virtual

27

machines is just enough to run the application. This way, most of the underutilized

server infrastructure can be freed up to do other useful work, or shut down to save

energy costs.

– Separate execution environments: Using virtualization, the same physical

server can run different operating systems on different virtual machines. This

may be useful in scenarios where a software developed for multiple platforms

need to be tested and debugged. Also, another scenario may be when the user

needs to run a software created for only one type of platform, or for an older

version of the operating system. In such situations, a separate VM running the

required OS platform may be useful.

– Dynamics and ease of management: Managing virtual resources is often eas-

ier than managing actual physical resources because of the management interfaces

provided by software layer providing the virtualization. As a result, virtual re-

sources may be allocated/de-allocated dynamically and virtual machines may be

moved from one physical host to another as required.

These were some of the key benefits of server virtualization. Now let us look at some

of the mechanisms through which server virtualization may be implemented. There

are three main techniques:

– Full-virtualization: As shown in Fig. 2.4, in full-virtualization, the Virtual

Machine Monitor (VMM) emulates the physical hardware and provides a mapping

between the virtual resources and the physical resources. The user can create

one or more virtual machines on top of the VMM. This technique is called full

virtualization because the virtual machine is fully abstracted from the underlying

physical machine and hence the guest OS (the OS on the VM) does not need to be

changed in any way. In fact it does not even need to be aware that it is running

in a virtualized environment. Note that the VMM is running in Level 0 (also

called Ring 0) which is the most privileged hardware mode in which generally

the OS runs. The guest OS runs in Level 1(Ring 1). With multiple guest OS’

running, they may all make privileged instruction calls to the hardware layer

simultaneously. The VMM intercepts these calls and either executes it on the

processor or emulates the response. Full virtualization provides the best isolation

in terms of security. In terms of performance, indirection through an additional

28

software layer (the VMM) has some performance penalties compared to running

directly on bare-metal. Example of full virtualization products include VMWare

ESx [137] and Microsoft Virtual PC.

System Hardware

VMM

Guest OS

User Application

Ring 0

Ring 1

Ring N

Binary translation
Of OS requests

Figure 2.4: Full Virtualization

– Para-virtualization: As shown in Fig. 2.5, in para-virtualization, the virtual-

ization layer (hypervisor) does not fully emulate the underlying hardware layer

and instead provides a software interface (through hypercalls) to the guest OS.

Therefore, the guest OS needs to be changed to be able to communicate with

the hypervisor instead of communicating directly with the hardware layer. The

rationale for para-virtualization was to improve the efficiency and performance of

the communication between the guest OS and the hypervisor as compared to full

virtualization in which the guest OS is unaware of the presence of the hypervi-

sor (VMM) and hence cannot optimize to avoid the performance penalties as a

result of this added layer of indirection. The VMM has to silently interpose and

perform binary conversion on all guest OS calls. The most famous example of

para-virtualization is the Xen [10] open source project.

29

System Hardware

Virtualization Layer

Para-virtualized
Guest OS

User Application

Ring 0

Ring N

Hypercalls to the
Virtualization Layer

Figure 2.5: Para-Virtualization

– Hardware-assisted virtualization: While the two techniques discussed above

are completely software-based solutions, hardware vendors have over time added

support to assist virtualization. Example of such platform include Intel-VT [60]

and AMD-V [5]. It provides special privileged instructions and a new CPU exe-

cution mode. As shown in Fig. 2.6The hypervisor can run in this new execution

mode which has a higher privilege than the Level 0, also called Ring 0, in which

the operating system kernel runs. Without this special hardware support, the

hypervisor has to run in Level 0 (or Ring 0) while the guest OS has to run on

Level 1 (or Ring 1). This means that privileged calls by the guest OS would

be able to trap the hypervisor only through binary translation (as in the case

of full-virtualization) or para-virtualization (specially designed hypercalls). Now

with special hardware support the guest OS can make privileged calls by auto-

matically trapping the hypervisor.

30

System Hardware
(with hardware assistance for

virtualization)

VMM

Guest OS

User Application

Ring 0

Ring N

OS requests trap to
VMM without binary
Translation or
Para-virtualization

Figure 2.6: Hardware-assisted Virtualization

Apart from these three main techniques for virtualization at the Hardware Abstrac-

tion Layer (HAL); that is, at the junction of the hardware and software layers of a

server, other forms of virtualization may also be useful. One of the oldest attempts to

virtualize was idea of FreeBSD Jails[66]. The idea was to create several secure and iso-

lated operating environments (Jail) within the same OS instance and run applications

within these jailed environments. Another example of virtualization is User-Mode

Linux (UML) [33] that runs the Linux kernel within an user mode application pro-

cess and thus provides a lightweight virtualization platform. Cooperative Linux [4] is

another example of UML-like virtualization. Virtualization is also a commonly used

concept nowadays in programming language runtime environments to achieve inter-

operability of the program across platforms. The most common example is the Java

Virtual Machine (JVM) abstraction that runs Java bytecodes. Therefore, although

different flavors of virtualization exist, we are interested mostly in the three key virtu-

alization techniques at the HAL because they have a direct bearing to cloud computing;

and more specifically to Infrastructure-as-a-Service (IaaS) [7] offerings.

• Storage virtualization: In modern datacenters, storage and compute are separated

to prevent fate-sharing during failures; that is if a server fails the data should still be

available through other servers. Storage virtualization, just like server virtualization

abstracts the diversified and distributed storage infrastructure and presents a common

31

interface for easily storing and retrieving data to the compute tier (application-tier).

The key advantages of storage virtualization include:

– Increased disk utilization: Similar to server virtualization, storage virtualiza-

tion too results in higher disk utilization owing to the consolidation techniques

applied while storing the data in the actual physical storage from the separate

virtual storage disks presented to the application tier.

– Resilience and robustness: The storage tier can use different techniques, most

importantly redundancy, to make several copies of the data to protect it against

failures. To the compute tier, the storage tier can expose different levels of re-

silience against data loss as a tunable parameter while internally it implements

this by replicating the data on multiple physical disks that may further be spa-

tially distributed to protect against physical damage as a result of some natural

or unnatural disasters.

– Mask diversity: The storage virtualization layer masks different device types

and access technologies (e.g. Ethernet, Fibre Channel, etc.) to provide a standard

interface to the application tier. Also, it can create virtual storage devices of

the desired size by partitioning or aggregating (e.g. RAID [102]) the underlying

physical storage. Thus, the compute tier can dynamically request and get any

sized storage that they may want.

– Optimized access and storage from many distributed locations: Modern

large-scale distributed storage systems such as Google File Systems (GFS) [47],

BigTable [18], Cassandra [71], HDFS[12], Dynamo[32], etc. allow the application

layer to store and retrieve data from many distributed locations very efficiently.

The storage system takes care of keeping the data synchronized across the many

distributed locations.

The two key aspects of implementing a storage virtualization solution include the

following:

– Where to place the virtualization engine?: Depending on where the vir-

tualization engine is placed, the solution could be different. Some of the choices

are:

32

∗ Host-based virtualization: In host-based virtualization, the virtualization

software resides on the server (possibly as a software-based virtual appliance).

This virtual appliance manages a pool of storage drives (possibly different

devices from different vendors) and presents it to the application as a single

storage pool. The storage drives in the backend may be organized as a RAID

system. RAID stands for Redundant Array of Inexpensive Disks. It was

designed to tradeoff between the high cost of reliable storage and the high

failure rates of inexpensive storage. It is based on the idea of using array

of many inexpensive discs and maintain many redundant copies of the data

to avoid data loss as a result of individual disk failures. Host-based storage

virtualization is suitable for small environments since it is per-host and each

host needs to be separately configured.

∗ In-band network appliances: In this solution, a special storage manage-

ment appliance sits between the hosts and the storage drives and creates a

common storage pool for all the hosts to use. It is called in-band since it

intercepts all forward and reverse traffic between the hosts and the storage

devices. As is obvious, this may not be desirable since the appliance could

itself be a performance bottleneck and also a single source of failure.

∗ Out-of-band network appliances: This is similar to an in-band appliance

except that it does not directly intercept data plane traffic between the host

and the controllers. Rather, it intercepts control plane messages where the

host queries the appliance for information on how and what storage system

it needs to access. While it solves the single-point-of-failure and performance

bottleneck problems of in-band appliances, it requires that each host be con-

figured separately to first query the appliance and then access the storage.

– NAS and SAN: NAS [20, 48] stands for Network-attached Storage while SAN

[130] stands for Storage-Area Networks. NAS and SAN allowed the decoupling of

the storage and the compute infrastructure by allowing the storage to be connected

to the compute through the network. This has the advantage of decoupling the

fate of the two infrastructures, as already discussed. Also, this allowed the creation

of a central storage pool that could be shared by many servers; thus improving

the utilization. The key difference between SAN and NAS is that in SAN the

storage servers are connected using some special purpose storage network (e.g.

33

Fibre Channel) while in NAS the storage servers are connected using a general

purpose network technology such as Ethernet.

Current storage virtualization solutions use variants of these techniques and/or com-

bine them to address all the design goals. For more details on storage virtualization,

please refer to [126].

• Network virtualization: Similar to server and storage virtualization, the concept

of network virtualization has been around for quite some time. The initial motiva-

tion to virtualize was policy isolation. The idea of virtual LANs or VLANs [1, 2]was

conceived to logically partition a physical LAN infrastructure into several logically iso-

lated virtual LANs. This allowed the physical infrastructure to be shared among many

different policy groups that required that their traffic be isolated from the others. For

example, the finance department’s traffic in a corporation may need to be kept sep-

arate from the marketing department owing to security concerns. Similarly, the idea

of Virtual Private Networks (VPN) was conceived to allow a remote user access to a

resource within the enterprise’ secure network environment. The enterprise may setup

policies to prevent any entity outside the enterprise’ secure network from accessing the

resource. Using a VPN, a remote user can connect to the resource by behaving as if it

is part of the same enterprise environment although it may actually be accessing the

resource over the Internet. This is done by creating a secure tunnel between the user

and the enterprise VPN server that authenticates and authorizes the user. The VPN

therefore creates a virtual periphery of the enterprise’ secure network to allow remote

sites and users that are not directly (physically) connected to the network to be still

be able to access resource/information in the local network infrastructures.

Over the past few years, there has been a renewed interest in network virtualization

technologies owing to the rise of cloud computing. Cloud computing allows multiple

tenants to share the computing and storage infrastructure in a datacenter. Obviously,

they need to share the network as well. However, sharing the network infrastructure

without proper policy and performance isolation amongst the different tenants (which

could very well be competing commercial organizations) may lead to problems. Also,

another reason to virtualize emerges from hybrid public-private application deploy-

ment architectures. The enterprises need to be able to seamlessly offload some of their

34

workloads to public cloud datacenters when their private datacenters are overloaded.

This may be done either through live migration of VMs [136, 27, 70] from the enter-

prise datacenter to the cloud datacenter or by instantiating new service instances in

the cloud. In such scenarios, the enterprise secure network boundary may also need to

be extended to connect the instances hosted in the cloud. To support such dynamic

expansion of the network across many different administrative domains, on-demand,

the network infrastructure needs to be virtualized. Apart from these, another very

clear motivation for network virtualization is that it allows creating isolated network

contexts over the same physical infrastructure that can be tuned for application spe-

cific requirements, thus moving away from the traditional one suit fits all model of

networking architectures.

While we have been using the term network virtualization quite freely without qual-

ifying it further, it is actually an umbrella term that may refer to many different

virtualization technologies. A network may be virtualized at different levels. Here we

will look at some of the techniques of network virtualization at different levels.

– Virtualization of Network Interface Cards (NICs): Each computer system

needs at least one L2 NIC (Ethernet card) for communication. Therefore, each

physical system has at least one physical NIC. However, if we run multiple VMs

on the system, each VM needs its own virtual NIC. As shown in Fig. 2.7 , one

way to solve this problem is for the hypervisor software that provides processor

virtualization also implements as many virtual NICs (vNICs) as there are VMs.

These vNICs are interconnected via a virtual switch (vSwitch) which is connected

to the physical NIC (pNIC). Multiple pNICs are connected to a physical switch

(pSwitch). We use this notation of using p-prefix for physical and v-prefix for vir-

tual objects. the figures, virtual objects are shown by dotted lines, while physical

objects are shown by solid lines.

35

VM 1

pNIC

vSwitch

External
Switch

vNIC	

pM

VM 2

vNIC	

VM 1

vSwitch

External
Switch

vNIC	

pM

VM 2

vNIC	

VM 1

pNIC

VEPA

External
Switch

vNIC	

pM

VM 2

vNIC	

(a) (b) (c)

Hypervisor

pN
IC

Figure 2.7: Three Approaches to NIC Virtualization

Virtualization of the NIC may seem straightforward. However, there is signif-

icant industry competition in this area. Different segments of the networking

industry have come up with competing standards. Fig. 2.7 shows three different

approaches. The first approach, providing a software vNIC via hypervisor, is the

one proposed by VM software vendors. This virtual Ethernet bridge (VEB) [68]

approach has the virtue of being transparent and straightforward. Its opponents

point out that there is significant software overhead, and vNICs may not be eas-

ily manageable by external network management software. Also, vNICs may not

provide all the features todays pNICs provide. So pNIC vendors (or pNIC chip

vendors) have their own solution, which provides virtual NIC ports using single-

root I/O virtualization (SR-IOV) [123] on the peripheral-component interconnect

(PCI) bus [108]. The switch vendors (or pSwitch chip vendors) have yet another

set of solutions that provide virtual channels for inter-VM communication using a

virtual Ethernet port aggregator (VEPA) [87], which passes the frames simply to

an external switch that implements inter-VM communication policies and reflects

some traffic back to other VMs in the same machine. IEEE 802.1Qbg [3] specifies

both VEB and VEPA.

– Virtualization of switches: A typical Ethernet switch has 32-128 ports. The

number of physical machines that need to be connected on an L2 network is

typically much larger than this. Therefore, several layers of switches need to be

36

used to form an L2 network. IEEE Bridge Port Extension standard 802.1BR

[109], shown in Fig. 2.8, allows forming a virtual bridge with a large number of

ports using port extenders that are simple relays and may be physical or virtual

(like a vSwitch).

pBridge

Port
Extender

Port
Extender

Port
Extender

Port
Extender

vBridge

Figure 2.8: IEEE 802.1BR bridge port extension

– Virtual LAN in Clouds : One additional problem in the cloud environment

is that multiple VMs in a single physical machine may belong to different clients

and thus need to be in different virtual LANs (VLANs). As discussed earlier, each

of these VLANs may span several data centers interconnected via L3 networks, as

shown in Fig. 2.9. Again, there are a number of competing proposals to solve this

problem. VMware and several partner companies have proposed virtual extensible

LANs (VXLANs) [77]. Network virtualization using generic routing encapsulation

(NVGRE) [127] and the Stateless Transport Tunneling (STT) protocol [31] are two

other proposals being considered in the Network Virtualization over L3 (NVO3)

working group [58] of the Internet Engineering Task Force (IETF).

37

VM 1-1
VLAN 28

VM 1-2
VLAN 32

VM 1-3
VLAN 66

VM 1-4
VLAN 82

Hypervisor VTEP IP1

VM 2-3
VLAN 28

VM 2-1
VLAN 32

VM 2-4
VLAN 66

VM 2-2
VLAN 82

Hypervisor VTEP IP 2 L3 Networks

Figure 2.9: Virtual Machines on different VLANs

– Virtualization for multi-site datacenters: If a company has multiple data

centers located in different parts of a city, it may want to be able to move its VMs

anywhere in these data centers quickly and easily. That is, it may want all its

VMs to be connected to a single virtual Ethernet spanning all these data centers.

Again, a medium access control (MAC) over IP approach like the ones proposed

earlier may be used. Transparent Interconnection of Lots of Links (TRILL) [133],

which was developed to allow a virtual LAN to span a large campus network, can

also be used for this.

– Network Function Virtualization: Standard multi-core processors are now so

fast that it is possible to design networking devices using software modules that

run on standard processors. By combining many different functional modules,

any networking device L2 switch, L3 router, application delivery controller, and

so on can be composed cost effectively and with acceptable performance. The

Network Function Virtualization (NFV) group of the European Telecommunica-

tions Standards Institute (ETSI) is working on developing standards to enable

this [37].

2.3.2 Middleboxes and Middleware

Apart from the compute, storage and network infrastructures, middleboxes and middlewares

are two of the most essential components of modern application delivery environments. In

this subsection, we will provide a detailed background on these two components with respect

38

to the current state-of-the-art.

• Middleboxes: The term ”middlebox” was coined to refer to a set of functions that

could neither be classified as pure network functions (such routing, switching and for-

warding) nor application level functions implementing application logic. These func-

tions included deep packet inspection on network devices to identify and prevent se-

curity attacks, maintaining packet caches to optimize the delivery of an application

by avoiding the need to fetch a packet from the source every time, offload compute

intensive functions such as encryption and decryption to specialized hardware appli-

ances, and many more such cross-layer functions that could not be cleanly classified

as belonging to any specific layer of the network stack. However, the fact that they

are extremely essential to any modern application delivery environment can be gauged

from the constantly growing market for such devices. Also, as shown in Table 2.1,

the number of middleboxes deployed in modern enterprise application environments is

comparable to the number of routers.

Table 2.1: Middlebox Deployment in a large Enterprise Environment [120]

Appliance Type Number

Firewalls 166
NIDS 127

Conferencing/Media Gateways 110
Load Balancers 67
Proxy Caches 66
VPN Devices 45

WAN Optimizers 44
Voice Gateways 11

Middleboxes Total 636
Routers Total 900

Middleboxes are diverse, both in terms of functions and features. In-fact the term

middlebox truly captures, perhaps the only common property that all middleboxes

share; that they are middle or intermediary devices that are inserted between standard

devices such as a network switch and an application server. A middlebox may refer to

39

a separate physical hardware device or to a virtual function within a standard switch

or a router. For an extensive taxonomy and precise description of different types of

middleboxes, please refer to [16]. For our purposes here, we classify middleboxes along

two attributes:

– Protocol layer: This indicates the protocol layer at which a middlebox oper-

ates. Most middleboxes operate at more than one protocol layers. However, we

are concerned in classifying middleboxes into two distinct groups based on which

protocol layers it operates on - 1) Network-layer midddleboxes that oper-

ates on Layer2, Layer 3 and Layer 4 packet headers, and 2) Application-layer

middleboxes that can operate on application layer protocols and application-

layer data in addition to the Layer 2, 3 and 4 headers. For example a Network

Address Translator (NAT) acts only on the IP layer while TCP relays and TCP

performance enhancing proxies act at the Layer 4. Examples of application-layer

middleboxes include Intrusion Detection and Prevention Systems that filter pack-

ets at each protocol layers (Layer 2 through Layer 7) to stop potential security

attacks. This classification is important in designing AppFabric because we need

to distinguish between middleboxes that are operated directly and thus trusted

by the Application Service Provider against middlebox functions that can be del-

egated to third-party providers such as ISPs and cloud providers.

– Granularity: Granularity refers to whether the middlebox acts over network

packets (and possibly a flow of packets) or if it terminates the Layer 4 connection

and acts over messages and application sessions. The reason why this classification

is important for our purposes is because the mechanism for inserting packet-level

middleboxes into an application deployment is very different from that of inserting

message-level middleboxes.

Packet-level middleboxes are treated as part of the network infrastructure and

so inserting them into the application deployment is handled by the network

administrators. However, it may be obvious that this is the source of many

problems. Firstly, middleboxes are deployed to support the application and need

to be inserted based on policies specified by the application. The infrastructure

on the other hand does not need to be application-aware (at-least currently it

is not) and so their control and management is determined by network policies

(such as high utilization of network links, avoiding congested or failed links, etc.).

40

Therefore, managing middleboxes as part of the network infrastructure creates

a tussle which is difficult to address. Secondly, this solution assumes that the

infrastructure and the application both have the same ownership. While this was

generally true till a few years back, with cloud computing, this assumption is

no longer valid. Unlike enterprise datacenter environments, the application can

no longer delegate the responsibility of inserting (appropriate) middleboxes in the

application path to the network control. Third, inserting packet-level middleboxes

becomes extremely hard when more than one middlebox needs to be inserted. This

is because the network control mechanisms generally do not mandate the specific

hops in a particular route. As a result, often to simplify the deployment of

middleboxes, all traffic is made to pass through all the middleboxes in a statically

determined sequence.

Inserting message-level middleboxes is a whole new story. Message-level middle-

boxes need to terminate an end-to-end Layer 4 connection. However, since it is

not the real application end-point, it needs to splice the message on another trans-

port connection. If there are more than one message-level middleboxes, all of them

need to splice the transport-level connection to the next hop. Now, if we wanted

to efficiently process messages in this environment, all messages may not need to

be processed by all the message-level middleboxes. Instead, based on message-

level or session-level application policies, messages should be routed through an

appropriate set of middleboxes. To do this, all these message-level middleboxes

need to be configured accordingly. In the current state-of-the-art, administrators

either need to configure these policies individually into each middlebox or all the

middleboxes are lumped together on a specially-designed hardware device often

marketed as Application Delivery Controllers or ADCs, as was described in the

beginning of this section (Fig. 2.3). The problem with manual configurations is

that it is tedious, error prone and static while centralized solutions such as ADCs

are expensive, may introduce bottlenecks, introduce a central point of failure and

is difficult to scale.

Therefore, although being an extremely important component of modern application

deployment environments, middleboxes are often treated as a nuisance that breaks

many of the beautiful architectural assumptions (owing to its cross-layer functional-

ity) and thus makes it difficult to safely extend or change an existing infrastructure

41

configuration. In-effect, they may turn out to be a nightmare to manage and debug.

AppFabric addresses some of these issues by making it much simpler to deploy and

manage middleboxes by tying their control and management to a common controller

that manages all the components of the application delivery network infrastructure.

The details will be presented in the next chapters.

• Middlebox Deployment: We mentioned in the last point that it is hard to deploy

middleboxes in application delivery environments. Let us look at some of the deploy-

ment contexts of middleboxes and how they vary across different application delivery

environments.

– Enterprise Datacenter Environments: Middlebox deployment issues in en-

terprise environments is a long-standing problem that has been addressed before

[65, 139, 129]. The root of the problem is the lack of explicit support for mid-

dleboxes in IP. As a result, datacenter administrators need to resort to ad-hoc

configuration techniques for inserting middleboxes into the applications data path.

These techniques include physically interposing middleboxes in front of the appli-

cation servers (Fig. 2.10) or artificially changing network parameters, such as link

weights, to route application traffic through a middlebox. The problem becomes

orders of magnitude harder for deploying a sequence of middleboxes. Also, these

non-standard techniques are extremely error prone and cannot guarantee correct-

ness, especially under routing dynamics such as IP path changes.

42

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Web servers Application servers DB servers

Access
Tier

Aggregation
Tier

Core
Tier

CBR	

ALG	

IDS	

WAF	

SSL	

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

CBR	

ALG	

IDS	

WAF	

SSL	

Middleboxes

Figure 2.10: Middlebox Deployment in Enterprise Datacenters

To alleviate these middlebox deployment problems a new class of centralized

middlebox platforms called Application Delivery Controllers (ADCs) emerged

(Fig. 2.11). ADCs are proprietary middlebox solutions (e.g. F5 Networks Big

IP [39], Citrix NetScalar [25]) based on special purpose, high-performance hard-

ware. These boxes are extremely popular in enterprise application environments

since they solve most of the problems associated with middlebox deployments.

They provide a centralized and consolidated middlebox solution and hence are

easy to deploy. They are based on specially designed high-performance hardware

and hence each ADC may serve a considerably large pool of application servers.

From the high-level design of an ADC shown in Fig. 2.11, it may be noted that

the core platform consisting of the full proxy, rules and control layers implement

a configurable APR services tier while the ADP services (SSH, Access Control,

IDS, Transcoder, etc) are installed on top of it. Thus, ASPs can more efficiently

43

manage the ADP services that the application traffic accesses by creating deploy-

ment specific policies in the Rules layer.

Application Server Pools

Enterprise Data Center

Ap
p.

 D
el

ive
ry

Co

nt
ro

lle
rs

ADC

ADC

ADC

Full Proxy

High Performance Hardware

Rules

Control

S
S

H

ID
S

W
A

F

…

O
pt

im
iz

at
io

n

Tr
an

sc
od

er

A
cc

es
s

C
trl

Figure 2.11: Application Delivery Controller Deployment in an Enterprise Datacenter

ADCs are great except that they are proprietary solutions and hence expen-

sive. They are monolithic and hence can only scale vertically (by adding a new

ADC), thus incurring high marginal costs to scale the deployment at the ADCs

performance boundaries. Also, both ADP processing (owing to the diversity in

application-layer data processing) and APR processing (depending on the com-

plexity of the rule) is non-deterministic, making it difficult to virtualize ADC

platforms with some notion of resource fairness (except for static partitioning)

and hence difficult to share across logically isolated application deployment con-

texts.

– Cloud Datacenter Environments: One of the key barriers to migrating enter-

prise applications to the cloud is the unavailability of application delivery services

(middleboxes) in cloud datacenters. All that cloud providers offer in the way of

44

application delivery services is a very basic load balancing service (e.g. elastic

load balancing or ELB in Amazon EC2 [121]). There are two approaches to ad-

dress the issue of providing application delivery services in cloud datacenters: a)

Under-the-Cloud (UtC), and b) Over-the-Cloud (OtC).

∗ Under-the-Cloud (UtC) Approach: As shown in Fig. 2.12, in the UtC

approach, the Cloud Service Provider (CSP) may provide support for applica-

tion delivery services by leasing out special ADC-like hardware appliances to

its tenants. However, the problem with this approach is that it is extremely

difficult to virtualize ADCs among multiple tenants and hence tenants would

need to lease dedicated ADC resources. This may not be economical, espe-

cially as the applications scale-up and down dynamically.

Under the Cloud (UtC)
virtualize hardware appliances among multiple tenants

Generic
Virtual Machines

C
lo

ud
 S

er
vi

ce
 P

ro
vi

de
r

C
S

P

Applications

Hardware
 Appliances

A
pp

. S
er

vi
ce

 P
ro

vi
de

r
A

S
P

Figure 2.12: Under-the-Cloud (UtC) Application Delivery Services [101]

∗ Over-the-Cloud (OtC) Approach: As shown in Fig. 2.13, in the OtC ap-

proach, the ASP deploys virtual appliances on generic virtual machines leased

from the cloud provider. Though this seems to be a more plausible solution

economically, it introduces new deployment challenges. Virtual appliances are

resource constrained and hence the monolithic ADC-like deployment model is

45

not possible. Application deployments need to be supported by multiple vir-

tual appliances, each providing a specific service. This leads to management

issues. To add to this problem, the ASP does not have access to the network

infrastructure of the cloud datacenter. Hence, the ASP cannot depend on

the ad-hoc network configuration techniques used in enterprise datacenters

to deploy virtual appliances in a cloud datacenter.

Over the Cloud (OtC)
performance-constrained software virtual appliances

Generic Virtual Machines

A
pp

. S
er

vi
ce

 P
ro

vi
de

r
A

S
P

 Applications
Virtual

Appliances

C
lo

ud
 S

er
vi

ce
 P

ro
vi

de
r

C
S

P

Figure 2.13: Over-the-Cloud (OtC) Application Delivery Services [101]

Therefore, to deploy virtual appliances in cloud datacenters, the ASP needs to

be able to explicitly route application traffic through these virtual appliances.

This problem may be addressed either, through an UtC approach, or an OtC

approach. In the UtC approach, the CSP may provide new interfaces through

which the ASP may configure workflows to chain virtual appliances and appli-

cation servers. Thus, the ASP may specify the policies in the control plane and

the CSP will be responsible for enforcing these policies in the data plane. In the

OtC approach, the ASP will be responsible for both, specifying and enforcing

the deployment policies over each application-level component, including virtual

appliances and application servers. It may be noted that these workflows need

46

to be configured dynamically to handle variable load over multiple virtual ap-

pliances and application servers and at the same time need to adhere to session

affinity constraints (application messages belonging to the same session need to

be mapped to the same workflow).

– Multi-Datacenter Environments: Modern Internet-scale applications benefit

from geographically distributed deployments to be able to serve their global user

base and also to ensure high availability. Applications may be replicated and par-

titioned across different datacenters. Such deployments present new application

delivery challenges in routing user requests dynamically to the proper application

instance. We will discuss three separate application deployment scenarios in this

category.

∗ Hybrid Deployments: Hybrid deployments, which we also call failover de-

ployments, represent the most common use of cloud computing at present. In

this environment, the cloud acts like a failover infrastructure to the enterprise

data center. Under conditions such as extreme or unexpected usage spikes,

failures and planned maintenance, the enterprise datacenter may migrate or

replicate some of its application servers to the cloud. Since this is a tem-

porary arrangement, most likely for the duration of the churn event, during

this time application traffic may be indirected (or bounced) through the mid-

dlebox infrastructure in the enterprise datacenter (Fig. 2.14). The scope of

this solution is limited to intermittent failure and scaling events that can be

solved by simply throwing in more hardware to the problem. Also, the solu-

tion assumes that even under such extreme circumstances (except for planned

maintenance), all the middleboxes as well as the network infrastructure of the

enterprise datacenter is still available.

47

Application Servers Application Servers

Enterprise Datacenter
Cloud Datacenter

Internet

User Traffic

Bo
un

ce
d

Tr
af

fic

Middlebox Tier

Figure 2.14: Hybrid (private-public) Application Deployment

∗ Multi-Enterprise Datacenter Environments: Most large ASPs like

Google, Facebook, Microsoft, etc. operate multiple globally distributed dat-

acenters. For managing these deployments, these ASPs need to deploy Ap-

plication Policy Routing(APR) services as global services outside the data-

centers. These services include global load balancing, fault-aware routing,

context routing and content-based routing. To provide such distributed APR

services, large ASPs like Google operate application level (layer 4-7) proxies

(most probably) at all major network POPs with the Googles WAN (Fig. 2.15)

infrastructure [49, 50]. Accesses to Googles applications are intercepted at

the nearest POP and intelligently routed to a Google datacenter that is best

suited(in terms of some metric) to serve the request. However, managing

such a distributed APR service infrastructure incurs significant capital and

operational expenditures.

48

Google
WAN

Network
POP

Google
Data Center #1

Access
ISP

L7 Proxy Or
ADC

Access
ISP

L7 Proxy Or
ADC Google

Data Center #N

Figure 2.15: Multi-Enterprise Datacenter Application Deployment

∗ Multi-Cloud Datacenter Environments: As cloud computing advances,

it is expected that different cloud platforms will eventually converge over stan-

dardized access APIs (across different cloud technologies) and business mod-

els (across separate Cloud Service Providers) to provide a globally distributed

and automatically accessible computing platform for application deployment

(Fig. 2.16). This will provide new opportunities to ASPs to have global

presence without the need to own and operate their own datacenters. Also,

ASPs may dynamically optimize their application deployments based on dif-

ferent deployment parameters including cost, access patterns and failures, by

instantiating new application replicas/partitions and bringing down existing

ones. However, for these smaller ASPs, although cloud computing provides

them with the opportunity to match the globally distributed deployments

of larger ASPs, it is prohibitively expensive for them to own and operate a

distributed APR services infrastructure. A feasible alternative would be to

outsource APR services to third-party providers such as ISPs that can provide

it as a shared service to the ASPs.

49

Internet

Network
POP

Cloud
Data Center #2

Cloud
Data Center #1

Access
ISP

Access
ISP

Figure 2.16: Multi-Cloud Datacenter Application Deployment

We summarize the observations in this section through a subjective plot (Fig. 2.17)

of opportunity (for application deployment) vs. difficulty (of application delivery) for

the various application deployment scenarios. The goal is to motivate our claim that

a generic platform for application delivery is required for the Internet.

50

Single
Enterprise

Data Center

Multi-
Cloud
Data

Centers

Le
ve

l o
f D

iff
ic

ul
ty

 in
 D

ep
lo

yi
ng

 A
pp

. D
el

iv
er

y
 S

er
vi

ce
s

(a

rb
itr

ar
ily

 s
ca

le
d)

 

•  ASP has no control
over network
infrastructure
•  Hardware ADCs -
difficult to share
•  Virtual Appliances-
difficult to manage

•  New (limited)
opportunities for scaling/
availability
•  Easier to deploy app.
Delivery services but
inefficient

•  Globally distributed infrastructure
for policy routing application traffic
is expensive to own and operate

•  Dynamically changing
application deployment
footprint
•  Need more agile and
distributed global infrastructure
to manage access to an
application instance

•  ADCs - expensive, cannot be
easily shared (virtualized)
•  Ad-hoc configuration of
network infrastructure- difficult
and fragile

Single
Cloud

Data Center Hybrid
Enterprise

Data Center
 and Cloud
Datacenter

Multi-
Enterprise

Data Centers

Application Deployment Opportunities (arbitrarily scaled) 

Figure 2.17: Subjective Plot of Opportunity-vs-Difficulty

Fig. 2.17 is a subjective plot (based on loose comparisons) and is not meant to make

quantitative claims based on any particular metric (in both the axes) and is also not

properly scaled. The x-axis represents the opportunities that different application de-

ployment environments provide. The subjective parameters that are used to represent

opportunity of deployment include:

– Dynamicity: The opportunity to dynamically optimize the deployment for cost,

performance, energy, etc.

– Availability: The opportunity to ensure availability in the event of infrastructure

failures, including computing and networking failures, through mechanisms such

as service mobility, distributed service replicas. dynamic scaling, session handoff,

etc.

– Adaptability: The opportunity to adapt to usage patterns, both in terms of

load and location.

51

– Innovation: The opportunity to innovate by reducing risk; by having low barrier

for entry of new ideas and introduce changes to existing ideas without having to

commit to long term investments.

The y-axis represents the level of difficulty in delivering applications across these differ-

ent deployment scenarios. The single enterprise datacenter environment is considered

to be the basis for comparing other deployment scenarios. It represents having the

least application deployment opportunities and also the least difficulty in delivering

them through dedicated ADCs. It is not at the origin since it provides at-least more

deployment opportunities than traditional third-party hosting (note: not computing)

environments and has more difficulty in deploying application delivery services than

an environment that does not use any application delivery services. To summarize, the

key points in favor of the need of a generic transport for application delivery, such as

OpenADN, are as follows:

– OpenADN will provide an explicit interface for service composition to allow ADP

services to be deployed more easily by allowing them to be independently instan-

tiated off-path and included in the deployment through explicit configuration.

Also, the APR and service composition services would allow applications them-

selves to be designed as separate application service components and dynamically

composed to suit a certain application context.

– By generalizing the application delivery transport, the need for expensive, special-

ized hardware-based ADC solutions can be avoided by allowing ADP services to

be implemented and deployed as separate components. Component based ADP is

also more economical in terms of scaling a particular ADP service component, and

hence more preferable, as long as the underlying infrastructure provides mecha-

nisms to easily manage the complexity (through the APR and service composition

services) as a result of moving away from the convenient centralized solution based

on monolithic ADCs.

– In single cloud datacenter environments, OpenADN will also make deploying

resource-constrained, component based ADP services over virtual appliances eas-

ier by placing them in separate dynamically scaling (or elastic) groups (managed

through the APR service interface) and composing them through the service com-

position interface.

52

– OpenADN will support multi-datacenter and multi-cloud environments by provid-

ing a generic APR service interface, allowing these services to be easily outsourced

to third-party providers such as ISPs, CDNs (Content Delivery Networks) and

CSPs. There are two requirements to achieve this goal: a) the ASP needs to be

able to control and configure the APR services to suit its particular deployment

requirement even though the service is instantiated over a third party provider,

and 2) the third party provider should not need to have access to application data

to provide these services in order to maintain the privacy requirements of most

modern applications. These requirements present two specific design issues that

OpenADN needs to address.

– For hybrid deployments, OpenADN will remove the need to indirect application

traffic through the enterprise datacenter by, a) providing APR services in the

network by third-party providers (Point 4), and b) making ADP services available

in the cloud (Point 3).

– Each of these deployment scenarios will benefit from an interface that will allow

the ASP to specify and access the specific data transport services (QoS), and

provided by third party providers such as ISPs and CSPs. OpenADN will provide

a standard interface between the ASP and the network service provider to achieve

this.

53

Figure 2.18: IBM autonomic Computing: Structure of an Autonomic Element [67]

• Middleware: In 2001, IBM published a manifesto introducing a new paradigm of sys-

tem design called autonomic computing [67]. It was based on the observation that the

sheer scale and complexity of modern large-scale software systems was a huge deterrent

to the progress of IT in empowering a wide-range of business processes. Deploying and

managing such systems was turning out to be a mammoth task even for the most skill-

ful IT workforce. Under these circumstances, the natural solution was to try and design

more autonomic system architectures. These systems would be able to self-configure

based on high-level policies, self-optimize to improve performance and efficiency under

extremely dynamic operating conditions including variable load, network connectiv-

ity and power constraints, self-heal against local and global failures, and self-protect

against configuration errors, cascading failures and/or directed attacks. Fig. 2.18

54

shows a high-level framework for designing autonomic systems published by IBM re-

search. The idea is to attach an autonomic manager with each node (where a node may

represent a hardware resources such as a CPU, storage, etc. or a software resource such

as a database service, web service etc.), turning it into a managed element. The IBM

manifesto spurred a new hype wherein system designers started labeling and attribut-

ing self-* capabilities to their systems. However, due to the lack of a standard open

framework, autonomic computing has evolved through vendor specific solutions such as

IBM Websphere [55] adding several of these capabilities into their middleware product.

The concept of autonomic computing was proposed to provide infrastructure-level sup-

port to the deployment and management of large-scale system integration platforms.

Since the early 1990s, system designers have been trying to design generic integration

platforms that would make it easier to build large-scale software systems by integrating

separate software pieces written in different languages, running on different process-

es/hosts, distributed across different geographical and administrative boundaries, and

each solving separate point problems. In 1991, the Object Management Group (OMG)

released version 1 of the Common Object Request Broker Architecture (CORBA) [52]

which provided a software platform for interoperability among distributed objects

through a language and location independent interface for Remote Method Invoca-

tion (RMI). It may be safely said that CORBA was one of the key initiators of the

Service-Oriented Architecture (SOA) paradigm although other SOA-flavored technolo-

gies existed before (e.g. Microsoft Object Linking and Embedding (OLE) in 1990) and

roughly during the same period (e.g. Microsoft COM [80] and DCOM [81]). CORBA

was the leading open standards effort at the time while the others such as COM and

DCOM were proprietary. However, CORBA never reached the level of popularity and

adoption that was expected of it since the standard was extremely complex and bloated

resulting in many incomplete, non-compliant and buggy implementations. The SOA

story changed significantly around 1998 with the increasing popularity of the XML

data/document format combined with Microsoft proposing the Simple Object Access

Protocol (SOAP). SOAP is an XML-based protocol for SOAP-based services to be

able to exchange information and integrate. Another significant development in this

area happened around 2000, when Roy Fielding proposed a new architectural style for

designing distributed software systems called REST (Representational State Transfer)

55

[42]. REST is the generalized architectural style behind the Hypertext Transfer Proto-

col or HTTP (also co-designed by Roy Fielding along with Tim-Berners Lee in 1996)

that lies at the heart of the World-Wide Web (WWW). REST-ful services, preferably

using the JSON (JavaScript Object Notation) data-interchange format provide a much

simpler and lightweight service integration platform than the SOAP/XML combina-

tion. Although REST-ful service architectures are more restrictive and less flexible

than SOAP-based architectures, it often suffices most use-case requirements. For ex-

ample, REST over HTTPS is often good enough for most SOA use-cases as compared

to the more elaborate (and better) security provided by SOAP + WS-Security (Web

Services Security - a security extension of SOAP). The SOAP vs. REST debate con-

tinues to polarize system architects, but it is clearly not the objective of this discussion

to address it. The key point is that no matter which system integration platform is

selected, the actual deployment and management of the system is subject to the eight

fallacies of distributed computing, out of which seven fallacies were stated by Peter

Deutsch in 1994 and the eighth was added by James Gosling in 1997; both working for

Sun Microsystems. The fallacies state the common assumptions often made by system

architects while designing distributed systems which come back to haunt them in the

long run. These include:

– The network is reliable.

– Latency is zero.

– Bandwidth is infinite.

– The network is secure.

– Topology doesn’t change.

– There is one administrator.

– Transport cost is zero.

– The network is homogeneous.

56

Enterprise Service Bus
Service Binding, Messaging, Protocol Switching, Security, Failover,
Load Balancer, Management, Monitoring, Routing, Transformation

Service Service

Service
Client

Service

Service
Client

Service
Client

Figure 2.19: Schematic Representation of an Enterprise Service Bus (ESB)

Taking care of these issues at the infrastructure level through an intelligent service

deployment and management environment would alleviate much of the pain for system

architects. Such an infrastructure platform needs to be mostly generic and yet capable

of optimizing for application-specific use-cases. Autonomic computing was an effort in

this direction. What emerged in the process, as we have already discussed before, is a

bunch of autonomic computing capabilities in vendor-specific middleware platforms. In

the context of distributed service-oriented architectures, middleware platforms, gener-

ically called the Enterprise Service Bus or ESB (Fig. 2.19) provide support for service

orchestration. The two key functions that the ESB provides include message routing

and message transformation. Message routing involves routing messages between dif-

ferent independent services based on application-level content and context. Message

transformation is required to make these services interoperable. The output from one

service may need to be transformed to make it a suitable input to another service in the

workflow. Therefore the backbone of an ESB is a message brokering subsystem. There

are mainly two types of message brokers - centralized and distributed. Let us briefly

discuss them here in order to be able to understand their weakness and appreciate the

motivation behind the design choices of AppFabric.

– Centralized message brokers: As shown in Fig. 2.20, a centralized message

broker intercepts all messages between any two services in the system, transforms

the messages if required and routes them to the appropriate next hop. This

57

solution although very simple to implement and deploy suffer from the standard

problems of any centralized architecture. The centralized broker may be the

single point of failure for the entire system. Also, it may be the performance

bottleneck during high load situations. These problems may be addressed to some

extent by using standard techniques such as hot-standbys and deploying the the

centralized broker as a cluster of smaller devices rather than one single device.

However, this solution has severe limitations when serving application use-cases

that are naturally distributed such as Internet-of-Things, Cyber-Physical Systems,

online games, mobile apps, virtual worlds,etc. Indirecting each message through

a centralized entity would be highly inefficient.

Central
Message

Broker

Service 1 (multiple replications)

Service 2 (multiple replications)

Service 3 (multiple replications)

Service 4 (multiple replications)

Figure 2.20: Centralized Broker Architecture

– Distributed message brokers: As shown in Fig. 2.21, a distributed message

broker system. Again, as is standard for any distributed vs. centralized argument,

the distributed system is much more resilient although much more difficult to

configure, control and debug. Also, current distributed message broker solutions

58

are mostly limited to a few high-performance broker nodes that serve hundreds(

and sometimes thousands) of services. Also, they are not generally designed to

dynamically scale-out as required, both in number as well as location.

 Message
Broker 1

Service 1 (multiple replications)

Service 2 (multiple replications)

Service 3 (multiple replications)

Service 4 (multiple replications)

 Message
Broker 2

 Message
Broker 3

 Message
Broker 4

Messaging Fabric

Figure 2.21: Distributed Broker Architecture

In the rest of this thesis, we will see how AppFabric addresses some of these limita-

tions of modern middleware architectures and evolves it to make it suitable for next

generation application delivery.

2.4 Next-generation Internet

AppFabric is the result of integrating many different ideas that were conceived in the cra-

dle of next generation Internet research funded by the National Science Foundation (NSF)

[91] as part of its FIND (Future Internet Design) [92] program. Therefore, it is imperative

59

that we provide a brief overview of some of the most prominent and promising ideas on the

next generation Internet design with specific focus on how our own work on the Internet 3.0

[64, 105, 104] architecture gradually matured into the design of AppFabric.

In this section, we will first discuss a family of architectures called ID-locator split archi-

tectures which, according to us, is one of the major architectural limitations of the current

Internet and also is one of the key design principles behind our Internet 3.0 architecture.

Then we will discuss the key elements of the Internet 3.0 architecture followed by brief dis-

cussions on each of the four projects supported by NSF’s Future Internet Architecture (FIA)

program which was a followup to the FIND program. For a more detailed survey on future

Internet design, please refer to [107].

2.4.1 ID-locator split architectures

The current Internet is faced with many challenges including routing scalability, mobility,

multihoming, renumbering, traffic engineering, policy enforcements, and security because

of the interplay between the end-to-end design of IP and the vested interests of competing

stakeholders which lead to the Internets growing ossification. The architectural innovations

and technologies aimed at solving these problems are set back owing to the difficulty in test-

ing and implementing them in the context of the current Internet. New designs to address

the major deficiency or to provide new services cannot be easily implemented other than by

step-by-step incremental changes.

One of the underlying reasons is the overloaded semantics of IP addresses. In the current

Internet, the IP addresses are used as session identifier in transport protocols such as TCP

as well as the lo- cater for routing system. This means that the single IP address space is

used as two different namespace for two purposes, which leads to a series of problems. The

Internet Activity Board (IAB) workshop on routing and addressing [79] reached a consensus

on the scalable routing issue and the overloaded meaning of IP ad- dresses. It urged further

discussion and experiments on decoupling the dual meaning of IP addresses in the long-term

design of the next generation Internet. Currently, there are several proposals for ID-lo- cater

60

split, but most of them cannot provide a complete solution to address all the challenges

including naming and addressing, routing, mobility, multihoming, traffic engineering, and

security.

One of the most active research groups of IRTF (Internet Research Task Force) is RRG

(Routing Research Group) [61], where there is an on-going debate on deciding which way

to go among several ID-locater split directions. One possible direction is called coreedge

separation (or Strategy A in Herrins taxonomy [76]) which tries to keep the de-aggregated

IP addresses out of the global routing tables, and the routing steps are divided into two

levels: the edge routing based on identifier (ID) and the core routing based on global scal-

able locaters. Coreedge separation requires no changes to the end-hosts. Criticisms to this

direction include difficulty in handling mobility and multihoming, and handling the path-

MTU problem [76]. In some solutions, the weird ID-based routing in the edge also makes

some purist believe that it is a short-term patch rather than a long-term solution. Typical

solutions include LISP [40] , IVIP, DYNA, SIX/ONE, APT, TRRP (all form [62]). This

coreedge separation can be deemed as decoupling the ID from locater in the network side,

which is an intuitive and direct idea for the routing scalability issue and relatively easy to

deploy, but not good at solving the host mobility, host multihoming, and traffic engineering.

Other recent RRG proposals include: 2- phased mapping, GLI-split, hIPv4, Layered Map-

ping System (LMS), Name Overlay (NOL), Name-Based Sockets, Routing and Addressing in

Next-Generation EnteRprises (RANGER), and Tunneled Inter-do- main Routing (TIDR).

They are related to this category from different aspects such as naming, addressing, sockets,

encapsulation, mapping, and hierarchy.

The other direction is called ID locater split which requires globally aggregatable locaters

to be assigned to every host. The IDs are decoupled from locaters in the end-hosts network

stacks and the mapping between IDs and locaters is done by a separate distributed system.

The proposals following this direction handle mobility, multihoming, renumbering, etc., well.

However, they do require host changes and it may be hard to ensure compatibility with the

current applications. Typical solutions include HIP [83], Shim6 [89], I3 [129], and Hi3 [88].

61

It is seen that these two directions have their own advantages and disadvantages, and it

is hard to judge which one is right for the future Internet. Here we describe two example

solutions (HIP and LISP) of these two directions, and after that we discuss our MILSA

[98, 99, 97, 100] solution which combines the advantages of these two directions and avoids

their disadvantages.

• Host Identity Protocol: Host Identity Protocol or HIP [83] is one of the most im-

portant ID locater split schemes which implements the decoupling of ID from locater

in end-hosts. It has been under development in the HIP working group of IETF for

couple of years.

HIP introduces a new public keys based namespace of identifiers which enable some

end-to-end security features. The new namespace is called Host Identity (HI) which

is presented as a 128-bit long value called Host ID Tag (HIT). After the decoupling

of HIs from IP addresses, the sockets are bound to HITs instead of IP addresses, and

the HITs are translated into IP addresses in the kernel. HIP defines the protocols

and architecture for the basic mechanisms for discovering and authenticating bindings

between public keys and IP addresses. It explores the consequence of the ID locater

split and tries to implement it in the real Internet. Besides security, mobility and mul-

tihoming are also HIPs design goals and are relatively easier to implement than the

coreedge separation solutions. HIP supports opportunistic host-to-host IP-Sec ESP

(Encapsulation Security Protocol), end-host mobility across IPv4 and IPv6, end-host

multi-address multihoming, and application interoperability across IPv4/IPv6.

However, for HIP, although the flat cryptographic-based identifier is useful for security,

it is not human-understandable and not easy to be used to setup trust relationship and

policies among different domains or organizations. It uses the current DNS system to

do the mapping from ID to locater which is not capable of dealing with the mobility

under fast handover situation, and multihoming. Specifically, mobility is achieved in

two ways: UPDATE packets and rendezvous servers. First way is simple but it does

not support simultaneous movement for both end-hosts. Rendezvous servers are better

62

but do not reflect the organizational structure (realm), and there is no explicit signal-

ing and data separation in the network layer.

Moreover, HIP requires that all the changes happen in the end- hosts which may po-

tentially require significant changes to the cur- rent Internet structure and could lead

to compatibility issues for the existing protocols and applications.

• Locator ID Separation Protocol: Locater ID Separation Protocol or LISP is an-

other important ID locater split scheme following the coreedge separation approach

which implements the decoupling of ID from locater in the network side instead of the

host side. It is being developed by the LISP working group of IETF.

LISP is a more direct solution for routing scalability issue. LISP uses IP-in-IP packets

tunneling and forwarding to split identifiers from locaters which eliminates the Provider

Independent (PI) ad- dresses usage in the core routing system and thus enables scal-

ability. The tunnel end-point routers keep the ID-to-locaters cache and the locater

addresses are the IP addresses of the egress tunnel routers. The mapping from ID to

aggregatable locaters is done at the border of the network, i.e., the tunnel end-point

routers.

LISP enables site multihoming without any changes to the end- hosts. The mapping

from identifier to RLOC (Routing Locater) is performed by the edge routers. LISP

also does not introduce a new namespace. Changes to the routers are only in the edge

routers. The high-end site or provider core routers do not have to be changed. All

these characteristics of LISP lead to a rapid deployment with low costs. There is also

no centralized ID to locater mapping database and all the databases can be distributed

which enable high mapping data upgrade rates. Since LISP does not re- quire current

end-hosts with different hardware, OS platform and applications, and network tech-

nologies to change their implementations, the transition is easier compared to HIP. The

requirements for hardware changes are also small which allow fast product delivery and

deployment.

63

However, LISP uses PI addresses as routable IDs which potentially leads to some prob-

lems. In the future, it will be necessary to create economic incentives to not use the PI

addresses, or to create an automatic method for renumbering by Provider Aggregatable

(PA) addresses.

Obviously, there is a tradeoff between compatibility to the cur- rent applications and

enabling more powerful functions. Since LISP does not introduce any changes to the

end-host network stack, by design it cannot support the same level of mobility as

HIP. The host multihoming issue is similar. Specifically, from design perspectives,

LISP lacks support for host mobility, host multihoming, and traffic engineering. Some

researchers argue that LISP is a short- term solution for routing scalability rather than

a long-term solution for all the challenges listed in the beginning of this section.

• Mobility and Multihoming supporting Identifier Locator Split Architecture

(MILSA): MILSA [98, 99, 97, 100] is basically an evolutionary hybrid design which

has combined features of HIP and LISP, and avoids the disadvantages of these two

individual solutions. Since there is still a debate regarding whether the ID locater

split should happen in end-host side such as HIP or in network side such as LISP, it

is hard to decide which is the right way to go at this point of time. Thus, MILSA is

designed to be adaptive; it supports both directions and allows them to evolve to either

direction in the future. By doing this, we can avoid the deployment risk at the furthest.

Specifically, MILSA introduces a new ID sublayer into the net- work layer in the cur-

rent network stack, i.e., it separates ID from locater in the end-host and uses a separate

distributed mapping system to deliver fast and efficient mapping lookup and update

across the whole Internet. MILSA also separates trust relationships (administrative

realms) from connectivity (infrastructure realms). The detailed mechanisms on how

to setup and maintain this trust relationship are presented in [99]. A new hierarchi-

cal ID space is introduced which combines the features of flat IDs and hierarchical

IDs. It allows a scalable bridging function that is placed between the host realms

and the infrastructure realms. The new ID space can be used to facilitate the setup

and maintenance of the trust relationships, and the policy enforcements among dif-

ferent organizations. Moreover, MILSA implements signaling and data separation to

64

improve the system performance, efficiency, and to support mobility. Detailed trust

relationship setup and maintenance policies and processes are also presented in MILSA.

Through the hybrid combination, the two approaches are integrated into one solution

to solve all the problems identified by the IRTF RRG design goals [90] which include

mobility, multihoming, routing scalability, traffic engineering, and incremental deploy-

ability. It prevents the Provider Independent (PI) address usage for global routing,

and implements identifier locater split in the host to provide routing scalability, mo-

bility, multihoming, and traffic engineering. Also the global routing table size can

be reduced step by step through our incremental deployment strategy which is also

one of the biggest MILSA advantages. Specifically, in MILSA, different deployment

strategies can be implemented to gain fastest routing table size reduction considering

the different incentives or motivations from both technical and non-technical aspects,

i.e., the strategies make sure that each incremental deployment step of MILSA can

pay off with reasonable and accept- able balance between costs and benefits. Different

incentives such as scalability, mobility, and multihoming lead to different deployment

models which have different effect in reducing the routing table size gradually.

2.4.2 Internet 3.0

The Internet 3.0 project [64, 105, 104] is a clean-slate architecture to overcome several lim-

itations of the current Internet. The top features are: strong security, energy efficiency,

mobility, and organizational policies. The architecture explicitly recognizes new trends in

separate ownership of infrastructure (carriers), hosts (clouds), users and contents and their

economic relationships. This will shape the services that the network can provide enabling

new business models and applications.

65

IMPs

Hosts

Users

IMPs

Hosts

Users

(a) Internet 1.0: 1969-1989
Single Ownership (DARPA/NSF)
No policy/security considerations
Algorithmic optimization

Hosts

Users

A B C

Hosts

Users

(b) Internet 2.0: 1989-2009
Infrastructures owned by carriers
AS policy-based routing

A B C

A B C

A B C

Infrastructure

Hosts

Users

(c) Internet 3.0: 2009 – (probably) 2029
Infrastructures, Hosts, Data/Services (ASP)
Operated under different ownership/policies
owned by carriers
Need strong security/policies in all tiers

Figure 2.22: Internet Generations

As shown in Fig. 2.22, Internet 1.0 (approximately around 1969) had no ownership concept

since the entire network was operated by one organization. Thus, protocols were designed for

algorithmic optimization with complete knowledge of link speeds, hosts, and connectivity.

Commercialization of Internet in 1989 led to multiple ownership of networking infrastructure

in what we call Internet 2.0. A key impact of ownership is that communication is based on

policies (rather than algorithmic optimization) as is seen in inter-domain (BGP) routing.

The internals of the autonomous systems are not exposed. We are seeing this trend of multi-

ple ownership to continue from infrastructure to hosts/devices (Clouds), users, and content.

Internet 3.0s goal is to allow policy-based secure communication that is aware of different

policies at the granularity of users, content, hosts, or infrastructure.

Cloud computing is an example of applications that will benefit from this inherent diver-

sity in the network design. Hosts belonging to different cloud computing platforms can be

leased for the duration of experiments requiring use of data (e.g., Gnome) to be analyzed

by scientists from different institutions. The users, data, hosts, and infrastructures belong

to different organizations and need to enforce their respective policies including security.

Numerous other examples, related to P2P computing, national security, distributed services,

cellular services exist.

Organization is a general term that not only includes employers (of users), owners (of de-

vices, infrastructure, and content) but also includes logical groups such as governments,

virtual interest groups, and user communities. Real security can be achieved only if such

66

organizational policies are taken into account and if we de- sign means of monitoring, mea-

surement, and independent validation and enforcement.

Internet 1.0 was designed for host systems that had multiple users and data. Therefore,

the hosts were the end systems for communication. Today, each user has multiple commu-

nication devices. Content is replicated over many systems and can be retrieved in parallel

from multiple systems. The future user-to-user, user-to- content, machine-to-machine com-

munications need a new paradigm for communication that recognizes this new reality and

allows mobility/multihoming for users and content as easily as it does for devices. In this

new paradigm, the devices (hosts) are intermediate systems while the users and content are

the end-systems. The inclusion of content as an end-system requires Internet to provide

new services (e.g., storage, disruption tolerance, etc.) for developing application specific

networking contexts. There will be more intelligence in the network which will also allow it

to be used easily to use by billions of networking-unaware users.

Internet 3.0 uses the term Realm to represent a trust domain such as an organization. All

entities within a tier belonging to a single organization belong to a realm. The management

and control plane of the realm, which we generically call Realm Manager (RM) enforces se-

curity and other organizational policies. These policies can be very general and may include

security considerations, e.g., authentication and authorization. RMs also provide additional

services such as ID-locator translation that allows objects to move without loosing connec-

tions and energy management services. RMs are part of the management and control plane

and are active during the start phase of a communication. Once set up, the communication

can continue in the data plane without intervention of the RMs.

Realms overlay entities with a discrete ownership framework. Ownership entails related

security, administrative and management responsibilities. In the Three-tier Object Model

(Fig. 2.23), the bottom tier infrastructure is owned by multiple infrastructure owners. The

second tier of hosts is owned by individual users or different organizations such as DoE,

DARPA, and Amazon. The third tier of users and data may belong to specific organizations

67

or individual users. Thus, realms represent logical division of entities into multiple owner-

ship, trust, and management domains.

Infrastructure

Hosts

Users

Infrastructure
Realm Manager

Infrastructure

Hosts

Users

Infrastructure
Realm Manager

Hosts Realm
Manager

Hosts Realm
Manager

User Realm
Manager

User Realm
Manager

Figure 2.23: Organization of ”Objects” in Internet 3.0

Explicit representation of ownership simplifies the security and policy framework design

through more natural representation and enforcement of policies rather than conflating them

with functionality as in the current Internet.

Realms advertise specific services through Objects. Objects encapsulate the complexities of

resource allocation, resource sharing, security and policy enforcements, etc., and expose a

standard interface representing capabilities (in standardized abstract parameters) and fixed

or negotiable policies.

Objects provide services. They may use services of other objects to provide their own ser-

vices. Also, a service may consist of an aggregation of objects, e.g., end-to-end transport

service. The aggregated objects may belong to the same or multiple owner- ships. Thus,

object composition in Internet 3.0 lies at the basis of the policy and security framework of

the architecture.

Like real organizations, realms are organized hierarchically. The hierarchy is not a binary

tree since a realm can have two or more parents, i.e., an organization can be a part of several

68

higher-level organizations and can have several lower-level sub-organizations. Note that the

concepts of objects and realms are recursive. An object may comprise a group of objects.

Thereby, a realm or a group of realms could be treated as an object and provide a service.

When a realm advertises an object, it keeps complete control over how that object is managed

internal to the realm. Inside the realm, the realm members may delegate responsibilities to

other objects. This allows the objects to go to sleep for energy saving. It allows specialized

services in the realm that can be used by other objects. For example, all packets leaving a

realm may be signed by a realm signer that assures that the packets originated from that

realm although the source of the packet was not authenticated. In some applications, this

type of assurance is sufficient and useful in accepting or discarding the packet.

Each object has an ID and a locator. The ID is unique in the realm and is assigned by

the RM. The locator is the ID of the object in the lower tier. Thus, the locator of data

is the set of IDs of hosts on which the data resides. The locator of the host is the set of

IDs of infrastructure points of attachments to which the host is connected. This separation

of ID and locators among multiple tiers is unique and is the basis for allowing independent

mobility of users over hosts and hosts over infrastructure. It is also the basis for multihoming

of users (a user with multiple host devices such as a smart phone, a laptop, and a desktop).

At the infrastructure tier, the object abstraction framework is implemented through a man-

agement and control plane connecting Internet POPs installed with a special Internet 3.0

node called the context router. Fig. 2.24 presents a highly simplified POP design where each

AS has a border router that connects to the POP, enhanced with the context router. The

context router has two key functions:

69

AS 1

AS 4

AS 2

AS 7

AS 5

AS 8

AS 6

AS 3

POP 1

POP 2 POP 3

POP 4 Context I

Context II

Context Router

AS Border
Router

 Packet
Classifier

 Objects

Figure 2.24: Internet 3.0 POPs enhanced with Context Routers

• It maintains a behavioral object repository advertised by the participating ASs and

makes them available for lease to application contexts.

• It leases programmable objects provisioned over packet processing hardware resources

such as SRAMs, DRAMs, and network processors. This allows application contexts

to set-up their own packet processing contexts at POPs (shown as the hatched and

dotted contexts).

Fig. 2.25 presents a high-level overview of the context router design. A context router needs

to have multiple virtualized contexts advertised as programmable objects. A hypervisor is

responsible for creating and controlling these programmable objects. There is a base context

called the context 0 that hosts the object store. Participating ASs advertise their objects at

the POP and they are stored at the context 0 of the context router. Also, the context 0 par-

ticipates in the inter-infrastructure realm management plane and stores AS level connectivity

maps. It runs a brokering protocol that allows application contexts to query, block, lease and

release objects from the object store. A secure software switch allows inter-context commu-

nications, mostly to allow application contexts to be able to communicate with the context 0.

70

General Purpose
Processors (GPP)

Network
 Processors (NP) SRAM DRAM

Hypervisor (Virtualize Hardware Resources)

Context Creation Protocol
(Similar to Planetlab Slice Manager)

Se
cu

re
 C

on
te

xt
 C

re
at

io
n

Software Switch for (local) Inter-Context Communication

Context 0

Context Router
Enabled POP

Management Protocol

Object Brokering
Protocol

Context
Creation Protocol

GPP DRAM NP SRAM

Object Request
Protocol

Local Leased
Object Table

Context Specific Data Plane

Context Specific Control Plane

Context Specific MGMT Plane

Context I

Figure 2.25: Context Router Design

At the host tier,programmable objects are provisioned over compute resources consolidated

over end-user personal compute resources, private and public cloud computing and storage

re- sources, Content Delivery Network (CDN) storage resources, server farms, grid resources,

etc. The mechanisms for sharing common compute resources across multiple application con-

texts may vary from virtualization techniques achieving near perfect isolation and providing

strong deterministic performance guarantees to traditional operating system based resource

allocations based on global optimization and fairness considerations. Similar to the infras-

tructure realm, Internet 3.0 allows complete autonomy to host realms to choose the specific

mechanisms for allocation of compute resources to application contexts. Also, it provides a

common object abstraction interface that allows host resources to be shared across multiple

ownerships over a policy negotiation plane. However, unlike the infrastructure realm which

was marked by a physical realm boundary, host realms could have physical as well as logical

boundaries. Behavioral objects are pro- visioned similar to the Software-as-a-Service (SaaS)

or Platform- as-a-Service (PaaS) paradigms in cloud computing. Security and other services

71

may be advertised as behavioral objects which advertise the service in terms of abstracted

parameters such as security level, etc. An application context should be able to choose the

required level of security without worrying about how the end- to-end security service is

being orchestrated across the different host realms. The underlying federation mechanism

requires considerable efforts in standardization.

Thus, Internet 3.0 is an overarching architecture for the next generation Internet. It identi-

fies the key design basis and defines primitives that shall allow the next generation Internet

to be diversified. It significantly improves upon the one-suit fits all paradigm of the current

Internet and allows each application context to be able to fully program and optimize its

specific context.

2.4.3 Future Internet Architectures (FIA) projects

FIA [41] was the followup to NSFs FIND program. While the FIND program funded a very

broad set of research ideas on next generation Internet design, the goal of the FIA program

was to consolidate these diverse ideas and move forward towards actually creating a complete

top-down architectural framework for the next generation Internet. As part of the program,

four research projects were funded with each project granted an approximate amount of $10

million. Here we will provide a brief overview of these four projects to give the reader a flavor

of the different ideas that are being considered to evolve the Internet design to serve next

generation applications. AppFabric also has a very similar goal and hopefully the discussion

in this section will be able to better elucidate the strengths and weaknesses of the AppFabric

idea.

• Named Data Networking: The Named Data Networking (NDN)[84] project is led by

the University of California, Los Angeles with participation from about 10 universities

and research institutes in the United States. The initial idea of the project can be

traced to the concept of content-centric networks (CCNs) by Ted Nelson in the 1970s.

After that, several projects such as TRIAD [21] at Stanford and DONA[69] from the

University of California at Berkeley were carried out exploring the topic. In 2009 Xerox

72

Palo Alto Research Center (PARC) released the CCNx project led by Van Jacobson,

who is also one of the technical leaders of the NDN project.

The basic argument of the NDN project is that the primary usage of the current

Internet has changed from end-to-end packet delivery to a content-centric model. The

current Internet, which is a client-server model, is facing challenges in supporting

secure content-oriented functionality. In this information dissemination model, the

network is transparent and just forwarding data (i.e., it is content-unaware). Due to

this unawareness, multiple copies of the same data are sent between endpoints on the

network again and again without any traffic optimization on the networks part. The

NDN uses a different model that enables the network to focus on what (contents) rather

than where (addresses). The data are named instead of their location (IP addresses).

Data become the first-class entities in NDN. Instead of trying to secure the transmission

channel or data path through encryption, NDN tries to secure the content by naming

the data through a security-enhanced method. This approach allows separating trust

in data from trust between hosts and servers, which can potentially enable content

caching on the network side to optimize traffic. Fig. 2.26 is a simple illustration of the

goal of NDN to build a narrow waist around content chunks instead of IP.

IP
Ethernet/Wifi, ..

Transports

Web, email,..

Physical

HTTP, RTP,..

CSMA, ADSL, ..

Contents
Strategies

Security

Web, email,..

Physical

File streams

P2P, UDP, ..

Figure 2.26: The new ”narrow waist” of NDN (right) compared to the current Internet (left)

NDN has several key research issues. The first one is how to find the data, or how the

data are named and organized to ensure fast data lookup and delivery. The proposed

idea is to name the content by a hierarchical name tree which is scalable and easy

to retrieve. The second research issue is data security and trustworthiness. NDN

73

proposes to secure the data directly instead of securing the data containers such as

files, hosts, and network connections. The contents are signed by public keys. The

third issue is the scaling of NDN. NDN names are longer than IP addresses, but

the hierarchical structure helps the efficiency of lookup and global accessibility of the

data. Regarding these issues, NDN tries to address them along the way to resolve

the challenges in routing scalability, security and trust models, fast data forwarding

and delivery, content protection and privacy, and an underlying theory supporting the

design.

• MobilityFirst: The MobilityFirst [82] project is led by Rutgers University with seven

other universities. The basic motivation of Mobility-First is that the current Internet

is designed for interconnecting fixed endpoints. It fails to address the trend of dra-

matically increasing demands of mobile devices and services. The Internet usage and

demand change is also a key driver for providing mobility from the architectural level

for the future Internet. For the near term, MobilityFirst aims to address the cellular

convergence trend motivated by the huge mobile population of 4 to 5 billion cellu-

lar devices; it also provides mobile peer-to-peer (P2P) and infostation (delay-tolerant

network [DTN]) application services which offer robust- ness in case of link/network

disconnection. For the long term, in the future, MobilityFirst has the ambition of

connecting millions of cars via vehicle-to-vehicle (V2V) and vehicle-to-infra- structure

(V2I) modes, which involve capabilities such as location services, georouting, and re-

liable multicast. Ultimately, it will introduce a pervasive system to interface human

beings with the physical world, and build a future Internet around people.

74

Name-to-Address
Mapping

Hop-by-hop
segment transport

MobilityFirst router
with storage

Core Network

Generalized
DTN Routing

Data Plane

Global Name Resolution Service

Control and Management Plane

Figure 2.27: MobilityFirst Architecture

The challenges addressed by MobilityFirst include stronger security and trust require-

ments due to open wireless access, dynamic association, privacy concerns, and greater

chance of network failure. MobilityFirst targets a clean-slate design directly addressing

mobility such that the fixed Internet (see Fig. 2.27) will be a special case of the gen-

eral design. MobilityFirst builds the narrow waist of the protocol stack around several

protocols:

– Global name resolution and routing service

– Storage-aware (DTN-like) routing protocol

– Hop-by-hop segmented transport

– Service and management application programming interfaces (APIs)

The DTN-like routing protocol is integrated with the use of self-certifying public key

addresses for inherent trustworthiness. Functionalities such as context- and location-

aware services fit into the architecture naturally.Some typical research challenges of

Mobility- First include:

– Trade-off between mobility and scalability

– Content caching and opportunistic data delivery

– Higher security and privacy requirements Robustness and fault tolerance

75

• NEBULA: NEBULA [85] is another FIA project focused on building a cloud-computing-

centric network architecture. It is led by the University of Pennsylvania with 11 other

universities. NEBULA envisions the future Internet consisting of a highly available

and extensible core network interconnecting data centers to provide utility-like ser-

vices. Multiple cloud providers can use replication by themselves. Clouds comply with

the agreement for mobile roaming users to connect to the nearest data center with a

variety of access mechanisms such as wired and wireless links. NEBULA aims to design

the cloud service embedded with security and trustworthiness, high service availability

and reliability, integration of data centers and routers, evolvability, and economic and

regulatory viability. NEBULA design principles include:

– Reliable and high-speed core interconnecting data centers

– Parallel paths between data centers and core routers

– Secure in both access and transit

– A policy-based path selection mechanism

– Authentication enforced during connection establishment

With these design principles in mind, the NEBULA future Internet architecture con-

sists of the following key parts:

– The NEBULA data plane (NDP), which establishes policy-compliant paths with

flexible access control and defense mechanisms against availability attacks

– NEBULA virtual and extensible networking techniques (NVENT), which is a

control plane providing access to application- selectable service and network ab-

stractions such as redundancy, consistency, and policy routing

– The NEBULA core (NCore), which redundantly interconnects data centers with

ultra-high-availability routers

76

Wireless Access
Network

Wired Access
Network

Reliable,
Trustworthy

Core Network
(NCORE)

Datacenter

Datacenter

Transit
Network

NDP Path

NVENT
NVENT

Figure 2.28: NEBULA Architecture

NVENT offers control plane security with policy-selectable network abstraction in-

cluding multi-path routing and use of new networks. NDP involves a novel approach

for network path establishment and policy-controlled trustworthy paths establishment

among NEBULA routers. Fig. 2.28 shows the NEBULA architecture comprising the

NDP, NVENT, and NCore, and shows how they interact with each other.

• eXpressive Internet Architecture (XIA): Expressive Internet Architecture (XIA)

[141] is also one of the four projects from the NSF FIA program, and was initiated by

Carnegie Mellon University collaborating with two other universities. As we observe,

most of the research projects on future Internet architectures realize the importance

of security and consider their architecture carefully to avoid the flaws of the original

Internet design. However, XIA directly and explicitly targets the security issue within

its design. There are three key ideas in the XIA architecture:

– Define a rich set of building blocks or communication entities as network principals

including hosts, services, contents, and future additional entities.

– It is embedded with intrinsic security by using self-certifying identifiers for all

principals for integrity and accountability properties.

– A pervasive narrow waist (not limited to the host-based communication as in the

current Internet) for all key functions, including access to principals, interaction

among stakeholders, and trust management; it aims to provide interoperability

at all levels in the system, not just packet forwarding.

77

eXPressive Internet Protocol

Host
Support

Content
Support

Services
Support

Services

Applications

Users

N
et

w
or

k-
ne

tw
or

k
U

se
r-

ne
tw

or
k

Tr
us

tw
or

th
y

ne
tw

or
k

op
er

at
io

n

(in
tri

ns
ic

 s
ec

ur
ity

)

Figure 2.29: XIA Components and Interactions

The XIA components and their interactions are illustrated in Fig. 2.29. The core

of the XIA is the Expressive Internet Protocol (XIP) supporting communication be-

tween various types of principals. Three typical XIA principal types are- content, host

(defined by who), and service (defined by what it does). They are open to future

extension. Each type of principal has a narrow waist that defines the minimal func-

tionality required for interoperability. Principles talk to each other using expressive

identifiers (XIDs), which are 160 bit identifiers identifying hosts, pieces of content, or

services. The XIDs are basically self-certifying identifiers taking advantage of crypto-

graphic hash technology. By using this XID, the content retrieval no longer relies on a

particular host, service or network path. XIP can then support future functions as a

diverse set of services. For low-level services, it uses a path-segment-based network ar-

chitecture (named Tapa in their previous work) as the basic building block; and builds

services for con- tent-transfer and caching and service for secure content provenance at

a higher level. XIA also needs various trustworthy mechanisms and pro- vides network

availability even when under attack. Finally, XIA defines explicit interfaces between

network actors with different roles and goals.

78

2.5 Other Related Work

The design of AppFabric borrows from a large number of previous and current researches on

network architectures. AppFabric extends some of these ideas and combines several disparate

key concepts to realize its goals of an open network architecture for service/application

delivery.

• Content Distribution Networks (CDN): Unlike CDNs, AppFabric is designed for

highly dynamic data that cannot be cached; or, when the data owner wants to keep

complete control of their data and the data generation processes and cannot trust the

CDN with full view of the data, e.g., in medical, banking, and defense applications.

• Active Networks: In active networks [132], routers are required to execute code in

packet headers. The idea was never adopted by industry because no service provider

will allow others code to run on its routers thereby relinquishing control of its routers

to others. AppFabric is specifically designed to avoid this flaw. ISPs are always in

complete control of their network. ISPs own the policies and control the translation

and implementation of ASP specified rules in the forwarding plane.

• Rule-Based Forwarding (RBF): In RBF [111], which is also designed to avoid the

flaws of active networks, packets carry rules that are processed in the forwarding plane

to determine an action on the packet. Four possible actions are defined. These are:

1) drop the packet, 2) forward the packet over the underlying IP forwarding plane, 3)

invoke a local router function, and 4) update an attribute in the packet. Again, the

users directly control the ISPs routers behavior which may not be acceptable to the

ISP. In contrast, packets do not carry any rules in the AppFabric data plane. All they

will have is the application meta-tag which will allow the ISPs to handle the packet

as agreed with the ASP in the control plane. Second, in the AppFabric data plane,

the forwarding actions may change as soon as the state of the application server or the

network changes. In RBF the receiver entity (that specifies the rules) cannot change

the way packets are processed until the communicating entity asks for the rules again

or the rule lifetime ends. The third difference is that the AppFabric data plane allows

specifying forwarding rules based upon application-level semantics such as packet flows,

messages and application sessions while RBF is simply packet based. The flow-based

79

design allows a compute once, use many-times design for the forwarding plane. There

are several other subtle differences between these two architectures. We believe that

AppFabric is a simple, robust, flexible, scalable, and more easily implementable and

deployable design.

• Serval: Serval [90] is another recent work addressing the problem of accessing ge-

ographically distributed services. Serval provides a point solution for accessing dis-

tributed services through a service router infrastructure. The service router infras-

tructure is similar to the requirement of outsourcing application-level routing in the

AppFabric data plane. However, AppFabric provides a generic middlebox switching

solution which allows flexible implementation of any service access mechanism by com-

posing specific mechanisms such as CBR, load balancer, cluster fault-manager, etc.

Also, OpenADN includes the application context into the switching abstraction. Other

distinguishing features include support for switching across middlebox sequences both

in the data and control planes and support for both sender and receiver policies.

• Delegation Oriented Architectures: Delegation based architectures such as DOA

[139] proposed a mechanism for off-path, middlebox deployments. AppFabric provides

a more fundamental primitives that will allow a more realistic approach to realize the

requirements of application deployments.

• ALTO: More recently, the ALTO [56] working group at IETF is developing an application-

layer traffic optimization service that will provide network information to applications

to inform peer selection for P2P services, content delivery, mirror selection, etc. Net-

work information provides only one set of parameters among others (cost of deploy-

ment, usage patterns, application replication and partitioning) that inform application

delivery policies in AppFabric. The ALTO architecture provides a subset of the services

provided by AppFabric.

There have been several research efforts to motivate architectural changes to address

the problem of adding explicit support for middleboxes into the Internet architecture.

However, the non-standard network configuration techniques and support for forward

and reverse proxies in HTTP somehow managed the show and curbed the motivation

for adopting a general architectural change. We believe that in the context of cloud

computing the problem is more urgent and different as application deployments move to

third party infrastructures and have more dynamic and distributed deployments. None

80

of the previous proposals try to abstract out application-level semantics into standard

representation for a generic and high-performance implementation while still preserving

some richness of application diversity. Also, none of them offer any discussion on

the control plane; and how application level policies may be enforced on third-party

infrastructures.

In this chapter, we provided some background that will help the reader appreciate the mo-

tivations that led to the different design choices in AppFabric. In the rest of this thesis,

we will discuss the specific details of the AppFabric architecture, the design details and a

proof-of-concept prototype implementation of the platform.

81

Chapter 3

AppFabric High-level Architecture

In this chapter we will present a high-level architecture of the AppFabric platform. The

design of AppFabric has been motivated by the need to address some general issues and

architectural deficiencies in current application delivery solutions. It is especially important

that we address these issues now, in light of the recent advances in infrastructure virtualiza-

tion technologies and a shift towards Software-Defined Infrastructures (SDI). We will discuss

these issues and how AppFabric addresses them in more detail in this chapter.

The discussion in this chapter is divided in two parts. In the first part, we will discuss some

of the high-level requirements that motivate our design. In the second part, we will discuss

the high-level goals of the AppFabric architecture.

3.1 High-level Ideas

In this section, we will present some of the high-level requirements that motivate our design

of AppFabric.

3.1.1 Horizontal integration Platform

Delivering modern applications is extremely complex and requires the integration of many

different components. System engineers strive to achieve this extremely complex task through

82

a combination of manual ad-hoc techniques, automation tools and mostly proprietary mid-

dleware solutions. Most of these tools, techniques and software achieve vertical integration

(across the same or similar type of component) leaving the deployment teams to figure out

how to achieve horizontal integration. This gap is often the source of most fault-lines and

missed opportunities. It is all the more pressing to address the issues of horizontal integra-

tion now, given that SDI enables new infrastructure usage capabilities and next generation

applications need to leverage these capabilities to enable new use cases. The benefits of a

horizontal integration platform, providing the proper abstractions through a well designed

and well implemented API set is indisputable. In AppFabric, we strive to provide such a

platform for application delivery. To give a flavor of what horizontal integration AppFabric

is trying to achieve, consider the following(refer to Fig. 3.1):

83

ISP/NSP CSP Network Enterprise
Network

AppFabric ADN Common Network Transport Abstraction

Cloud
Datacenter

Private
Datacenter

Network POP
Micro-Datacenter

AppFabric ADN Common Resource Pool Abstraction

Storage Servers Application Servers Message-level
Middleboxes

Packet-level
Middleboxes

AppFabric ADN Common Device/Service Abstraction

AppFabric Common Application Deployment and Delivery Abstraction

Internet-of-
Things

Cyber-Physical
Systems Mobile Apps Online Games/

Virtual Worlds

Network Infrastructure and Services Layer

Multi-Datacenter Compute and Storage Infrastructure Layer

Multi-Device and Service Types

Diversified Application Use-cases

Figure 3.1: Schematic Representation of an Application Delivery Network (ADN)

• Integration of network and compute infrastructures: Application delivery de-

pends on the capabilities of both the compute (including storage) as well as the network

84

infrastructures. However, traditionally these two infrastructure components have been

largely kept separate. Current networks, even within the administration of the same

Application Service Provider (ASP), for example in enterprise datacenters, are seldom

application aware. Applications are sometimes designed to be network aware. For ex-

ample most media transmission applications dynamically adapt to changing network

conditions by using different media encoding techniques. However, this seems to be a

reversal of roles from an architectural standpoint. Contrary to the original design goal,

in this case the compute layer seems to be providing a service to the network layer to

cope with its problems of failure or congestion by degrading itself. Such issues of tus-

sle between the network and compute layers have existed since the very beginning and

there have been many efforts to address them as well. In-fact network QoS has been the

one of the most prolific areas of research in Computer Science in the past two decades

[29], resulting in almost no real-world deployments. We think that the problem is that

although we know the techniques of creating a differentiated network infrastructure

for different types of applications, we do not have a good interface through which the

application can explicitly (and dynamically) specify its requirements to the network;

allowing the network to enable the required service for the application. SDI stands to

change this situation. SDI virtualizes both compute and network resources alike and

provides access to each of these different resource types through a service interface.

AppFabric is designed to be the horizontal integration platform that sits on top of the

SDI layer and translates the applications requirements (both in terms of compute and

the network) to the capabilities offered by the SDI components.

• Integration of different device types: One of the problems with current appli-

cation delivery environments is device sprawl enterprise datacenters house a variety

of different types of devices including application servers, storage appliances, network

equipment, and packet-level and message level middleboxes; each of them coming from

many different vendors, providing different functionalities, having different deployment

requirements and each having separate management and control interfaces. AppFabric

provides a common data, management and control framework for all these different

types of devices. Each of these different types of devices can connect to each other

over a common AppFabric data plane, and can be monitored, managed and controlled

through a common AppFabric control/management plane interface. Thus, AppFabric

provides a horizontal integration platform across many different device types similar

85

to the way SDN seeks to provide horizontal integration across different switching-layer

devices from many different vendors.

• Integration of different transport mechanisms: : In AppFabric, application and

network services do not need to worry about how they communicate with each other.

The platform intelligently deploys the services and provides a common interface for

them to communicate with each other. Underneath this common interface, the plat-

form will choose from different transport mechanisms including network sockets, inter-

process communication (IPC), inter-thread communication and IP packet forwarding

to provide the most efficient way to enable the communication.

• Integration of multiple resource providers: AppFabric also provides horizontal

integration across multiple resource providers, providing different types of resources and

implementing different SDI management stacks (e.g. OpenStack, CloudSack, Open-

DayLight, etc.). Thus, application deployments over AppFabric can span across mul-

tiple Cloud Service Providers (CSPs) and Network Service Providers (NSPs), thus

providing the perfect platform to deploy massively distributed application use cases.

Thus, one of the primary architectural goal of AppFabric is to cut across the different vertical

components that make the current application delivery process extremely complex, fragile

and unwieldy and simplify it as much as possible.

3.1.2 Separation of control and data planes

Control and data plane separation is an architectural style that has received much attention

in the recent past in the context of discussions related to Software-Defined Networking

(SDN). However, in the ensuing hype it has come to mean different things to different

people. The key confusion emerges from the arbitrary understanding as to what is meant

by the term separation in this context. Control, management and data planes have always

been logically separate, and thus the different names. In the present context, however, the

word separation entails two concepts:

86

• Logically centralized control plane and distributed data plane: The logical

vs. distributed argument is not new and we have seen system design trends swing back-

and forth across both these extremes. There are strong arguments both, in support

of and against each side. Distributed systems are good for robustness (no-single point

of failure) and incremental scalability (adding more resources in smaller increments).

Also, generally, it is less expensive to build a powerful system from many less capable

commodity parts than to build a single high capacity system from specialized hard-

ware. However, just like any other aspect of system design, these advantages trade-off

with the increased complexity in managing and controlling a distributed system. Cen-

tralized systems, on the other hand, are much easier to manage and control but have

disadvantages in terms of robustness, incremental scalability and cost. However, many

times, the very nature of the system deployment itself, force system architects to choose

one over the other. Computer networks are a typical example where the system itself

is inherently distributed. Therefore, while these computer network designs have been

extremely robust and scalable, managing them has been extremely challenging. The

complexity of distributed control algorithms has often been the bottleneck in introduc-

ing new services and evolving to new requirements, troubleshooting problems when the

system does fail in-spite of the robustness, and dealing with configuration and algo-

rithmic errors. SDN introduced the notion that there was actually no need to club the

deployment of control and data plane functions together since they had very different

requirements. The data plane that is responsible for the actual movement of the bits

needs to be extremely robust and very efficient. The control plane on the other hand

can afford to be much less efficient (although it needs to be equally robust). At the

same time, there are enormous gains in centralizing the control plane and getting rid

of complex distributed control algorithms. Therefore, while the data plane functions

(packet forwarding) can be distributed, the control plane functions (computing the

routing tables) can be centralized.

• Decoupling the implementation of data plane and control plane: This hybrid

architectural notion of centralized control plane and distributed data plane was already

proposed earlier in the context of centralized route servers [15] and MPLS path com-

putation elements [9, 74]. SDN’s contribution was to make a more compelling business

case for it through the idea of completely de-coupling the implementation of the data

plane and the control plane functions and defining a standard, open interface through

87

which a control plane element can talk to a data plane element and vice-versa. This

has a tremendous impact in opening up the system for multi-vendor innovations by

making sure that devices from multiple vendors can now be easily interoperate. For

example, a network provider may now buy switches from multiple vendors and buy a

controller from a completely different vendor, as long as they all implement this stan-

dard interface. Vender lock-ins has been one of the reasons for slow innovations in the

networking industry and SDN has definitely helped in addressing this impasse.

Given this framework for control and data plane separation, we argue that it is equally

relevant to an application delivery platform such as AppFabric as it is to SDN. Let us look

at the specific requirements of each of these three planes in AppFabric in order to justify our

design choice.

• Need for a distributed data plane in AppFabric: AppFabric is an application

delivery platform and hence comprises of two key components - the application and

the network. Modern applications, unlike large monolithic application deployments

in the Mainframe-era, are mostly distributed. Let us look at the different contexts in

which these application deployments are distributed:

– Service-Oriented Architecture (SOA) based applications: The application world

has been trying to evolve to a service-oriented application design architecture.

In SOA, applications are composed of many loosely connected components called

services. SOA contributes enormously to simplifying each stage of the application

development process including planning, design, development, testing and main-

tenance. Apart from this, SOA enables sharing of data and capabilities among

different application providers allowing innovative new use-cases through collab-

orations and partnerships and also opening new avenues for monetization of their

resources. As obvious, SOA-based applications are inherently distributed.

– Moving towards commodity hardware: Commodity server hardware has the same

benefits to application delivery as commodity switching hardware has to SDN.

Modern datacenters comprise of lots of cheap commodity servers replacing spe-

cially designed, high-performance servers. Doing so ensures high utility, lower

capital and operation expenditures, easily migrating workloads to third-party

88

leased infrastructure and avoiding vendor lock-ins. Most modern application

frameworks, such as Map-Reduce and Big-Data databases such as the Hadoop

Distributed File System (HDFS) [12], are designed to promote this trend by dis-

tributing compute/storage across many low capability commodity servers.

– Massively distributed application use-cases of the future: Most modern and future

application use-cases including Internet-of-Things (IoT), Cyber-Physical Systems,

mobile apps, online gaming, and virtual worlds benefit from having a distributed

geographical presence. Therefore, distributed application deployments will no

longer be limited to many hosts in a datacenter but will require many hosts in

many datacenters.

Note that this does not automatically imply that the AppFabric data plane should be

distributed. As we mentioned earlier, AppFabric consists of two key components - the

network and the application. Therefore, there are two considerations here that are

important.

– The network is by its very nature distributed. Currently, both the control and

data plane of the network are distributed. SDN is trying to advocate centralizing

the control plane while keeping the data plane distributed.

– The backbone of distributed service-oriented architecture platforms is a middle-

ware tier, generically called the Enterprise Service Bus (ESB)(described in Chap-

ter. 2). It was also described in Chapter 2 that ESBs can be implemented either

through a centralized or a distributed message broker subsystem. A centralized

broker subsystem suffers from the usual drawbacks of centralized architectures

such as introducing a single point of failure and performance bottleneck choke-

points. However, these issues can be easily mitigated through techniques such

as adding redundancy in the form of a hot standby and operating a cluster of

smaller nodes instead of a single large node. The bigger issue is that a centralized

implementation of an orchestration platform is inefficient owing to the overhead

due to indirection - every communication between any two entities will need to

be in-directed through the orchestrator (single node or a cluster). This cost of

indirection is especially unacceptable for application use-cases where the appli-

cation deployment may be distributed across multiple datacenters. There is no

89

doubt that AppFabric requires a distributed solution. However, the current dis-

tributed broker subsystem solutions also have their own limitations. Firstly, they

are difficult to configure, control and deploy. Secondly, most distributed ESB

solutions are limited to a few high-performance message broker nodes that serve

hundreds of services. Thirdly, we are not aware of any middleware platform that

can dynamically scale and distribute, on demand, to accommodate the changes

in user access patterns and distribution. Therefore, there is a clear motivation

for AppFabric to adopt a hybrid architecture where the control plane is logically

centralized and the data plane is distributed. Such an architecture will allow the

message broker subsystem to be easily configured, controlled and deployed. Also,

it avoids the inefficiencies (as a result of indirection in message routing in the

data plane) of a centralized solution. Also, since the control plane is centralized,

it is now possible to operate a massively distributed data plane, one that matches

the deployment of the application services. As we will see in the next chapter,

the message brokering subsystem in AppFabric does not consist of any special or

separate broker nodes but is distributed across all the compute and storage nodes

in the application deployment.

Therefore, both the application and the network architectures converge to a hybrid

centralized control plane, distributed data plane architecture for better efficiency, more

dynamism and scalability, and easier management and control. However, in AppFabric,

the control plane is not exactly centralized (physically or logically) but is instead

hierarchical (converge to a centralized entity slowly). The next point discusses the

motivation behind this design choice more elaborately.

• Need for a hierarchical control plane in AppFabric: The idea of a centralized

control plane overlooks the concerns of robustness and scalability that also affect the

control plane, albeit to a much lesser extent than the data plane. Of these, the ro-

bustness issue can be easily solved by adding redundancy. For example, by adding a

hot/cold standby. It is more challenging to address the scalability issue. Also, the

problem is more severe if the data plane is dynamically programmed by the control

plane, as was proposed in the original OpenFlow architecture [78, 46]. Any packet that

could not be classified to one of the flow entries in the data plane would be forwarded to

the controller that would then program the data plane nodes to handle this new flow.

90

The scalability of such an architecture is restricted in two ways. Firstly, it depends on

the number of new flows that arrive at each instance. Secondly, the delay between the

arrival of a new flow and the time it takes by the centralized controller to program the

data plane to handle it, needs to be bounded. This problem of delay may not be much

of an issue in datacenter environments, but certainly becomes much more relevant in

wide-area network environments or multi-datacenter environments. We address it by

treating the control plane as a sort of intermediary between the data plane and the

management plane (as shown in Fig. 3.2); where the data plane is fully distributed with

a flat structure (where all the nodes are peers) , the management plane is logically cen-

tralized, and the control plane is distributed but with a hierarchical structure. Each

data plane node has a controller agent that reports to the local datacenter controller,

that reports to a zonal (multiple datacenters in a given geographical region) controller

and so on. Finally, at the top of the hierarchy is a central global controller that in

turn talks to the centralized management plane element, discussed next. At each level

in the hierarchy there is aggregation of information. For example, the local datacenter

controller only reports the aggregated resource available at the datacenter to the zonal

controller instead of reporting per-host resource availability.

• Need for a centralized management plane in AppFabric: The AppFabric plat-

form is dynamic in the sense that it can adapt in the runtime to a set of pre-defined

contexts. For example, it can allocate/release resources and replicate application work-

flows, on demand. However, unlike the OpenFlow architecture, it does not expect a

new context (for example a new flow) to show up during runtime. All possible contexts

need to be pre-specified (or negotiated) through a centralized management plane that

then programs the control plane and data plane to handle it in the runtime. In the

runtime, the role of the management plane is to oversee that the policies are being

enforced properly and record non-compliance.

91

Enterprise
Datacenter ISP Network

AppFabric datacenter
 controller

AppFabric Global
 Controller

AppFabric Global
 Manager

AppFabric
inter-datacenter virtual

WAN controller

ISP virtual WAN
network

OpenStack

Virtual
Network

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

VM
#1 …

AppFabric virtual
compute/storage

controller

VM
#N

AppFabric
virtual network

controller

Cloud
Datacenter

AppFabric datacenter
 controller

OpenStack

Virtual
Network

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

VM
#1 …

VM
#N

AppFabric
virtual network

controller

AppFabric virtual
compute/storage

controller

Figure 3.2: High-level Architecture of AppFabric showing the distributed data plane, hier-

archical control plane and centralized management plane

Fig. 3.2 shows a high-level representation of the organization of the data plane, control

plane and management plane of AppFabric. As can be seen in this figure, the AppFabric

data plane is distributed over virtual machines and virtual networks. These virtual ma-

chines may be acquired from the enterprise-owned datacenters or leased from one or more

cloud providers. They host different types of services including application services, storage

services, packet-level middleobox services and message-level middlebox services. Similarly,

the virtual network may be owned by the enterprise, as in the case of virtual network in

enterprise datacenters or corporate WAN infrastructrues (such as the Google WAN [49, 50])

or, may be leased from a cloud provider (virtual network inside a cloud datacenter) or a

ISP (virtual leased WAN services). Each of these data plane resources, either owned or

leased is managed, controlled and programmed by the AppFabric control and management

plane. The control plane is hierarchical, with a separate controller for each resource provider.

Also, each of these controllers are further logically sub-divided based on whether they are

controlling virtual machines (with different types of services) or a virtual network. These

92

local controllers, in turn, are managed by a global controller. Note that there may be more

levels in the hierarchy. The decision on how many levels of controllers are needed is based on

addressing the tradeoff between the advantages of having more levels (such as local decision

making that reduces the delay between the control and data plane and localizing problems

making it easier to isolate and debug failures) versus the disadvantages (such as increased

complexity of managing the control plane itself as a result of more distributed control func-

tions requiring synchronization). The management plane is centralized and we have already

argued the rationale behind it in the preceding discussion. The details of each of these data,

control and management plane entities will be provided in the chapters to follow.

3.1.3 ID/Locator Split

AppFabric provides a service-centric infrastructure platform to application deployments as

opposed to the host-centric platform provided by the Internet. This means that a service

is independently identifiable and addressable within the platform and is not coupled to a

host. The service to host mapping is dynamic and maintained by the platform. The general

architectural idea behind this is to try and achieve ID/locator split.

Over the past few years there has been a lot of research on ID/locator split architectures

(see the detailed discussion on this in chap. 2), which intend to decouple a hosts locator (IP

address) from it identity. The coupling of the ID to a locator is the reason behind a lot

of problems faced by application deployments on the current Internet. We too have made

some significant contribution to this research [105, 99, 97, 98, 100, 124, 125, 96, 103, 106].

However, decoupling the identity from a locator of a host still results in a host-centric ar-

chitecture. A service is still bound to the hosts ID. The implication of this is that one can

only specify and enforce policies at the host-level and all services that are running on that

host need to automatically inherit those policies. Also, a service is not allowed to move to

a new host if required; as may be required to optimize inter-service communication, ser-

vice composition and handle host failures. To address this problem, we had proposed a

multi-tier ID/locator split architecture called PONA- Policy-Oriented Network Architecture

(Fig. 3.3). PONA proposed a three-tier architecture with users and services in the top tier,

hosts forming the middle tier and the network in the bottom-tier. Network interfaces would

be identified through a locator (IP or MAC) whereas the higher tier entities (hosts, services,

93

and users) would have globally unique identifiers. An ID to locator mapping plane between

each tier would dynamically map the ID of an entity of a higher tier to the id of an entity

in the tier below it (e.g. Service ID → Host ID → Network interface 〈IP, MAC〉). This

would make each of these entities independent of each other while still maintaining the tiered

dependency that is inherent in the architecture.

Infrastructure

Hosts

Users

Infrastructure
Realm Manager

Infrastructure

Hosts

Users

Infrastructure
Realm Manager

Hosts Realm
Manager

Hosts Realm
Manager

User Realm
Manager

User Realm
Manager

Figure 3.3: PONA is part of the Internet 3.0 Architecture (redrawn from Fig. 2.23)

The PONA solution was proposed as a clean-slate architecture for the next generation In-

ternet. In AppFabric, we take much of PONAs ideas but instead of trying to change the

Internets architecture natively (that is by changing the network stack) we provide a service-

centric communication abstraction as an overlay over the original host-centric design.

94

3.2 High-level Goal

Message-level
Middlebox

Service

Application
Server

Packet-level
Middlebox

Service

Web
Server

Storage
Server

Storage
Server

AppFabric Distributed Virtual Switch
(ADVS)

P
orts P

or
ts

Message/ Packet switching

ADVS Controller

Switch Programming Interface

Figure 3.4: AppFabric Distributed Virtual Switch

The high-level goal of the AppFabric architecture is to design a AppFabric Distributed

Virtual Switch (ADVS), as shown in Fig. 3.4. Some of the properties of this switch are:

• Distributed: The ADVS provides the abstraction of a single centralized switch to the

user while the actual implementation is distributed across all the different components

such as network nodes, middleboxes and application servers, that make up an appli-

cation delivery network. The different components of the switch may be distributed

across multiple different resource provider infrastructures across many different geo-

graphical sites.

• Message/Packet level switching: Both, message and packet level services should

be able to connect to this switch and the switch should be capable of switching both

messages and packets.

• Programmable: The switch should be programmable to allow the application to

program it according to its requirement.

95

• Application routing: Unlike simple destination-based routing in IP, routing in the

ADVS is based on application-level data and context. The destination of a message or a

packet is determined dynamically at the switch based on application-level classification

rules.

There are lots of design issues in designing the ADVS and we will discuss these issues and

how we address them in Chapter. 4, Chapter. 5 and Chapter. 6.

In this chapter we presented a high-level architecture of AppFabric and tried to motivate

some of the key design choices. In the rest of this thesis, we will provide a more elaborate

and specific discussion on the design of the AppFabric data, control and management planes.

96

Chapter 4

OpenADN: The AppFabric Data

Plane

In this chapter, we will discuss the architecture of OpenADN: the data plane of AppFabric.

OpenADN is the abbreviation for Open Application Delivery Networking. An application

delivery network or ADN is a network comprising of both, application-layer components

and network-layer components, that are required for deploying and delivering applications.

Application-layer components are those that need to access and act upon application-layer

data whereas network-layer components are those that need to access only network layer

(Layer 3 and below of the OSI stack). application-layer components may be further classi-

fied into message-level components and packet-level components. Message-level components

process application messages for which they need to re-assemble network packets into appli-

cation messages. Examples of message-level components include application servers such as

web servers, database servers, etc. and message-level middleboxes such as Web-Application

Firewalls (WAF), application transcoders, SSH off-loaders, etc. Packet-level components

work at packet-level granularity but still need access to the application data carried in each

packet. Examples of packet-level components include intrusion detection and prevention sys-

tems(IDS/IPS), packet scrubbers, WAN optimizers, etc. On the other hand, network-layer

components perform only packet-level functions such as packet routing and forwarding and

therefore need access to only Layer 3 (and below) packet headers. OpenADN, as the name

suggests, is an open standard for creating, managing and controlling an application delivery

network.

97

The discussion in this chapter is organized in two sections. In the first section, we will lay

down the architectural requirements that OpenADN needs to satisfy and try to motivate

these requirements. In the second section, we will discuss the OpenADN architecture in light

of how it actually addresses these requirements.

4.1 OpenADN: Architectural Requirements

The OpenADN design implements the switching substrate of the AppFabric Distributed

Virtual Switch (Fig. 4.1) or ADVS as discussed in Chapter. 3.

Message-level
Middlebox

Service

Application
Server

Packet-level
Middlebox

Service

Web
Server

Storage
Server

Storage
Server

AppFabric Distributed Virtual Switch
(ADVS)

P
orts P

or
ts

Message/ Packet switching

ADVS Controller

Switch Programming Interface

Figure 4.1: AppFabric Distributed Virtual Switch (reproduction of Fig. 3.4)

The design of the ADVS switching substrate has three high-level architectural requirements

- Integration, Programmability and Distribution. Let us discuss each of these require-

ments in some more detail.

• Integration: OpenADN needs to implement the horizontal integration platform goals

of AppFabric discussed in Chapter. 3. These include:

98

– Integration of the compute and network infrastructures: One of the key

motivations behind creating an integrated application delivery network is to im-

prove the co-operation between the network infrastructure and the application

infrastructure so that future applications can be more network aware and future

networks are more application aware. Traditionally, the network infrastructure

has mostly been application-unaware. A lot of work has been done on network

quality-of-service but none of it has found its way to actual deployment. The

Internet today is still largely best-effort. Enterprises and applications that need

any sort of transport guarantees can get it only thorough static pre-provisioning

of resources between the fixed enterprise locations such as branch offices and the

central head quarters. Another technique used by some applications is to create

smart overlays that can optimize delivery over the underlying best-effort networks.

However, the overlay traffic management policies often interact negatively with

the underlay traffic management policies, creating tussles that are bad for both

parties. Nonetheless, it is much easier for applications to get their desired quality

of service by operating their own private networks rather than depend on a shared

network infrastructure such as the Internet. In-fact, for this reason, some enter-

prises, with very distributed geographical footprints such as Google and Microsoft

have moved towards bypassing most of the shared Internet and instead operate

their own private networks; both, to connect their geographically distributed dat-

acenters as well as to connect users to their applications. The problem with this

approach is that it is not possible for smaller enterprises to take this approach

owing to prohibitively high costs of owning and managing their own network in-

frastructures. Also, as enterprises move towards more and more shared computing

platforms (cloud datacenter), they also need a shared network infrastructure that

can satisfy their requirements. Here we not only mean shared WAN infrastruc-

tures but also shared datacenter networks inside a cloud datacenter that is shared

by multiple tenants. We believe that there were two big hurdles in the way of

creating application-aware shared network infrastructures:

∗ Complex and distributed network control planes made it difficult to dynami-

cally and optimally allocate/deallocate network capacity to traffic demands.

∗ There is no standard interface through which applications can automatically

and dynamically communicate their requirements to the network.

99

While the first problem has been solved (or will eventually be solved) by Software-

defined Networking, OpenADN solves the second problem, partly, while the other

part is solved by Lighthouse, which is is control and management plane of App-

Fabric.

– Integration of different types of application-level device/service types:

An ADN comprises of different types of application-level devices and services

including packet-level middleboxes, message-level middleboxes, and application

servers. The ADVS device needs to provide a common switching substrate for

each of these different device and service types.

∗ Challenges in integrating packet-level middleboxes with ADNs: Mid-

dleboxes are a key component of modern application delivery environments

providing essential security services (e.g. Intrusion detection and Prevention

Systems (IDS), packet scrubbers, Web-application firewalls, etc.) and im-

proving performance (e.g. load balancers, content caches, WAN optimizers,

SSL off loaders, transcoders, etc.). However, in spite of their functional rel-

evance, middleboxes are considered architecturally harmful. This is because

middleboxes do not fit well in the end-to-end application delivery design of

the current Internet architecture. The key issue is that there is no support

for off-path deployment of packet-level middleboxes: The Internet Protocol

or IP was designed to route packets between a source and a destination (not

considering IP multicast). Initially, it had no support for explicit hop-by-hop

forwarding. Therefore, it was not possible to deploy middleboxes off the IP

routed path between the source and destination. Although, subsequently IP

added source routing (strict and loose), it was rarely used. It had considerable

security issues allowing a sender to easily spoof its address but still be able to

receive the reply packets. Also, it required support from the intermediate IP

routers. Instead, system administrators have used ad-hoc manual techniques

for deploying middleboxes. These include, physically placing a middleboxes

on-path, or manually tweaking path selection mechanisms of underlying pro-

tocols such as Layer 2 spanning tree protocol of Layer 3 OSPF protocol to

make sure certain paths are always in-directed through the middlebox. How-

ever, such techniques are extremely prone to configuration errors or may not

work well given the dynamic nature of routing algorithms. Moreover, the

100

task becomes exponentially harder when more than one middlebox needs to

be deployed. Therefore, as shown in Fig. 4.2, current datacenter administra-

tors mostly bundle all the middleboxes in the aggregation-layer. North-south

traffic (packets travelling in and out of the datacenter) is forced to travel

through these middleboxes while east-west traffic (between two servers) may

be forcefully routed through the aggregation layer if required. This arrange-

ment, however quirky and inefficient does work and there may not be enough

motivation for it to change. In any case, there have been several proposals

addressing this particular issue [139, 53, 65]. Our interest in revisiting the

middlebox deployment issue concerns two recent developments; cloud com-

puting and software-based appliances.

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Web servers Application servers DB servers

Access
Tier

Aggregation
Tier

Core
Tier

CBR	

ALG	

IDS	

WAF	

SSL	

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

CBR	

ALG	

IDS	

WAF	

SSL	

Middleboxes

Figure 4.2: Middlebox Deployment in Enterprise Datacenters (reproduction of Fig. 2.10)

As applications migrate from enterprise datacenters to third-party cloud plat-

forms, the Application Service Provider (ASP) no longer has direct access

to the infrastructure layer. Therefore, the existing middlebox deployment

101

techniques no longer work. An alternative solution proposed by many cloud

providers is making many of the middlebox functions available to applica-

tions as services (Fig. 4.3). This may work for some, but for most ASPs and

especially for middlebox functions that need access to application-layer data,

this may not be an option for security concerns. Another alternative is vir-

tualizing the middlebox hardware appliance and leasing a virtual appliance

to an ASP. One of the problems with this approach is that it is extremely

difficult to virtualize a special-purpose hardware appliance while maintaining

the performance advantage of having a special-purpose hardware in the first

place. The bigger problem is that while the cloud allows applications to grow

dynamically on commodity hardware resources, introducing special-purpose

hardware could turn out to be a bottleneck to its scalability. A more plausi-

ble approach is software-based appliances that can be deployed on commodity

hardware, as discussed next.

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Web servers Application
servers

DB
servers

Access
Tier

Aggregation
Tier

Core
Tier

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Virtual
appliances

Figure 4.3: Middlebox Deployment in Cloud Datacenters

Appliance makers have responded to the general trend of shifting away from

specialized hardware towards commoditized hardware by releasing software

versions of their appliances (or, soft-appliance) that can run on commodity

102

hardware. Soft-appliances have a lot of advantages compared to their hard-

ware counterparts. It allows deployments to easily scale-out (by adding more

number of soft-appliances to the deployment) instead of having to scale-up

(by increasing hardware capacity). It is more suitable for cloud-based ap-

plication deployments where soft-appliances can be easily be deployed over

a leased commodity host. This allows an ASP to freely choose any cloud

provider instead of worrying about availability of certain types of appliances

it needs for its deployment. However, given these advantages, they come with

their share of inconveniences as well. With soft- appliances, it is no longer

possible to deploy them transparently by sneaking them into the network

path. They now need to be explicitly accommodated in application deploy-

ments; making the case for the need of off-path deployment of middleboxes

more stronger.

∗ Challenges in integrating message-level middleboxes and applica-

tion servers with an ADN: There are no standard methods for inte-

grating message-level middleboxes with other application-layer components.

Message-level middleboxes such as Web-application Firewalls (WAF) and

transcoders need to be deployed as proxies that terminate a transport-layer

(Layer 4 TCP/UDP) connection. They cannot be transparently sneaked into

an application deployment, unlike packet-level middleboxes. To achieve this,

they need to be integrated with other application-layer components such as

application servers, storage servers, etc. This is difficult since the middlebox

will need to implement different application-layer protocols and also some-

times understand and support higher-level application-layer constructs such

as user sessions; thus making it extremely difficult to design such middleboxes

as plug and play devices. The problems of scalability discussed in the context

of hardware-based packet-level appliances also apply to hardware-based mes-

sage level middleboxes. As a result of these problems, message-level middle-

boxes are generally made part of an ESB middleware platform that provides

separate proxying and protocol translation support. However, middleware

solutions have their share of deficiencies too, and are discussed next.

Most complex application deployment environments use some type applica-

tion platform support such as Oracles Weblogic[95] or IBMs Websphere[55]

103

that include service integration middleware solutions, generically called the

Enterprise Service Bus (ESB) [19]. An ESB provides an indirection middle-

ware layer through which loosely coupled service components can be inte-

grated. The key role of an application delivery middleware is service orches-

tration; composing applications from many different service components, in-

cluding application-layer services and message-level middlebox services. Some

of these services may be part of the application logic, such as the applica-

tion servers, web servers and database servers, while others such as protocol

transformation and translation gateways may be part of the middleware it-

self. The logic for combining and composing these disparate set of services is

programmed into the underlying application-layer routing (APR) layer that

routes application messages based on both, the content of the message as well

as the context of the message.

However, middleware-based solutions have several issues that make it unsuit-

able to serve as a general platform for next generation application delivery.

· First, most middleware solutions are proprietary. This is not so much of

an architectural issue as much as a political issue. Proprietary solutions

do not generally like commoditization through standardization. Propri-

etary ESB solutions pack in much more than just the minimal support

required to create, manage and control an ADN. This is why we claim

that AppFabric is not an ESB. It does not provide any of the in-built ser-

vices that a commercial ESB ships with. Rather it is a minimal platform

for operating ADNs above it. The idea is to standardize this minimal

platform so that a competitive eco-system of third-party provided ser-

vices can develop around it. Presently, commercial ESB platforms also

allow the application providers to design their own set of support services

such as translation and transformation engines and plug them to the ESB

platform. However, the proprietary APIs force the service designers to

develop these services differently for different platforms.

· Second , middlewares do not support integration of packet-level middle-

box services.

104

· Third , middlewares do not integrate the compute and network infras-

tructures.

· Fourth , as was discussed in Chapter 2 , the backbone of most middle-

ware solutions is a message-brokering subsystem. Also, as discussed in

Chapter 2 , such message brokering subsystem could either be central-

ized or distributed. While a distributed brokering system seems to be

the better choice for the application use-cases (massively distributed) for

which AppFabric is being designed for, the centralized solution appeals

through its simplicity in every aspect including configuration, control and

debugging. Also, the distributed solution that we have presently are not

suitable for massively distributed architectures.

Therefore, it is clear from the above discussion that we need a common in-

tegration layer that can integrate both message-level as well as packet-level

services. Also, such a platform should be open and have support for vir-

tualized, leased infrastructure that may belong to multiple providers and

may be distributed across different geographical locations. While AppFabric

provides this common platform to applications, its data plane architecture,

OpenADN, needs to provide support for, 1) integrating both message-level

as well as packet-level services, and 2) integrating compute, storage and net-

work services; into an application delivery network and provide mechanism

for orchestrating these services in application-specific ways .

∗ Integration of multiple resource providers: As already discussed be-

fore, an application delivery network (ADN) comprises of different types of

devices. Also, AppFabric is designed for creating ADNs over virtual resources

leased from many different providers. These virtual resources include both,

computing resources (from cloud service providers) as well as networking

resources (intra-datacenter network links from cloud providers and inter-

datacenter network links from Network Service Providers). Each of these

providers may run different management stacks including OpenStack, Open-

DayLight, Floodlight, EC2, Eucalyptus, and CloudStack to manage their vir-

tual resources.Therefore to cut across these different virtualization platforms,

105

device types, and ownership and administrative boundaries, a standard data

plane needs to be defined. OpenADN has been designed to serve as the stan-

dard data plane that can integrate each of these different vertical components

and provide a common data plane abstraction for deploying, controlling and

managing different application delivery networks.

∗ Integration of different transport mechanisms: AppFabric provides a

common platform for deploying different types of services that can either be

owned by the Application Service Providers themselves (application-layer ser-

vices, both packet-level as well as message-level services on virtual machines)

or provided by third party Cloud Service Providers (virtual network services

within a cloud datacenter) or Network Service Providers (e.g. WAN services

between datacenters). The communication substrate connecting these differ-

ent types of services is extremely diversified. For example, two message-level

services deployed on the same virtual machine may efficiently communicate

over Inter-Process Communication (IPC) transport whereas if they or on dif-

ferent hosts they will need to communicate over the network socket transport

(network Layer 4 transport such as TCP, UDP, etc.). If the two hosts are

in the same datacenter they may be connected through a Layer 2 or Layer

3 network. However, in clouds (as well as in enterprise datacenters), if the

network needs to be partitioned into many separate isolated contexts (virtual

networks) then the Layer 2 or Layer 3 network may be overlaid with some kind

of virtual overlay network such as VLAN(Layer 2) or more recently VxLAN,

STT or NVGRE which are all Layer 3 overlays. If the virtual machines are

hosted on different datacenters, then they may need to be connected over a

WAN link over a ISP network using plain IP or more sophisticated transport

services such as MPLS. The key point is that the type of transport required to

connect any two services is decided at runtime, when the services are actually

deployed. Therefore, at design time, service developers need to be completely

abstracted out from writing code for any particular type of transport. To do

this, AppFabric needs to provide a common transport abstraction to which

all service connect and the actual transport used underneath is bound to the

connection at runtime. The AppFabric data plane, OpenADN, is responsible

106

for providing this abstraction of a common transport and dynamically bind

it to an appropriate transport at runtime.

– Programmability: The ADVS switch needs to be programmable. Since an ap-

plication delivery network comprises of both application-layer components and

network-layer components, to provide a common standard for managing and con-

trolling the data plane of such a network we need to provide abstractions that are

suitable for specifying policies both for application-layer traffic as well as network-

layer traffic. We define application-layer traffic as the flow of data between two

application-layer entities; whereas network-layer traffic is defined as the flow of

data between two network-layer entities. Therefore, although packet flows serve

as a good abstraction for routing and forwarding network-layer traffic (through

routers and switches) and is therefore used by OpenFlow, it is not appropriate for

OpenADN since OpenADN needs to provide the proper abstraction for controlling

and managing both, application-layer traffic as well as network-layer traffic. To

manage application-layer traffic, OpenADN needs to factor in application-layer

semantics into its data plane abstractions. More specifically, It should allow the

data plane to be able to represent the following:

∗ Sessions: A session refers to a logical connection between the user and the

application. The exact definition of a a session is specific to the application-

layer protocol in use. For example an HTTP session is different from a SIP

(Session Initiation Protocol) session. Also, the start and end of a session may

be explicitly signaled through special start and end messages (for example,

the SIP INVITE and BYE messages) or it could be implicitly signaled thor-

ough a timeout mechanism. The session represents an application context

- type of user, user credentials, type of device, place of access, etc. and al-

lows the application to specify context aware policies handle different sessions

differently.

∗ Messages: A message is the smallest, indivisible unit of transaction between

a user and an application; and a session is made up of one or more message

exchanges between them. Similar to sessions, the structure of a message (start

and end of the message) is specific to the application protocol in use. A mes-

sage is the basic unit of routing among message-level components within an

application deployment including message-level middleboxes and application

107

servers. Message routing is based on forwarding policies specified over both,

application context (session information) as well as application data (message

content).

∗ Packet flows: Each application-layer message becomes one or more packets

(layer 3 PDUs) in the network. A set of packets that are related in some way

and represent some sort of useful semantics are called flows. For example, all

packets from a particular user may be subject to a particular security policy

and represents a flow. This flow may still have many sub-flows. For exam-

ple, different packets from the same user bound towards different application

end-points may be subject to different policies. For, example, apart from a

general security check on all packet from a user, all packets bound towards a

server hosting confidential documents may require more stringent checks than

packets bound for a server hosting general public information. Thus, flows are

hierarchical. In OpenADN we allow the concept of hierarchical flows where

the semantics of the hierarchy starts at the application-layer and goes all the

way down to the packet-level. Note that this is different from the concept

of flows in OpenFlow which also allows hierarchical flows through support

for multiple chained flow tables[46]. The difference is that, in OpenADN,

the packet are classified into flows based on application-layer information as

against only network-layer information in the case of OpenFlow. OpenFlow

does allow TCP port numbers to be used to classify packets into flows and

thus tries to factor in some application-layer information, but using port num-

bers as a replacement for application-layer context and content information

is quite restrictive.

– Distribution: ADVS provides a centralized switch abstraction to the user to

which all the different ADN components are connected. It is much easier for the

application administrator to control and manage the entire ADN topology thor-

ough this centralized switch abstraction than to actually have to manage each

of the distributed ADN components separately. However, this centralized switch

abstraction is created over a distributed implementation where the switching func-

tion is distributed across all the components in the ADN. Therefore, ADVS is a

virtual switch. Distributing the switching function allows ADVS to support a

108

highly distributed ADN topology without introducing any indirection inefficien-

cies, performance bottlenecks and a central point of failure.

These are some of the architectural requirements that the OpenADN architecture needs to

address. In the next section, we will discuss the OpenADN architecture in light of these

requirements.

4.2 OpenADN: Architecture

In this section, we will discuss the key elements of the OpenADN architecture and see how

they address the architectural requirements discussed in the previous section. Fig. 4.4 shows

a high-level schematic representation of the OpenADN design. Each OpenADN node has a

control agent through which the AppFabric control plane (Lighthouse) manages and controls

the data plane nodes. The details of the architecture of the control plane and the interface

between the control and data planes will be discussed in Chapters 5 and 6. The control

agent creates a number of virtual ADVS ports in each node as directed by the controller.

Application services connect to the ADVS switch through these ports.

Local Control
Agent

ADVS
Port #P

Service P

ADVS
Port #N

Service N

…

VM #1

Local Control
Agent

ADVS
Port #M

Service
M

ADVS
Port #R

Service R

…

VM #K

…

Controller

Figure 4.4: High-level Schematic Representation of the OpenADN Design

109

The general architecture of an ADVS port is shown in Fig. 4.5. Each port has a set of ingress

and egress interfaces through which it connects to other ADVS ports in the same or other

nodes, a service interface through which an application service connects to the port, and a

control interface through which the control plane may program the port. Depending on the

type of service, there are three types of ports.

Generic ADVS Port

Controller Service

Ingress
Ports

control service

Egress
Ports

Figure 4.5: Generic ADVS Port

• sPort: A sPort or a service port connects a message-level service to the AppFabric

platform.

• tPort: A tPort or a tunnel port connects a packet-level service to the AppFabric

platform.

• pPort: A pPort or proxy port connects external third-party services and AppFabric-

unaware internal services to the AppFabric platform.

The detailed architecture of each of these ports will be discussed in Chapter 6. For now,

it is sufficient to understand that the control agent can dynamically spawn a service in the

node, create an appropriate port for the service and connect the service to the port; all based

on instructions from the Lighthouse control plane. Once a service is spawned and attached

to an appropriate port, the service needs to be connected to all the neighboring services as

110

specified in the application workflow. This is done by setting up data tunnels to all the

ports that host these neighboring services. However, this tunneling mechanism is not trivial.

We will discuss more on this tunneling mechanism in the context of the how they address

the OpenADN architectural requirements. This is discussed next.

• Integration: Integration is one of the central high-level themes of the OpenADN

architecture. Let us see how OpenADN addresses the different aspects of integration

that was discussed in the previous section. But before discussing any of the integration

scenarios, we first need to discuss the different logical perimeters within an ADN.

Just like any network, an application delivery network too has logical perimeters that

we call realms. Here we discuss two types of realms that the OpenADN design needs

to consider.

– AppFabric-aware entities and AppFabric-unaware entities: As is obvious,

introducing two new layers into the stack will cause interoperability issues with

legacy components that may not migrate to the new architecture. We expect that

ASPs that wish to use AppFabric and third-party providers that sell middlebox

services to these ASPs will be willing to make their components AppFabric-aware.

As we will see later, it is actually quite straightforward to make these components

AppFabric-aware. However, it may be much more challenging to make the applica-

tion user-access agents such as mobile apps, web browsers, etc. AppFabric-aware.

Also, the application may want to interpose certain services that may not have

yet added support for AppFabric.

– ASP-trusted entities and ASP-untrusted entities: In an ADN, some of the

entities may be trusted by the ASP while others may not be trusted by the ASP.

Trust is generally linked to an asset. That is, trust is qualified and quantified

based on whether an entity allows another entity access to its assets, how much

it values these assets and how much access it allows. In our case, we qualify ASP

trust based on two assets - Application data and ADN control plane policies.

While restricting access to application data as a function of trust is intuitive, it

may not be clear as to why we need to restrict access to control plane policies.

The rationale behind this is that in a programmable data plane design such as

OpenADN, the control plane policies being enforced by the data plane indirectly

111

reveal sensitive information about the application deployment state and could be

easily misused to jeopardize the application. When we come to it, we will see

that how, if not done carefully, ADN control policies may reveal a lot about the

topology of the application deployment, the relative importance of the different

services, what security checks the ADN performs, etc.

Based on this, we use the following two categories to classify entities:

∗ Application-data Visible entities (ADV) and Application-data Blind

entities (ADB): These are two mutually exclusive categories. An Application-

data Visible entity or ADV is an entity that has access the application-layer

data, either at the packet-level or message-level. On the other hand, an

Application-data Blind entity or ADB is an entity that has no visibility into

the application data. ADBs include third party(such as CSPs or ISPs) virtual

infrastructures such as virtual switches, virtual routers, virtual WAN links,

etc.

∗ ADN Policy Visible entities(APV) and ADN Policy Blind entities

(APB): These are again two mutually exclusive categories. An ADN Policy

Visible entity or APV is an entity that can be programmed with OpenADN

control plane policies whereas an ADN Policy Blind entity or ADB cannot.

All ADN entities can be classified as belonging to one of the four classes constituted

by these two categories. All ASP-owned application servers and middleboxes (both

message-level as well as packet-level) belong to the class ADV and APV (that is, fully

trusted). Completely untrusted third-party service to which the ASP does not want to

communicate at all belong to the class ADB and APB (that is, completely untrusted).

Between these two extremes, are the two partially-trusted scenarios of i) ADV but not

APV, and (ii) APV but not ADV. An example of an entity belonging to the class ADV

but not APV is an user-access agent (for example, mobile app., web browser, etc.)

since they may not always run in a secure, ASP-trusted environment. However, if the

user-access agent is running within a secure enterprise environment then it may be fully

trusted. Similarly, third-party services to which the the ASP needs to communicate

also falls in the same category. Examples of entities belonging the class APV but not

ADV include CSP or ISP provided virtual resources including virtual switches, virtual

routers, and virtual WAN links. ASPs do not provide these entities access to their

112

application data. However, they do provide them with some access to control plane

policies. CSPs and ISPs may misuse this information but we (safely) assume that it

is against their economic interests to do so. However, there may still be unintentional

misuse of these policies by rogue compromised elements within them (insider attacks).

But, this is a common security problem that may be posed for any situation; including

rogue elements within the ASP-owned entities also. Therefore, insider attack scenarios

are outside the scope of this discussion.

Out of the eight different classes that are possible by combining these three different

categories (AppFabric aware/unaware, ADV/ADB ad APV/APB) some of the cases

are trivial and does not need to be handled separately. These cases include:

– AppFabric-aware entities that are both ADB as well as APB (completely un-

trusted by the ASP) are not part of the ASPs ADN and therefore we do not need

to worry about communicating with them.

– AppFabric-aware entities that are fully trusted (ADV and APV) do not need any

special mechanism to be made part of the platform.

– AppFabric-unaware entities cannot be APV by definition of APV (entities that

can be programmed with ADN control plane policies). Therefore, we can rule

out two classes of entities - (AppFabric-unaware, APV, ADV) and (AppFabric-

unaware, APV, ADB).

This leaves us with four classes of entities that need further consideration.

– AppFabric Gateway Node(AGN): An AppFabric Gateway Node or AGN is

a special node designed to easily integrate the following classes of nodes into the

ADN:

∗ (AppFabric-unaware, ADV, APB) These are legacy entities that need

not have any notion about the existence of AppFabric. The AGN is needed to

mediate all communication between these entities and the ADN. Entities be-

longing to this class include external entities such as third-party services that

the ADN needs to contact for certain services or user-access agents through

which users connect to the application. The AGN proxies all application

sessions between these entities and the application and provides applica-

tion policy visibility for subjecting these application sessions to the ADN

113

control policies. Each of these legacy entities may speak different standard

application-layer protocols such as HTTP, JSON, SIP, etc. or non-standard,

application-specific protocols such as distributed gaming applications, virtual

worlds, etc. The definition of an application session and application message

may vary widely across these different protocols. Thus, the AGN needs to

convert these application-specific representations of these data plane abstrac-

tions to a standard AppFabric platform specific representation over which the

data plane may be programmed. To do so, the AGN terminates these ap-

plication protocol specific sessions and creates standard OpenADN sessions.

An OpenADN session comprises of multiple OpenADN messages with explicit

session start and session end signaling messages. The controller may spec-

ify different session-level policies that are enforced on each message within

the session (based on context information such as user type, access location,

access device type, etc) as well as message-level policies that are enforced

per-message based on the content of the message.

∗ (AppFabric-aware, ADV, APB) These are AppFabric-aware entities that

have application data visibility but are not programmable. There is a slight

technicality in calling these entities AppFabric-aware that needs to be under-

stood. These nodes are AppFabric-aware in the sense that they can deal with

AppFabric-specific header fields in the application messages/packets but are

not programmable by the AppFabric control plane. Examples of such entities

include legacy middleboxes that can easily be programmed with new parsing

and filtering rules for new types of message/packet headers but have not yet

added support for being programmed by the AppFabric control plane with

ADN traffic management rules and policies. The AGN acts as a proxy for

such nodes and all the OpenADN control plane policies can be programmed

into the AGN and the AGN enforces those policies on behalf of the node.

– Layer 4.5 and Layer 3.5 shim layers: OpenADN introduces two new shim

layers into the network stack - Layer 4.5 and Layer 3.5.

∗ The OpenADN Layer 4.5: The Layer 4.5 is a shim layer between the ap-

plication layer and the end-to-end transport layer (TCP, UDP, etc.). It acts

as the thin waist for connecting many different message-level entities. On

114

the top, it provides a common standard OpenADN session and OpenADN

message abstraction across many different application level protocols. The

Layer 4.5 message header carries session-level context information for every

message. Also, it carries a meta-tag that encodes the per-message content in-

formation. The meta-tag allows the application data to be securely encrypted

while still allowing entities that are ADB but APV to enforce control plane

policies on the message such as routing and forwarding the message through a

set of ADV entities. At the bottom, it provides a common transport between

different message-level entities. For example, services on the same virtual

machine may communicate efficiently over an Inter-process communication

(IPC) transport whereas those on different virtual machines need to commu-

nicate over socket abstraction. Layer 4.5 can be programmed to select the

most efficient transport between any two message-level services dynamically

during runtime.

∗ The OpenADN Layer 3.5: While the Layer 4.5 shim layer provides the

OpenADN session and OpenADN message abstractions, the Layer 3.5 shim

header lying between Layer 4 and Layer 3 of the network stack, provides the

abstraction of an OpenADN packet flow. the OpenADN packet flow is defined

as a set of packets that are related through some application-layer semantics

such as sessions and messages. The Layer 3.5 header carries this application-

layer context (session and message information) in each packet such that

packet-level entities that may not have visibility into the application data

(ADB) but are APV can easily enforce the ADN control plane policies at

packet-level granularity.

Therefore, the shim layers 4.5 and 3.5 allow the integration of entities that have

access to the control plane policies (APV) but do not have access to the application

data (ADB) into the ADN - (AppFabric-aware, ADB, APV). Note that these

entities have to be AppFabric-aware.

– Tunneling: Now, the only class of entities left are (AppFabric-unaware, ADB,

APB). These entities are not directly part of the ADN, but serve as the underly-

ing infrastructure for physically connecting the different ADN entities. Example

of such services include network infrastructure services providing QoS transport

between any two ADN nodes. The infrastructure nodes in this case cannot be

115

expected to be AppFabric-aware. The usual technique of tunneling is used to cre-

ate an ADN overlay over these legacy infrastructure nodes. Tunneling is a very

important concept in the OpenADN architecture and we will discuss it in much

more detail in the rest of this chapter.

Now that we have seen how different types of entities connect to the platform, let us

see how OpenADN addresses the various integration aspects in the data plane.

– Integration of message-level and packet-level application services into

the ADN: As already discussed (and as shown in Fig. 4.6), an ADN comprises of

both message-level and packet-level application services. Typically in application

deployments, message-level application services are orchestrated using some sort

of middleware platform, while packet-level application services are considered part

of the network and their deployment is part of the network management and

control plane. In OpenADN, the deployment of both these types of entities are

controlled and managed by a common control plane since both these types of

services are hosted on commodity virtual machines (in the datacenters access

tier) in cloud environments. We use nested tunneling to achieve this (Fig. 4.7).

To illustrate nested tunneling, consider the simple AppFabric Service Workflow

(ASW) shown in Fig. 4.6. Note that our goal is only to illustrate how nested

tunneling works, and so, Fig. 4.6 shows only an uni-directional path through the

different device types and the Application Routing component is really trivial in

this example.

IDS

App
Routing

App
Routing

Proxy
Service

1

App
Routing

Web
Service

Proxy Service Application Service

Transcoder

Packet-level Middlebox
Service

App
Routing

Message-level Middlebox
Service

Links with certain pre-specified QoS Transport requirements

Figure 4.6: An Example AppFabric Service Workflow

116

To integrate message and packet level services in the ADN through nested tun-

neling, we create a Layer 4.5 tunnel between any two message-level services and

this tunnel is transported over one or (possibly) more than one Layer 3.5 tunnels

spliced end-to-end. The Layer 3. 5 tunnels connect intermediary packet-level

services between the two message-level services. Layer 4.5 and Layer 3.5 are new

shim layers introduced into the network stack by OpenADN, as discussed above.

The services just connect to an appropriate OpenADN port (software port) that

may be a message-level (Layer 4.5) port or a packet-level (Layer 3.5) port. A

message-level port can have only one message level service connected to it while

a packet level port can have many different packet-level services connected to it.

A message level port acts as a message switch while a packet-level port acts as

a packet switch that switch messages/packets arriving at the ingress tunnels to

the proper egress tunnels based on application-layer (content and context based)

switching rules programmed by the control plane. A message/packet arriving at

the ingress tunnel head in a port is first sent to the service attached to it. In

case of a message-level port that has only one message-level service attached to

the port, this step is trivial. In the case of packet-level ports that may have more

than one packet-level services attached to it, the port needs to decide which ser-

vice the packet needs to be sent based on the application-layer switching rules

specified over the contents of the Layer 3.5 OpenADN header fields. When the

packet/message returns from the service, it is either switched to one of the egress

tunnel heads or to another service attached to the packet-level port; again based

on the application-layer switching rules programmed into the port by the con-

troller over the contents of either, the Layer 4.5 header fields or the Layer 3.5

header fields.

117

Transcoder	

IDS	

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Application
Service Provider (ASP)

Enterprise
DC

Cloud
DC

ISP Network

Layer 2.5 MPLS TP

 VxLAN VxLAN VxLAN

Layer 3.5
 OpenADN

Layer 3.5
 OpenADN

Layer 4.5 OpenADN Layer 4.5 OpenADN

M
eta Tag 1

Meta Tag 1

M
eta Tag 2

M
eta Tag 2

Figure 4.7: Configuration of Nested Tunnels in OpenADN for the AppFabric Service Work-

flow in Fig. 4.6

It may be noted that in the multi-hop scenario described above, the information

about the last hop is implicit in the ingress interface at which the message/packet

arrives in a port and therefore the message/packet does not need to explicitly carry

this state. At an abstract level, the ADN looks exactly like a physical network

where each node has fixed physical connections to a set of other nodes and thus

the ingress interface implicitly carries the information about the last hop. The

only difference is that in OpenADN, these connections are virtual, pre-established

by the control plane, and can be dynamically changed as and when required.

– Integration of the compute and network infrastructures: The nested-

tunneling mechanism is also used to create application-specific networks over

third-party network infrastructures. The idea is to transport the OpenADN Layer

3.5 tunnels over Layer 3 tunnels such as VxLAN[77], STT[31] or NVGRE[127] be-

tween virtual machines and over layer 2 tunnels such as MPLS-TP over wide-area

networks. These tunnels are created and operated by the infrastructure provider

and not directly under the control of the ASP. However, the ASP may request

the infrastructure provider to create a virtual network connecting its different

application-layer entities such that there may be more than one network tunnels

between each pair of VMs. Each of these tunnels may be programmed to pro-

vide different QoS services. At the ingress of the network tunnel, which could

be a virtual switch in the hypervisor or a top of the rack switch, the application

118

packets could be classified and transported over the different tunnels based on the

OpenADN layer 3.5 header. Alternatively, the infrastructure provider could cre-

ate just one network tunnel between the two VMs and application-specific traffic

shaping is done at the egress of the VM itself. This allows the traffic between two

VMs to be prioritized based on the application context but the network tunnel

itself has no priority over other tunnels in the network. Hence, this overlay mech-

anism of providing QoS could be more restrictive than the first technique in which

the QoS is provided by the infrastructure natively. The important point to note

is that both these techniques are equally plausible in the OpenADN architecture.

Also note that the infrastructure nodes are ADB but can be programmed indi-

rectly, as in the case where the QoS is provided natively by the infrastructure, to

provide application-specific transport services using OpenADN Layer 3.5 header.

– Integration of multiple resource providers: The ADN may include infras-

tructure components (virtual machines, virtual switches, virtual appliances, etc.)

leased from many different resource providers. OpenADN either has full control

of these virtual resources as in the case of a virtual machine or programmatic

control through a delegation interface as is the case of a virtual network. Full

control means that the application can actually deploy and run the platform code

in the resource whereas programmatic control means that the application can

configure the resource (such as a virtual switch) but cannot run its own code over

them. While integration of resources with full control is trivial (the OpenADN

code runs on them directly), integrating resources with only programmatic sup-

port is a bit more trickier. Such entities represent the class (AppFabric-unaware,

ADB, APB). To integrate these type of resources into an ADN, the AppFabric-

aware nodes need to be able to implement the appropriate tunneling and signaling

mechanisms. For example, suppose the application has two different VMs hosted

in two different datacenters connected by an ISP network. Now suppose the ISP

provides a virtual QoS guaranteed packet transport service over a Metro Ethernet

of MPLS infrastructure to the application. In this case, OpenADN should be able

to setup a Layer 4.5 or Layer 3.5 tunnel between the two VMs that is transported

over the virtual packet transport service provided by the ISP. To do so, the VM

tunnel endpoints need to have the proper drivers that allows them to properly

signal and consume this third-party provided service.

119

• Programmability: Each of the OpenADN ports (pPort, sPort and tPort) are pro-

grammable. The control plane can dynamically spawn any number of OpenADN ports

(and their associated services) in each data plane node through the node’s control

agent. It can also shutdown the service and its associated OpenADN port when no

longer required.

From the application routing policies specified by the application administrator through

the management plane interface, the controller computes the message/packet forward-

ing rules for each OpenADN port. The controller distributes these forwarding rules

to the appropriate ports. The OpenADN message or packet forwarding is a two-step

mechanism. In the first step, the message/packet is classified based on application-level

content/context and network-level header information to belong to one of the many

application flow classes. In the second step, the forwarding rule for the appropriate

flow class is applied on the packet/message.

Since the OpenADN ports are virtual (software-based), they allow a lot of flexibility

in terms of specifying the message/packet classification rules. For example, different

applications may attach different semantic meanings to the definitions of messages and

sessions in specifying the classification rules and thus application-level policies. Albeit,

this flexibility comes at the cost of lower forwarding performance. However, the ineffi-

ciency of a software-based forwarding is expected to be ameliorated by the on-demand,

scale-out property of the software-based solution. This flexibility is extremely impor-

tant to build application-specific networks where the application can appropriately

express and enforce application-level policy routing. This application-level forwarding

overlay is automatically created by AppFabric over an underlying high-performance,

standardized packet forwarding infrastructure.

• Distribution: Although OpenADN provides the abstraction of a single, centralized

ADVS switch, in reality, each of the ADVS ports are distributed across the data plane

nodes such that they may be on the same virtual machine, on different virtual machines

in the same physical machine, on different virtual machines in the same datacenter, or

on virtual machines distributed across different datacenters. To achieve this, AppFabric

provides a common transport abstraction to the application services. Application

services connect to the platform through the standard AppFabric socket interface.

The AppFabric socket interface has two types - message interface for message-level

services and packet interface for packet-level services. At runtime, the AppFabric socket

120

binds to an OpenADN port. The OpenADN port may connect to other OpenADN

ports using the appropriate underlying transport including IPC, socket, IP and nested

transports as described above. The same OpenADN port may use different transports

depending on the service it wants to communicate with. The service developer is

abstracted out of all this detail and the platform automatically binds to the most

appropriate transport mechanism. Therefore, it is extremely easy to make any legacy

service AppFabric. all one needs to do is replace the network sockets in the code with

AppFabric sockets. The destination address that the socket needs to bind to is the

local OpenADN port. The socket connects to the port either over IPC (since they are

on the same host) or a packet raw interface (for packet-level services). The address of

the port is provided as part of the service’ environment parameters when the service

is launched.

So, this concludes our discussion on the high-level architecture of the AppFabric data plane -

OpenADN. Details of the actual implementation of OpenADN will be discussed in Chapter. 6.

121

Chapter 5

Lighthouse: The AppFabric Control

and Management Plane System

In this chapter, we will discuss the architecture of Lighthouse: the control and management

plane system of AppFabric. Lighthouse comprises of two subsystems - the control subsystem

and a the management subsystem. The control subsystem consists of many different con-

troller entities arranged in a hierarchy while the management subsystem consists of single

centralized manager entity.

The hierarchical design of the control subsystem is a hybrid between completely distributed

control plane architectures (for example, distributed routing protocols) and completely cen-

tralized control plane architectures as proposed by some of the initial Software-defined Net-

work(SDN) designs. While distributed architectures are more scalable and also more resilient

against failures and security threats, centralized architectures are simpler to design, manage

and debug. The hierarchical design of Lighthouse control subsystem adopts the best of both

these extremes. Unlike a central controller based architecture, It is more scalable since each

controller at every level is responsible for only a fixed (relatively smaller) number of nodes

(either data plane nodes or other controller nodes). It is also more resilient since failures and

threats can be more effectively isolated and thus their effect can be minimized. However,

It may not be as simple to design, manage and debug a hierarchical system as it is for a

completely centralized controller design. The key issue is that each controller has a partial

view of the system. this view gets wider (or more complete) as we move up the hierarchy

till the global controller has the complete view of the system. However, a more complete

view comes at the cost of additional delay. Therefore, to successfully design a hierarchical

122

controller system, it is extremely important to be able to properly factor the responsibilities

across the different levels such that each controller can make local decisions based on its

limited local view of the system while delegating the decisions requiring a more global view

to the higher-level controllers. In AppFabric, this tradeoff between delay and accuracy is

extremely relevant since AppFabric is designed for multi-datacenter environments where the

virtual resources to be controlled by the control plane may be very widely distributed. In

such environments communication delays are non-negligible and needs to be accounted for

during the design itself.

On the other hand, the rationale behind the centralized design of the management subsystem

is that management plane functions are often less time critical than control plane functions.

To drive this point home, it is important to understand the differences between the control

plane functions and the management plane functions. But, to be able to understand this

difference in the context of the AppFabric architecture, first let us take a step back and re-

visit the high-level design objectives of AppFabric. As discussed in Chapter. 3, AppFabric

sits between the virtual software-defined infrastructure layer and the application deployment

layer. The virtual infrastructure may be provided by many different providers including cloud

service providers (providing virtual compute, storage and intra-datacenter network) and net-

work service providers (providing virtual inter-datacenter links and other WAN services). All

such virtualized infrastructure providers expose a set of service APIs (application program-

ming interfaces) through which their virtual resources can be requested, acquired/leased,

programmed and released. On the other hand, Application Service Providers (ASPs) need

to deploy and deliver their applications over these virtualized resources leased from multi-

ple resource providers and continuously monitor and optimize the application deployment

at runtime. Now, with these objectives, let us try to motivate the difference between the

management and control plane functions.

123

Application Service Provider(ASP)

Network Service Provider
(NSP)

Cloud Service Provider
(CSP)

Management Subsystem

Control Subsystem

Southbound
Management Interface

Northbound Management
Interface

Southbound
Management Interface

Southbound
Control Interface

Northbound
Control Interface

Lighthouse
Figure 5.1: Lighthouse Interfaces

• The Lighthouse management plane: As shown in Fig. 5.1, the management plane

exposes three interfaces - two external interfaces and one internal interface. The exter-

nal interfaces are policy-based management interfaces between the platform and exter-

nal entities including the ASP in the north and the ISPs and Cloud Service Providers

(CSPs) in the south. The interface between the ASP and the platform is called the

northbound management interface and the interface between the platform and the vir-

tual infrastructure providers is called the southbound management interface. Through

the northbound interface, the ASP may specify policies pertaining to how the applica-

tion needs to be deployed and delivered to optimize different objectives such as better

user experience, cost, efficiency, enhanced security, etc. We have already discussed the

abstractions exposed through this interface in much detail in chapter. 1. Through the

southbound interface, the Lighthouse management plane talks to the SDI management

124

plane of the virtual infrastructure providers. Through this interface it may dynami-

cally acquire and release virtual resources from multiple providers.

The third interface is the internal interface between the management module and the

control module. We will discuss it in the next point.

• The Lighthouse control plane: As shown in Fig. 5.1, the control plane has two

interfaces - one internal interface and one external interface. One of these is an internal

interface between the control plane and the management plane and is called is called

the northbound control interface. The management plane compiles the ASP policies

received through its northbound management interface into runtime enforceable rules

and pass them to the control plane through this interface. Also, the control plane may

request the management plane for more virtual resources, either additional resources

from an existing provider (e.g. to scale-out the application deployment) or resources

from a new provider (e.g. to distribute the application deployment to newer locations).

The second interface is an external interface between the control plane and the virtual

resource(s) such as virtual machines, virtual switch, virtual router, etc., acquired by

the management plane and is called the southbound control interface. Through this

interface the control plane programs the virtual resources in order to enforce the ASP’s

deployment and delivery policies during runtime.

Therefore, although as compared to traditional architectures, the AppFabric management

plane is very dynamic, its functions are still much less time critical as compared to the control

plane. This justifies our design choice of a centralized implementation of the Lighthouse

management subsystem while the control subsystem is hierarchical. In the rest of this chapter

we will discuss the Lighthouse architecture in more detail.

5.1 The Management Subsystem

As shown in Fig. 5.2, the management subsystem consists of a single entity called the Light-

house global manager. It is the first and the only node in the application that has to be

started by the administrator manually. The ASP may either run it on-premise or on a cloud

125

datacenter. However, given some of the sensitive information that this node has access to

including billing information, user authorization/authentication and application policies and

configurations, it is preferable to host it on-premise. The global manager exposes the north-

bound management interface thorough which the ASP administrators can specify the policies

for deploying and delivering the application. The manager is connected to a database server

from where it may fetch the virtual machine images of the different Lighthouse controllers

and data plane nodes.

Global
 Controller

Central
 Manager Thread

Global
Resource Manager

Thread

Per-Datacenter
Resource Driver

Thread

Per-Network
Provider Resource

Driver Thread

AAS

Application Service Developers Application Architects
Application Deployment

Administrators

AAW AAC
Northbound

Interface

Global Manager

Figure 5.2: Schematic Representation of the Global Manager

126

The primary function of the global manager in the application runtime is to bootstrap the

application deployment. But before discussing the bootstrap process, we need to explain

the concepts of zones and sites (Fig. 5.3). In AppFabric application deployments, a large

geographical region is divided into several sub-regions called zones. Each zone has several

datacenters, also called sites. For example, as shown in Fig. 5.3 United States may be divided

into 3 zones -US-E, US-W and US-S. Each zone independently manages the application

deployment over the datacenters in that region. Also each datacenter is classified as ’EDGE,’

’CORE,’ or ’EDGE/CORE.’ The services in the application are also classified under the

same labels. An ’EDGE’ service needs to be close to the user access locations and are widely

distributed. Examples of edge services include application gateways, firewalls, and data

gathering and near-real time control functions in IoT-like use cases. It needs to be deployed

on datacenter marked as either, ’EDGE’, or ’EDGE/CORE.’ A ’CORE’ service is located

at a somewhat centralized location relative to all the edge datacenters. it is expected that

there will much fewer core data centers compared to the number of edge datacenters, with

each core datacenter serving multiple edge locations. Examples of ’CORE’ services includes

aggregation services running business intelligence logic over the gathered data in IoT use-

cases, centralized database for synchronizing the different edge services, etc. Note that in

many cases the core datacenter could be an enterprise datacenter while the edge datacenters

could be cloud datacenters or much more distributed and smaller micro-datacenters operated

by ISP networks in their network points-of-presence (POPs). A ’CORE’ service may be

deployed either on a ’CORE’ datacenter, or a ’EDGE/CORE’ datacenter.

127

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Zone US-NE

Zone US-S

Zone US-W

Edge Site
Core Site

Figure 5.3: Sites and Zones

Now, let us look at the sequence of tasks performed by the global manager during the

application bootstrap process.

• Compile user-specified policy scripts: The global manager accepts the policies for cre-

ating the application workflows (AAW) and the distributed application cloud (AAC)

from the administrator through its northbound interface, verifies and validates the poli-

cies for conflicts and/or mis-configurations and then compiles and loads these policies

into a local database.

• Start the global controller and select cloud datacenter sites: After loading the policies,

it starts the global controller. Again the global controller may either be on-premise or

on a cloud datacenter. Generally the manager will choose a location for the global con-

troller such that it has (almost) the same latency from all possible datacenters (cloud

as well as enterprise) that are candidates for the application deployment. The global

controller in turn starts a workflow controller for each workflow in each zone. We will

discuss more about this in our discussion on the global controller design. The global

128

manager, on the other hand, maintains a global database of different cloud/enterprise

datacenter configurations including provider name, location, security (authorization

and authentication) and access policies, billing information, and resource access and

lease policies. It chooses (based on some policy) an initial set of datacenters in each

zone from this list and acquires a pre-configured minimum number of virtual resources

(compute, storage and network) from these datacenters. The initial number of re-

sources acquired should be enough to launch at-least one instance of each workflow per

zone. However, the ASP administrator may choose to override this default behavior

and start multiple workflow instances during the bootstrap. This may be necessary to

distribute the application geographically within the same zone. These virtual resources

are acquired through the southbound management interface. The manager starts a sep-

arate resource driver thread for each datacenter. These resource driver threads acquire

the necessary virtual resources by calling the appropriate APIs specific to the datacen-

ter management stack (such as OpenStack, Eucalyptus, CloudStack, etc).

• Start datacenter controllers: After selecting the datacenter sites and acquiring the

required virtual resources on them, it starts a datacenter controller for each site.

• Launch virtual resources per datacenter: Next, it launches the data plane nodes in-

cluding AppFabric virtual machines and virtual switches in each of these selected dat-

acenters.

• Setup inter-datacenter links: Just like the global database for cloud datacenters, it also

maintains a global database of WAN providers that connect these datacenters. After

bootstrapping the sites, it calls the APIs of WAN providers to allocate resources for

connecting the different sites.

After bootstrapping the control plane and launching the resources for the data plane, it

signals the global controller to start the workflow manager threads. The global controller

starts the workflow managers; one per zone per workflow.

These 6 steps complete the initial bootstrapping function of the global manager. It then

steps aside and lets the global controller take over the responsibility of actually launching

and managing the application. During the application runtime, the global controller may

129

call the global manager from time-to-time to allocate more resources. These resources may

be allocated from the already active sites or it may choose to launch new sites based on the

policy specified by the ASP administrator. In our current implementation of AppFabric,

our policy language is quite limited in what it can express. Future versions will incorporate

much more richer policy specification languages that will allow the ASP administrator to

have better control over the application deployment and delivery. The other role of the global

manager during the runtime is to create reports and alarms for the ASP administrator based

on the runtime logs exported by the control plane entities. Also, the global manager pro-

vides an interface to the ASP administrator to manually change the state of the application

deployment (overriding the automatic behavior). For example, the ASP administrator may

choose to shutdown certain sites or start new sites in order to handle exceptions or other

planned or unplanned situations such as security attacks, system maintenance, etc.

5.2 The Control Subsystem

The Lighthouse control subsystem comprises of a set of controllers arranged in a hierarchi-

cal order. At the top of the hierarchy is a global controller that spawns a set of workflow

manager threads. Each zone has a global controller which controls multiple local dat-

acenter/network controllers. In the rest of this section we will discuss the functions of

these two control plane modules in more detail.

5.2.1 The Global Controller

After the initial bootstrap, the central manager signals the central controller to start the

workflow manager thread. The global controller (Fig. 5.4) will launch one workflow manager

for each zone. Initially, each workflow manager will try to launch one workflow instance

for that workflow. The steps in launching/removing a workflow instance thread include the

following:

130

Global Controller
<<Main Thread>>

Datacenter virtual
compute/storage

Controller Thread

Intra-datacenter virtual
network controller

Thread

Inter-datacenter virtual
Network controller

 Thread
Workflow Manager

Thread

Global
 Manager

Workflow Instance
#1 Thread

Workflow Instance
#N Thread

Global Controller

Figure 5.4: Schematic Representation of the Global Controller

• Query for proxy port (pPort) resources: The ingress and egress to every work-

flow instance has to be a proxy port or a pPort. The details of the pPort design will be

discussed in Chap. 6. For now, let us look at the high-level schematic representation

of the pPort as shown in Fig. 5.5. The pPort sits between the AppFabric Gateway

Node (AGN) on the external side and AppFabric-aware services composing the App-

Fabric service workflow on the internal side. The external side represents external

users and third party services that are assumed to be AppFabric-unaware and thus

need the AGN to connect them to the platform. The internal side represents the App-

Fabric Service Workflow (ASW) comprising of a set of AppFabric-aware services. The

pPort may serve as the ingress/egress for multiple workflow instances, as specified in

the configuration. The constraint in getting resources for the pPort for the workflow

ingress/egress is that it needs to be launched at a datacenter site marked as EDGE

(Fig. 5.3). The global controller sends the resource query to each of the local data-

center/network controllers of EDGE datacenters. On receiving the replies from the

datacenter controllers, the workflow manager selects one of them (potentially from a

list of multiple datacenters) based on certain policies that may, for example require

maximizing the extent of distribution of the proxies across the available edge datacen-

ters. It then signals the selected datacenter to start a pPort and the associated AGN

node.

131

pPort

External Internal

AppFabric-
unaware

Service #1 AGN #1

AGN #N
AppFabric-
unaware

Service #N

…

AppFabric Service Workflow #1

AppFabric Service Workflow #K

…

Figure 5.5: Schematic Representation of the pPort

• Launch a workflow instance thread: Once the pPort and the associated AGN node

has been started, the central controller launches the first workflow instance thread. It

then queries the datacenter application controllers, datacenter network controllers and

inter-datacenter network controllers (Fig. 5.4) for resources to launch the workflow

instance. Note that we have not yet introduced the concept of separate controllers

for the application and the network. We will discuss it in the next section. For

now, it is sufficient to understand that our controllers are logically separated into

two sets of functions- one for directly controlling the OpenADN ports in the data

plane (pPort, sPort, and tPort) and the other for managing virtual network resources

(virtual switch, virtual WAN links) and virtual network services provided by a cloud

or network provider. Once the workflow manager finds the resources to launch the

workflow instance, it delegates the responsibility of actually launching, managing and

controlling the workflow instance to the workflow instance thread.

• Dynamically scale-up or scale-down: The workflow manager constantly queries

each active workflow instance for their load information. If it finds that the workflows

are overloaded (actual algorithm will be discussed in our detailed design section), it

will start a new workflow instance thread. Conversely, if it finds that the average

load across all the workflows is less than a particular lower threshold, it starts de-

commissioning the active workflows one at a time (again, the actual algorithm will be

discussed in our detailed design section) till the average per-workflow load goes above

the threshold.

• Requesting additional resources from the global manager: Whenever, any

of the resource request queries fail, the controller requests the central manager to

132

allocate additional resources. On receiving such a request, the manager either requests

additional resource allocations from the currently active resource providers, or chooses

a new resource provider from its database and requests resources from it.

Apart from these, each workflow instance thread in the central controller performs the fol-

lowing functions:

• Start workflow services: The workflow instance thread launches all the services in

the workflow and their associated ports (sPort or tPort) in parallel.

• Configure Layer 4.5 and Layer 3.5 tunnels: After launching the services and

their associated ports, it configures the Layer 4.5 and Layer 3.5 tunnels across them.

• Configure application-level routing and packet routing in the ports: After

setting up the tunnels, it configures application-level routing in the sports and packet

routing in the tPorts. An application-level router consists of a message classifier (over

the message content and context) and a forwarding rule while a packet router classifies

packets based on the meta-tag carried either in the IP OPTIONS field (for packets

traveling between an sport and tPort in the same host) or in the Layer 3.5 tunnel

header (for packets traveling between tPorts in separate hosts).

• Attach workflow instance to proxy: After successfully launching the workflow, it

attaches the workflow to an ingress/egress proxy service (connected to a pPort). Note

that the workflow instance thread is not responsible for launching/managing the proxy

and is instead managed by the workflow manager. This is because the proxy is a shared

resource that is shared among multiple workflow instances.

• Make the workflow globally accessible: After successfully attaching an ingress/egress

proxy to the workflow instance, it registers the workflow instance with the name-server

(currently we have our own name-server implementation but DNS can also be used).

The entry is a mapping of the form 〈Application Name → IP address of proxy〉.
As you may have noted, all workflow instances connected to the same proxy has the

same entry. This is intended. The name server implements a weighted round robin

scheme and each duplicate mapping entry is considered a separate entry. For exam-

ple, a proxy hosting n workflow instances will have n duplicate mappings n the name

133

server. Suppose, there is another proxy hosting m workflow instances. Now applying

simple round robin, the first proxy will receive n/(n+m) fraction of the traffic while the

second proxy will receive (m/n+m) fraction of the traffic; thus automatically the sim-

ple round-robin scheme actually implements a weighted round-robin. Load balancing

across the workflow instances within the same proxy is done by the pPort.

5.2.2 The Local Controller

Each resource site leasing/contributing virtual resources to the AppFabric platform has

a local controller. Therefore, whenever the global controller decides to launch a new

deployment site (e.g. cloud/enterprise datacenter or micro-datacenters attached to a network

POP), it needs to launch a local controller for managing/controlling the resources for that

new site. Also, adding a new site to the application deployment may need adding new wide-

area-networking resources to ensure the reachability of the new site from the existing sites.

In that case, the global controller may need to launch a new inter-datacenter virtual WAN

controller to control/manage these new network links if it involves a new network provider

that is not already part of the ADN.

Local Controler
<<Main Thread>>

VM #1 Controller
Thread

Global
 Controller

VM #N Controller
Thread

Intra-datacenter
virtual network

controller Thread …

Lighthouse Datacenter Controller

Figure 5.6: Schematic Representation of the Local Controller

As shown in Fig. 5.6, the design of the local controller is pretty simple. Its primary function

is resource management. Each virtual machine that is launched by the platform runs a host

controller agent called the cPort (as shown in Fig. 5.7). The cPort manages the AppFabric

134

platform ports in the hosts. The AppFabric platform ports are the interfaces through which

services connect to the distributed AppFabric platform. There are three types of platform

ports:

• pPort: The pPort has already been discussed in the previous sub-section.It connects

AppFabric-unaware services to the platform.

• sPort: The sPort connects AppFabric-aware message-level services to the platform.

• tPort: The tPort connects AppFabric-aware packet-level services to the platform.

cPort

pPort #1

Datacenter
 Controller

sPort #1 tPort #1

AppFabric VM

AppFabric-
unaware

Service #1

AGN #1
AppFabric-

aware
Message-level

Service #1

AppFabric-
aware

Packet-level
Service #1

Figure 5.7: Schematic Representation of an AppFabric VM

Each of these ports are programmable. The cPort is the control plane agent in each virtual

machine and is responsible for executing control plane instructions in the virtual machine.

The instructions may include commands for launching a new service in the virtual machine

and programming the corresponding platform port through which the service is attached to

the platform; or replying to queries from the control plane regarding service liveness, resource

135

availability, load information etc.

When a virtual machine is launched by the global manager, it configures the address of

the local controller as a parameter in its global environment. The virtual machine is pre-

configured to launch the cPort at startup. The cPort reads the address of the local controller

from its environment and sends a registration message to the local controller. On receiving

this registration message, the local controller launches a new thread dedicated to managing

the virtual machine. This way the local controller manages a pool of threads; each dedicated

to managing a single virtual machine. The VM thread in the local controller synchronizes

information on load, liveness, resource availability and other performance metrics with the

host’s cPort. Whenever the local controller receives any query from the global controller,

it queries each of its VM threads to respond to the query. Also, it forwards commands for

programming the virtual machine from the global controller to the appropriate VM thread

which in turn passes it to the hosts cPort.

VMs are represented at the global controller based on their host IDs. Host IDs are flat

identifiers. that unlike IP addresses do not change across host mobility. Also, these IDs are

the cryptographic hash of a public key; allowing secure communication between the host and

the control plane. The local controller keeps the mapping of the host ID to its locator, thus

allowing the VM to migrate within the datacenter without the global controller needing to

know about it. However, for inter-datacenter VM migrations, the global controller would

require to update its Host ID to datacenter ID mapping.

Note that the current architecture is not very useful to mask local failures from the global

controller as the global controller is exposed to individual VM identities. In the next version

of the Lighthouse architecture, we plan to mask out this VM-level information from the

global controller. The local controller will present the global controller with the abstraction

of a single very large host and will be responsible for managing this abstraction by aggre-

gating the resources over many different VMs.

136

Also note that the local controller behaves a bit differently in managing the network re-

sources. This is because the platform can directly run its code inside a virtual machine.

However, most virtual network resources (virtual switches, virtual routers, and virtual WAN

links) will not allow the equivalent of the cPort and ASP-owned services to be launched

over them. These virtual resources generally expose a configuration interface through which

they may be programmed to some limited extent. The network controller module of the local

controllers will directly access these interfaces to program the virtual network in application-

specific ways as required by the ASP.

This brings us to the end of the high-level discussion on the architecture of the Lighthouse

control and management plane design. The details of the actual implementation of this

design will be presented in the next chapter (Chapter. 6). Note that this chapter presents

the reference architecture of Lighthouse that eventually needs to be implemented. Our

current prototype implementation does not implement the architecture fully but implements

the key components and an extensible framework that will allow later releases to extend and

add the missing components pretty easily.

137

Chapter 6

AppFabric Prototype

In this chapter, we will discuss the details of the AppFabric prototype implementation. The

AppFabric prototype has been implemented in C and Python; with most of the control plane

(Lighthouse) code implemented in Python while the data plane (OpenADN) is implemented

in a mix of C and Python. The total size of the codebase is approximately 10,000 lines

of code. As we will explain later in this chapter, the prototype has been implemented to

allow future extensions to add new resource drivers, algorithms for resource acquisition,

management and control, and new policies for deploying and delivering applications. Also,

it may be noted that the current prototype does not implement the complete data plane and

control plane architectures discussed in the previous chapters. We will explicitly mention

what has not been implemented in the relevant portions of this discussion. The current code

base may downloaded from:

https://sites.google.com/site/applicationfabric/6-code-download

6.1 High-level Design Issues

The AppFabric platform itself is a complex and distributed system. Therefore, before delving

into the details of the implementation, let us first discuss some of the design challenges and

how we address them in our implementation. Note that most of these challenges are generic

to the design of most distributed systems; it is the solution that is system specific. Also

138

https://sites.google.com/site/applicationfabric/6-code-download

there could be many alternate solutions to each of these problems, however, we will try to

motivate that our design choices are valid and acceptable for the case in point.

• Enforcing modularity: Modularity is a common goal with almost all system designs.

It is basically a way to factor the system into a set of constituent components. In

general, modularity helps achieve the following system properties:

– Readability and maintainability: Code readability and maintainability is of-

ten an important goal, especially for large software projects. Modularity allows

parts of a code to be developed and maintained separately and in parallel. It

allows the code to be more easily maintained by restricting the effect of code

changes to modules and more deterministically manage these changes.

– De-coupling fate: A stronger notion of modularity is to address the problems

of fate-sharing across modules. This requires that if a module fails, it should not

be able to take down the whole system. Also, a malfunctioning module should

not be able to directly corrupt the state of another module.

– Concurrency: Modularity also introduces the idea of concurrency where each

module may independently execute concurrently. This allows the system designer

to make more efficient systems by partitioning his code into concurrently exe-

cutable modules such that the system as a whole can perform many different

tasks at the same time leading to better utilization of the hardware resources and

ensuring that the system as a whole makes progress all the time.

The most basic form of modularity is obtained through procedure (or function) calls.

Procedures are modules within the same process. However, this is quite a weak notion

of modularity that neither supports fate de-coupling nor concurrency. The procedure

call graph is sequential and all procedures share the whole process address space.

Therefore, a single malformed function can very easily corrupt the address space and

the whole program can be brought down. Often a more stronger notion of modularity

is required for most systems. Threads provide a stronger notion of modularity where

each module runs in a separate thread within the same process. Threads share the

process heap but each thread has its own stack. Therefore, threads support concurrent

execution while not completely achieving fate-decoupling. The next level of modularity

may be achieved by running each module in a separate process. This allows the system

139

to achieve all the three modularity goals. However, processes in the same host share

fate in the sense that a rogue process with the right privileges may corrupt the hosts

operating environment. Also, concurrency in this case is largely notional since each

independent module still share the same hardware resources. Distributing the modules

across different processes on different hosts provides a stronger notion of both fate-

decoupling and concurrency.

Any sufficiently complex system employs all these different techniques for modularity

and AppFabric is no different. In modularizing AppFabric, we made the following

design choices:

– Run platform modules and application services in separate address

spaces: The first level of modularity is enforced by always running platform

modules and application services in separate processes. Therefore application

services are designed as external modules that need to connect to the platform

through an external communication interface. This is in contrast to an alter-

nate implementation where the platform is provided as a special communication

library that runs in the address space of the service and provides an intelligent

communication substrate. Separating the platform and the application service

allows the platform to independently handle failed application services without

affecting other services.

– May run platform modules in the same host within a single address

space: In each host, platform modules may run within the same address space

(same process). Note the use of the word ”may” in the preceding sentence. In

our current implementation, all the sPort and pPort instances run in the same

process whereas all the tPort instances run in a separate process. This is not

a design requirement and is the case simply because we want to use the kernels

network stack to interpose between message-level and packet-level communica-

tions. We could very well write our own version of the network stack and avoided

this. Anyways, for platform modules running in the same process, concurrency

is provided by running them in separate threads. Therefore, each port instance

runs as a separate thread. This is to avoid the overhead of enforcing process level

modularity; especially since it is not required within trusted modules. This also

allows the platform to have some explicit control over scheduling the modules

140

(the ports in this case) instead of delegating it to the operating system. How-

ever, in our current implementation we do not do any explicit scheduling of the

threads. These threads share the process heap and it provides threads with a

cheap way to communicate with each other. However, in-order to avoid fate-

sharing completely, the only way for threads to communicate inside the platform

process is through messaging. Messaging is a less efficient communication mech-

anism between modules than shared memory but has excellent concurrency and

fate-decoupling properties.

– No assumption can be made whether application services will be de-

ployed on the same host or on separate hosts: The platform requires

that each application service be run as a separate process. But beyond that, it

may not make any assumption whether they will be run on the same host or on

separate hosts. When run on the same host, inter-process communication is the

cheapest way to communicate whereas when run on different hosts the only way

to communicate is through the network transport. However, this decision is taken

dynamically during deployment time and hence the platform needs to provide a

common communication interface to the service and automatically map it to the

appropriate transport during deployment. This is exactly what the AppFabric

Service Conduit (ASC) abstraction provides.

• Synchronous vs. asynchronous bootstrap: There are two options of bootstrap-

ping distributed systems - synchronous and asynchronous. In a synchronous system, a

strict bootstrapping order is maintained where one module is started only after another

has started and so on. In an asynchronous bootstrap, each module may be started at

any point in time. For a large distributed system like AppFabric involving multiple

hosts in multiple datacenters, it would be highly inefficient to have a synchronous boot-

strap. Also, an asynchronous bootstrap mechanism helps in making the system more

dynamic. AppFabric implements asynchronous bootstrapping through a simple re-try

mechanism for each connection request. If a node tries to connect to another node but

fails, it re-tries after a certain interval. The interval may be fixed or adaptive. In-fact,

it makes more sense to decrease the interval across successive re-trials since during

the bootstrap stage the probability of the node being ready to accept the connection

request becomes higher as more time passes.

141

• Synchronous vs. asynchronous request/response messaging: Another design

choice that is often encountered by distributed system designers is whether to imple-

ment synchronous or asynchronous request/response messaging. In synchronous mes-

saging each request is lock stepped with a corresponding response. In asynchronous

messaging, the request response pairs are not lock stepped, thus allowing the system

to handle many requests concurrently. AppFabric implements asynchronous request

response messaging. Each request message is given an unique ID that is replayed in

the response. This allows the sender to match a request to a response in case the

request-response pairing discipline needs to be maintained. Also, each recipient main-

tains a message queue to queue the messages and process them in the order in which

it received them.

• Two-step vs. three-step transactions: This is another important design choice

that depends on the type of the transaction between two modules. As is the general

rule, AppFabric applies three-step transaction process whenever two modules are nego-

tiating certain parameters that requires either synchronizing or updating critical state

information. As a very simple example; suppose that the central controller sends a

request to a datacenter controller to start a service on any host on any port in the

datacenter. The datacenter controller starts the service and sends back the host ID,

host IP and port number for the service to the central controller. The central con-

troller then acknowledges receiving this information so that the datacenter controller

can delete this service-host mapping from its database since this mapping is of use only

to the central controller (that keeps record of service deployments). For most other

transactions that does not involve parameter negotiations or update of critical state,

two-step transactions are enough.

• Lazy updates: The AppFabric control plane has two conflicting goals: scalability and

dynamism. It needs to dynamically adapt the system to the needs of the application

while at the same time be scalable to handle large application deployments. These

goals are conflicting because to be dynamic the control plane has to keep an updated

view of the whole system which involves either polling (from top down) or reporting

(from bottom up) the state of each individual data plane node at very frequent inter-

vals. Having a hierarchical control plane design helps to a certain extent. The other

mechanism we apply is lazy updates. The way it works is that instead of reporting

142

system state at regular intervals, either the control plane queries the system before it

needs to make a critical decision such as allocating more nodes, or the data plane nodes

report an event based on a configuration; such as when the load crosses a particular

pre-set threshold.

6.2 AppFabric Prototype: Structure

The AppFabric Prototype comprises of three key components:

• Management-plane configurations: The management plane configurations allow

the ASP to specify policies for deploying and delivering their applications.

• The OpenADN data plane: Each data plane node (that is a virtual machine hosting

a message-level or packet-level service) is part of a AppFabric Distributed Virtual

Switch (ADVS) implementation. This ADVS can route and forward both, application

messages as well as packets. Also, the distributed components of the switch may span

across multiple datacenters. Also, the OpenADN data plane implementation exposes

two types of interfaces for services to connect to the ADVS:

– AppFabric socket interface: This allows newer AppFabric-aware services to

connect to the ADVS.

– Proxy port and proxy service: The proxy port (pPort) and the proxy service

together allow legacy, non-AppFabric-aware services to connect to the ADVS.

• The Lighthouse control plane: The Lighthouse control plane is implemented

through a set of hierarchical controller modules whose primary task involves configur-

ing and executing ASP policies (specified through the management plane configuration

files) in the OpenADN data plane.

Table. 6.1 shows the top level directory structure of the AppFabric code. In the next few

sections, we will go into the specific details of each of these componeents

143

Directory Sub-directory Notes

AppFabric/containers Container for the ASP message and

packet level service implementations.

Note that the container directory

in each virtual machine image con-

tains all the services that are part

of the AppFabric Service Workflow.

To deploy the application efficiently,

the controller decides during runtime

which service to fire on which virtual

machine.

OpenADN proxy container The OpenADN proxy container hosts

the OpenADN proxy services. Along

with a proxy port (pPort), the proxy

service allows AppFabric-unaware

services to connect to the platform.

OpenADN service container Container for application services.

AppFabric/experiments Experiment setups to validate the

protoype.

mininet simulations Code for running experiments to vali-

date the code. Currently implements

a Mininet driver. Will add drivers

for other SDI stacks (e.g. OpenStack,

EC2, OpenDayLight, etc.) in future

releases.

AppFabric/platform Contains the source code for the con-

trol and data plane implementations

src/lighthouse Control plane code.

src/openadn Data plane code.

src/common Common code for the control and

data planes.

144

AppFabric/runtime Contains runtime configurations and

scripts.

configurations Configuration files through which the

ASP specifies policies for deploying

and delivering their applications.

scripts Scripts to fire the different data plane

and control plane modules depending

on what role the node is playing, ei-

ther as a controller or a data plane

node.

Table 6.1: Top-level Directory Structure of the AppFab-

ric Code

6.3 AppFabric Prototype: Management Plane Config-

urations

In this section, we will discuss some of the configuration files that are exposed to the ASP

for specifying application deployment and delivery policies. Most of the configuration files

are written in plain XML, with a few exceptions that are written in an AppFabric-specific

format. Note that these management plane configurations are pretty static and currently

support very simple policy specifications. Therefore, XML seems to be a good choice to

start with. However, as AppFabric evolves to support more complex policies, it may need to

be replaced by a more expressive programming language. Currently, languages like Business

Process Execution Language (BPEL) is the de-facto language used to specify business pro-

cesses in SOA environments. Also, a breed of new declarative languages such as Frenetic[45]

has evolved recently in the context of Software-Defined Networking for programming large,

distributed networks. Standard scripting languages such as Python, Perl, Java Script, etc.

145

may also be used.

One may note that one of the goals of the the configuration interface design is to hide from

the user as much of the details as possible. For example, message-level services, packet-level

services and proxy services are three types of services that the application is composed of.

These different types of services differ a lot in the way they are implemented and deployed

but their configuration files look very similar. This is done on purpose to keep things as

simple as possible for the application administrators.

6.3.1 Configuring the AppFabric Service Workflow (ASW)

The AppFabric Service Workflow (ASW) was discussed in chap. 1. Fig. 6.1 is a reproduction

of Fig. 1.3.

146

IDS 1

App
Routing

(Message)

App
Routing
(Packet)

App
Routing

(Message)

App
Routing
(Packet) App

Routing
(Message)

 Proxy
Service

IDS 2

App
Routing

(Message)

Web
Service

Proxy Service

Packet-level
Middlebox (e.g. IDS)

Message-level
Middlebox

Application Service

Transcoder 2

Transcoder 1

Users/
AppFabric-unaware

services

Figure 6.1: Schematic representation of an AppFabric Service Workflow. Reproduction of

Fig. 1.3 from chap. 1

Now let us see how an application architect can configure the different components of an

ASW.

• Configuring the service nodes: There are two types of service nodes in AppFabric

- regular service node and and proxy service node. Note that a service node is not a

service, but a service node hosts a service.

– A regular service node hosts a service that may either implement some sort of

application logic or a middlebox function.

– A proxy service node hosts a proxy service. A proxy service sits at the boundary

of AppFabric-aware and AppFabric-unaware entities. AppFabric-unaware

entities may include legacy services that have not been updated yet to connect to

the platform directly (through the AppFabric socket abstraction) explained

147

later, third-party services external to the ADN, or user agents such as web-

browsers and mobile clients that connect to the ADN.

Listing. 6.1 lists the configuration of a service node. This configuration is stored in the

file ∼/AppFabric/runtime/configurations/workflowConfig.cfg

Listing 6.1: Message-level Service Node Configuration

1

2 // Service Node configuration

3

4 <node−cfg>}
5 ”node type”: ”SERVICE MSG”,

6 ”node name”:”Node1” ,

7 ”in ports”: 3,

8 ”out ports”: 3,

9 ”service name”: ”service 2”,

10 ”classifier”: ”test.cls”,

11 ”classifier type”: ”regex serial” }
12 </node−cfg>

Fig. 6.2 shows the configuration listed in Listing. 6.1. Note that this is the configuration

of only a generic node that hosts a service. The configuration of the actual service and

the way they fit into the overall architecture may vary across message-level, packet-level

and proxy services and will be discussed later.

148

Message-level
Service

<<service_2>>

AppRouter
<<test.cls>>

Outport 0

Outport 1

Outport 2

Inport 0

Inport 1

Inport 2

<< Node 1>>

Figure 6.2: Service Node Configuration

Table. 6.2 explains the meaning of the different parameters.

attribute meaning

node type Type of node - either, message-level service (SERVICE MSG), packet-level

service (SERVICE PKT) or proxy service(PROXY)

node name Name of the node. Each node needs to have a unique name.

in ports Number of ingress ports in the attached App Router (refer to Fig. 6.1)

out ports Number of egress ports in the attached App Router (refer to Fig. 6.1)

service name Name of the service that the node hosts

classifier Classifier file that has the classification rules to clas-

sify messages/packets. The classifier files are in the

∼/AppFabric/runtime/configurations/classifiers directory.

classifier type Many different classifier types are allowed. classifier type indicates how

to interpret or which module is used to interpret the classifier

Table 6.2: Attributes for a general node configuration

and their meanings

149

• Configuring the service: Each service node hosts a service. These services need to

be configured too. Listing. 6.2 lists the configuration of a service. This configuration

is stored in the file ∼/AppFabric/runtime/configurations/services.cfg

Listing 6.2: Service Configuration

1

2 // Service configurations

3

4 <service config>

5

6 <service>

7 <name> proxy service http </name>

8 <executable> proxyHTTPServer.py </executable>

9 <service type> 2 </service type>

10 <app protocol> http </app protocol>

11 <service args> None </service args>

12 <norm res index> 1.5 </norm res index>

13 <attrs>

14 <deployment site> EDGE </deployment site>

15 <deployment type> shared </deployment type>

16 </attrs>

17 </service>

18

19 <service>

20 <name> service 2 </name>

21 <executable> hw server.py </executable>

22 <service type> 0 </service type>

23 <service args> None </service args>

24 <norm res index> 1.5 </norm res index>

25 <attrs>

26 <deployment site> CORE </deployment site>

27 <deployment type> non−shared </deployment type>

28 </attrs>

29 </service>

30

31 <service>

150

32 <name> service P1 </name>

33 <executable> hw server packet.py </executable>

34 <service type> 1 </service type>

35 <service args> None </service args>

36 <norm res index> 3.0 </norm res index>

37 <attrs>

38 <deployment site> CORE </deployment site>

39 </attrs>

40 </service>

41

42 <service config>

Listing. 6.2 lists three services; one of each type - message-level service, packet-level

service and proxy service. The attributes in the service configuration are explained in

Table. 6.3

attribute meaning

name Name of the service

executable The name of the executable file that the service runs. The executables are

fetched from the following directories:

– Application service (message-level/packet level):

∼/AppFabric/containers/OpenADN service container/

– Proxy service: ∼/AppFabric/containers/OpenADN proxy container/

service type Type of the service

– 0: Message-level application service

– 1: Packet-level application service

– 2: Proxy service (Message-level by default)

app protocol

(only for

proxy ser-

vices)

Application-level protocol that the proxy is proxying. Note that the proxy

acts like a gateway converting different message-types and session defini-

tions for different application-level protocols to the standard AppFabric mes-

sage/session format.

151

service args Command line arguments for the service.

norm res index Normalized resource index value. This value suggests how much resource the

service is expected to consume normalized with respect to the service that

consumes the minimum resources. The value of this index cannot be less

than 1. It is used for coarse-grained resource planning across the system.

The value may be determined by running separate benchmarking tests on

the service.

attrs Deployment attributes for the service. Currently, the configuration sup-

ports one attribute that determines whether the service should be deployed

in a CORE datacenter, or a EDGE datacenter, or either of the two

(EDGE/CORE.) We will explain what these terms mean in the next sub-

section (in the context of discussing how to configure the AppFabric Appli-

cation Cloud (AAC).)

Table 6.3: Attributes for service configuration and their

meanings

• Configuring the service graph : Listing. 6.3 lists the configuration of the service

graph. This configuration is stored in the file∼/AppFabric/runtime/configurations/

workflowConfig.cfg.

Listing 6.3: Service Graph Configuration

1

2 // Workflow Graph

3

4 <graph>

5

6 Node0 [0] −> [0] Node1

7

8 Node1 [0] −> [0] Node0

9

10 Node1 [1] −> [0] Node2 [0] −> [1] Node1

11

12 Node1 [2] −> [0] Node3 [0] −> [0] Node4

152

13

14 Node4 [0] −> [2] Node1

15

16 </graph>

The corresponding service graph is shown in Fig. 6.3.

Node 0

[0]

Node 1

[0]

[0] [0]

[1]

Node 2

[0]

[0] [1]

[2]
Node 3

[0]
[0]

[2]

Node 4

[0]

Input port

Output port
[0]

Ingress/Egress
 port

Figure 6.3: Service Graph corresponding to Listing. 6.3

This service graph (Fig. 6.3) describes the application that is then deployed based

on the policies specified in the AppFabric Application Cloud (AAC) configuration

described in the next subsection. However, Fig. 6.3 does not show the application

router (appRouter)attached to the service. The application router configuration is

discussed in the next point.

• The Message Router Configuration: Each message-level service has an attached

application router that classifies the incoming message and applies routing rules to it.

The AppFabric message routing is a two-step process:

– Step 1. Dynamically determine the end-point (next message-level service).

– Step 2. Dynamically determine the path to the end-point (packet-level services

in-path).

153

Service S1 Service S3

Service S2

Service
P2

Service
P1

Service
P3

Meta-tag = 1

Meta-tag = 2

Meta-tag = 3

Figure 6.4: Message Routing

For example, as shown in Fig. 6.4, messages coming into service S1 may either be

routed to service S2 and service S3; where all three services are message-level services.

Further, messages to service S3 may be routed through three independent paths.

– Path 1: Through packet-level services P1 and P2.

– Path 2: Directly to S3.

– Path 3: Through packet-level service P3

Therefore, when a message comes in the application router attached to service S1, it

classifies the message and determines whether the next-hop should be service S2 or ser-

vice S3. If the next-hop is service S3, then it uses meta-tags to identify the different

paths. The meta-tag is inserted in a layer 3.5 OpenADN shim header. Currently,the

layer 3.5 shim header is implemented through setting the IP OPTIONS field in each

packet. In later versions of the implementation, a new shim layer may be implemented.

It may be noted that even though the message routing is a two-step process, message

154

classification happens only once per message. As a result of that classification, both,

the next hop message-level service as well as the packet-level path are determined. the

reason for the inserting the meta-tag is that the packet-level services do not have access

to the message-level application data and hence cannot be effectively classified. The

meta-tag is therefore used to store the result of the message-level classification into

every packet such that each packet of the message can be classified as belonging to an

equivalence class as defined by the classification policies.

An example application router configuration is shown in the Listing. 6.4. This config-

uration can be found in ∼/AppFabric/runtime/configurations/classifiers/test.cls

Listing 6.4: The App-Routing Configuration for a Service

1

2 <?xml version=”1.0”?>

3

4 <classifier config>

5 <classifier in port = ”0”>

6 <rule id=”1.1” pref= ”1” >

7 <hdr> [”APP HDR”, ”path”] </hdr>

8 <pattern> .html </pattern>

9 <outport> 1 </outport>

10 <tag> ”A” </tag>

11 </rule>

12

13 <rule id=”1.2” pref= ”2” >

14 <hdr> [”APP HDR”, ”path”] </hdr>

15 <pattern> .shtml </pattern>

16 <outport> 2 </outport>

17 <tag>”B” </tag>

18 </rule>

19

20 <rule id= ”1.3” pref= ”3” >

21 <hdr> [”APP HDR”] </hdr>

22 <pattern> . </pattern>

23 <outport> 2 </outport>

155

24 <tag> ”C” </tag>

25 </rule>

26 </classifier>

27

28 <classifier in port = ”1”>

29 <rule id= ”2.1” pref= ”1” >

30 <hdr> [”APP HDR”] </hdr>

31 <pattern> . </pattern>

32 <outport> 0 </outport>

33 <tag> ”D” </tag>

34 </rule>

35 </classifier>

36

37 <classifier in port = ”2”>

38 <rule id= ”3.1” pref= ”1” >

39 <hdr> [”APP HDR”] </hdr>

40 <pattern> . </pattern>

41 <outport> 0 </outport>

42 <tag> ”E” </tag>

43 </rule>

44 </classifier>

45 </classifier config>

attribute meaning

classifier in port = input port number

rule rule id = rule identifier, pref = specifies the order of preference of match-

ing to the rule. Note that the preference order is currently not used.

hdr Message header fields over which the classification is performed

pattern Pattern that is matched in the hdr

outport Output Port

app tag Meta-tag (explained in the text following this table)

Table 6.4: Attributes for the classifier configuration and

their meanings

156

Table. 6.4 explains the meaning of the different parameters. Note that we are aware

of the fact that this form of specifying the classifier file is quite restrictive and not

very useful. For example, currently it does not allow matching agains multiple header

fields. This simple format was created simply to demonstrate the proof-of-concept and

may not be useful to specify real-life message classification scenarios. However, the

design is extendible; allowing more sophisticated classifier classes to be attached to

the system.

classifier

factory method: __new__()

classifier_serial_regex

create_classifier_table ()

<<inheritance>>

<<instantiate>>

classifier_regex

<<inheritance>>

create_classifier_table ()
create_appRoutingTable ()
match_pattern()
…

classifier_parallel_regex

create_classifier_table ()

Regular expression
 based classifiers

Some other type
 of classifier

<<instantiate>> <<instantiate>> <<instantiate>>

Figure 6.5: Class Diagram of the Classifier System

As shown in Fig. 6.5, the classifier class is a factory class (see Listing. 6.5) spawning

the appropriate classifier objects of the classifier type specified in the configuration.

Listing 6.5: Classifier Class

1

2 class classifier :

3 # This is a factory class

4

5 def new (self, classifierType):

157

6 if classifierType == ”regex serial”:

7 return classifier serial regex()

The service graph corresponding to the Fig. 6.4 is listed in Listing. 6.6. Note that in

the listing we just list the nodes and not the services as shown in the figure. Services

are drawn as circles and nodes are drawn as squares in all our representations. For this

case assume that each service in Fig. 6.4 is hosted by the appropriate node and the

mapping of service to node is as follows: S1 –> Node0, S2 –> Node1, S3 –> Node2,

P1 –> Node3, P2 –> Node4, and P3 –> Node5.

Listing 6.6: Service Graph corresponding to Fig. 6.4

1

2 // Workflow Graph

3

4 <graph>

5

6 Node0 [0] −> [0] Node1

7

8 Node0 [1] −> P1 −> P2 −> [0] Node2

9

10 Node0 [2] −> [1] Node2

11

12 Node0 [3] −> P3 −> [2] Node2

13

14 </graph>

We will see in the next section, how this service graph is compiled and a running

instance of this graph in the data plane is created by the control plane. Note that our

configuration of the service graph does not yet allow specifying the network transport

services such as quality of service paths yet. In the next version of AppFabric, we

expect to add this feature as well.

158

6.3.2 Configuring the AppFabric Application Cloud (AAC)

After the application architect has designed the application and created the AppFabric Ser-

vice Workflow (ASW), it is the responsibility of the deployment administrators to deploy the

application. Fig. 6.6 shows a schematic representation of the application cloud. Listing. 6.7

provides the configuration of a typical application cloud. There are several deployment

policies that the deployment administrators may want to specify.

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Cloud
Datacenter

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

ISP Network

AppFabric Service Workflow
<instance #1>

AppFabric Application Cloud (AAC)

Figure 6.6: AppFabric Application Cloud(reproduction of Fig. 1.4)

Listing 6.7: AppFabric Application Cloud Configuration

1

2 <workflow−properties> {
3 ”name”: ”ABC”,

4 ”resource allocation method”: ”greedy max 2 site”,

5 ”avg load per session”: 5,

6 ”deployment sites”:[”US−E”,”US−W”],

7 ”instance capacity”: 15,

159

8 ”wf per proxy”: 3,

9 ”overload notification level”: 0.5,

10 ”scale down level”:0.2 }
11 </workflow−properties>

Now, let us discuss in some detail what these policies are and how they are specified.

• Policies for distributing the application across multiple datacenters dis-

tributed geographically: AppFabric has been designed to support massively dis-

tributed application use-cases where the primary motivation for distributing the ap-

plication is driven by the need to support different latency tolerances for the different

services that compose the application. As an example, Internet-of-Things use-cases

have many different distributed data collection and aggregation locations to support a

wide range of functions varying between near-real time control to long-term business

intelligence. For such applications, the topology of the application deployment (or,

geographical footprint) is extremely important. Other benefits of having a distributed

deployment such as fault tolerance (both in the application and in the infrastructure)

and better resilience to security attacks follow naturally.

160

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

Zone US-NE

Zone US-S

Zone US-W

Edge Site
Core Site

Figure 6.7: Sites and Zones (reproduced from Fig. 5.3)

In AppFabric, each service is associated with a deployement site configuration spec-

ified as part of the service configuration (see Listing. 6.2). This attribute is used to

place the service either in a EDGE datacenter or a CORE datacenter. Now let us

revisit the concept of zones and sites for better clarity of the current discussion. As

shown in Fig. 6.7, the deployment manager may divide a large geographical region

into several zones. Each zone is independent of each other. For example, as shown in

Fig. 6.7, the whole of United States may be divided into three zones - US-NE, US-S,

and US-W. Each zone has many different sites. In our current implementation, sites

are classified into two types - CORE and EDGE. The EDGE sites may be small mi-

cro datacenters attached to network POPs and operated by the ISPs. These massively

distributed micro-datacenter infrastructure is no longer just a concept but is actually

being deployed by many carriers such as AT&T and Verizon to drive Network Func-

tion Virtualization(NFV) and Internet-of-Things use cases. The CORE datacenters

are relatively larger and more centrally located. Each CORE datacenter may support

many EDGE datacenters. This distribution-aggregation architecture suits most of the

application use-cases that we can envision at present. More intermediary levels may

161

be needed in the topology, especially when driving applications over very large zones.

Our implementation supports only two levels presently and may be extended in the

future to add more intermediary levels.

The deployment sites attribute allows the administrator to list the different zones at

which the application needs to be deployed. The application is started simultaneously

at all the zones listed in this specification. We will see how the sites within a zone are

selected in the following discussion.

• Policies for acquiring the required resources: AppFabric is designed to create an

application delivery network (ADN) from resources either owned (enterprise networks

and datacenters) or leased from many different resource providers (Cloud providers and

ISPs). However, although AppFabric will dynamically decide (during runtime) which

sites to deploy the application on, a list of all the possible sites from which this selection

is made is provided in the configuration file∼/AppFabric/runtime/configurations/sites.cfg.

Listing. 6.8 lists the configuration in this file.

Listing 6.8: Sites Configuration

1

2 <site config>

3

4 <zone name=”US−E”>

5 <site name= ”DC1”>

6 <site type> CORE/EDGE </site type>

7 // authorization/authentication keys

8 // billing and other information

9 <site addr> 10.10.1.0 </site addr>

10 </site>

11

12 <site name= ”DC2”>

13 <site type> CORE/EDGE </site type>

14 // authorization/authentication keys

15 // billing and other information

16 <site addr> 10.10.2.0 </site addr>

17 </site>

162

18 </zone>

19

20 <zone name=”US−W”>

21 <site name= ”DC3”>

22 <site type> CORE/EDGE </site type>

23 // authorization/authentication keys

24 // billing and other information

25 <site addr> 11.11.1.0 </site addr>

26 </site>

27

28 <site name= ”DC4”>

29 <site type> CORE/EDGE </site type>

30 // authorization/authentication keys

31 // billing and other information

32 <site addr> 11.11.2.0 </site addr>

33 </site>

34 </zone>

35

36 </site config>

We have already discussed most of these parameters. However, the authorization/au-

thentication keys and the billing and other information are not part of the cur-

rent implementation and will need to be added in future versions when AppFabric is

tested on commercial platforms such as Amazon EC2, RackSpace. etc.

Now, let us see how the platform dynamically selects the sites from this list. The algo-

rithm to make this selection is specified by the parameter resource allocation method

in the workflow properties configuration (Listing. 6.7). Again, currently we implement

a very simple greedy algorithm called the greedy max 2 site. This algorithm greed-

ily selects two sites, one EDGE and one CORE, among all the sites that has the required

resources to run the EDGE and CORE services in the application service workflow.

However, more complex algorithms may need to be designed based on policies for opti-

mizing the cost of the deployment, the need for distributing the application to certain

163

geographical regions, etc. The implementation allows these extensions to be incorpo-

rated later. Listing. 6.9, which is in the file∼/AppFabric/platform/src/lighthouse/globalc/

selectDeploymentSite.py, shows the code snippet that allows the flexibility of attaching

different methods of site selection to the platform. The implementation would be much

more robust if it were implemented thorough the factory design pattern and is one of

the small changes that the future version of the code should incorporate.

Listing 6.9: Selecting the algorithm for choosing deployment sites

1

2 def selectDeploymentSite(siteList, deployment scenario):

3 if deployment scenario[”WF RESOURCE ALLOCATION METHOD”] == ”greedy max 2 site”:

4 flag, selected coreSite, selected edgeSite = res allocation greedy max 2 site.select site

5 (

6 siteList,

7 deployment scenario

8)

9 return flag, selected coreSite, selected edgeSite

• Policies for scaling up and scaling down: One of the policies the deployment

administrators would like to specify is how and when to scale-up and down. Automat-

ically scaling-up and down frees the administrator from continuously monitoring the

system and dealing with intermittent periods of high/low load. The parameters that

he may set to specify this are instance capacity, overload notification level and

scale down level.

– instance capacity: The maximum number of active user sessions that the a

workflow instance can handle.

– overload notification level: To account for the delay between signaling an

overload condition and the time taken to spawn a new instance, the administrator

may specify an overload notification level at which the system starts watching

itself intelligently for overload situations and takes pre-emptive actions to avoid

it.

– scale down level: The deployment needs to scale down and free the resources

when they are no longer needed. This parameter allows the administrator to set

a scale down level; which is a measure of the load per workflow instance and the

system scales down by shutting down workflow instances till the load per workflow

goes above the set value of the scale down level parameter. Note that because of

164

intrinsic load balancing in the system all the workflow instances at any point of

time has equal load.

One of the limitations of the current implementations is that it automatically starts

the application with one instance per zone (as specified in the deployment sites

parameter). However, there must be more control on this. For example, the application

should be allowed to start with more than one live instance and also the deployment

administrator should be able to explicitly control how these instances are distributed.

This is one of the most urgent features that need to be implemented in a future release

of the platform.

• Load Balancing: The platform ensures that user sessions are automatically load

balanced across each of the active workflow instances. Load balancing is intrinsically

managed in the platform and no external policy interface is exposed to control this.

In the future versions it may be useful to allow different load balancing policies to be

specified explicitly as well.

• Fault-tolerance: The system should automatically detect service failures across work-

flows and automatically initiate repair efforts. This feature is partially implemented.

We will see in the next section on OpenADN that the platform implements a elaborate

heartbeat mechanism to detect and report failures. However, our current control

plane implementation is not mature enough to handle these failures to provide repar-

ative actions.

6.4 AppFabric Prototype: The OpenADN Data Plane

As discussed in chapter. 1, the main goal of the AppFabric architecture is to design and

implement an AppFabric Distributed Virtual Switch (ADVS). The OpenADN data plane

architecture is tuned towards achieving this goal. As shown in Fig. 6.8, designing the ADVS

involves designing two key components:

• The interface between the services and the ADVS ports.

• The common message and packet switching substrate.

165

Message-level
Middlebox

Service

Application
Server

Packet-level
Middlebox

Service

Web
Server

Storage
Server

Storage
Server

AppFabric Distributed Virtual Switch
(ADVS)

P
orts P

or
ts

Message/ Packet switching

ADVS Controller

Switch Programming Interface

Figure 6.8: AppFabric Distributed Virtual Switch (reproduction of Fig. 3.4)

In this section we will discuss the details of these two components in the AppFabric prototype.

6.4.1 AppFabric Service Conduit (ASC) Abstraction

As shown in Fig. 6.9, the AppFabric Service Conduit or ASC is the interface between a

service and the AppFabric platform. Let us discuss the two main communication channels

provided by the ASC abstraction before delving into the various components that implement

these abstractions in more detail in the rest of this sub-section.

166

AppFabric Port

Heartbeat
Reply Thread

AppFabric
Socket

Interface

Heartbeat
Query Thread

AppFabric
Gateway Node

(AGN)

sPort or tPort
interface

pPort interface

AF_INET

IPC

IPC

AppRouter

To other ports over either
IPC or AF_INET

A
pp

Fa
br

ic
 S

er
vi

ce

C
on

du
it

A
bs

tr
ac

tio
n

AF_INET
Socket

Interface

Service B

A
pp

Fa
br

ic
 P

la
tfo

rm

Service A … Service K

ASC
Abstraction

ASC
Abstraction

Figure 6.9: AppFabric Service Conduit Abstraction

• Communication channel for AppFabric-aware services: The communication

channel between an AppFabric-aware service and the platform is created over an Inter-

Process Communication (IPC) transport channel. The service-end (the end accessed

by the service) of the channel is managed by the AppFabric socket abstraction which

provides a message I/O interface from which the service may read and write application

messages without having to worry about the actual destination of the messages. The

platform-end (the end accessed by the platform) of the channel is managed by the

AppFabric Port interface, either a service port (sPort) or a tunnel port (tPort). We

will discuss the different types of ports and their architectures in more detail later in

this section.

• Communication channel for AppFabric-unaware services:AppFabric allows legacy

AppFabric unaware services to connect to the platform as well. These services do

not implement the AppFabric sockets and instead communicate over the standard

AF INET sockets. To connect these services to the platform, two communication

channels are spliced together at the AppFabric Gateway Node (AGN). One end of this

channel uses standard AF INET transport while the other end uses IPC. The AGN

167

is responsible for proxying the connection from the AppFabric-unaware service to the

platform. Note that currently we assume that only legacy users and third-party ser-

vice providers will have AppFabric-unaware services and therefore will need to connect

through an AGN. At the platform-end, the channel between the AGN and the platform

is terminated at a pPort (proxy port). We will discuss the architecture of the pPort in

more detail later in this section.

Now let us look at the various components implementing the ASC abstraction in more detail.

• The AppFabric socket abstraction: The AppFabric socket is simply a wrapper

around an Inter-Process Communication (IPC) mechanism. The service reads and

writes at on end of the IPC pipe while the AppFabric port reads and writes from the

other end. The service feels like it is opening a new AppFabric socket and communicat-

ing over it. The AppFabric socket automatically binds to an IPC channel pre-configured

in the service’s environment variable before it is started. Listing. 6.10 shows a typical

sequence of calls inside an AppFabric Service to send and receive messages over the

AppFabric socket.

Listing 6.10: Using the AppFabric Socket

1 // socketType: specifies if the socket is a message/packet socket

2

3 service socket = appFabricSocket ()

4 service socket.bind ()

5

6

7 // Send/Receive functions

8

9 msg = service socket.recv msg()

10 service socket.send msg(msg)

The appFabricSocket() call initializes the socket. The bind() call automatically

binds the socket to an IPC channel. The address of the channel is automatically set

into the service’ environment when it is started. Another parameter that is set in

the service’ environment is the number of data threads servicing the socket. To the

service, the socket is a single I/O interface. However, beneath this abstraction of

a single I/O interface, it may be served by one or more data threads reading from

and writing into the socket. This increases the effective bandwidth available at the

168

socket. The send msg/recv msg and the send packet/recv packet calls send and

receive messages or packets. Notice that the same AppFabric Socket suffices for both

message-level and packet-level services. The reason is that within the ASC components

everything is treated as a message. The tPort in this case may receive packets from the

hosts kernel stack but it converts these packets to OpenADN messages before delivering

them to the service attached to it. The Appfabric socket library code can be found in

∼ /AppFabric/platform/src/openadn/appfabricSocketLib.

• AppFabric Ports: As we have already discussed, the platform-end of the communi-

cation channel is a port. There are three types of ports: sPort, tPort and the pPort.

Let us discuss each of them separately in more detail.

– sPort: The sPort or a service port connects to a message-level service such as an

web server, storage server or a message level middlebox (e.g.Firewall, transcoder,

etc.). As shown in Fig. 6.10, it has many different types of interfaces.

AppFabric
Socket

Interface

sPort

Heartbeat
Reply Thread

Heartbeat
Query Thread

Local
Control
Agent

Controller

IPC

IPC IPC

TCP/IP

Ingress

E
gress

Service

IPC or TCP/IP
IPC or TCP/IP

control service heartbeat

IPC

Figure 6.10: sPort - Service Port

The sPort implements the Layer 4.5 OpenADN tunnel discussed in chapter. 4.

Each tunnel has an ingress and egress tunnel head. Messages are received in

the sPort at an ingress tunnel head and sent out over the egress tunnel head.

169

Currently Layer 4.5 tunnels are implemented over TCP, although in the future

other transport protocols may be used.

Messages received in the sPort are forwarded to the service attached to the port

through the service interface . The service processes the message and sends it

back to the sPort. Now the sPort classifies the packet based on the classification

rules specified by the classifier configuration (Listing. 6.4). The classification

determines the <outport, meta-tag> two-tuple. The outport indicates the

next message-level service hop for the message. The meta-tag indicates the path

through which the packets need to be routed through to reach the next message-

level service hop. The meta-tag is included as an IP OPTIONS field in each

outgoing packet. This concept of dynamically determining the destination as

well as the path has already been discussed in the last section (see Fig. 6.4).

The sPort is configured (tunnel setup and application routing classifiers/tables)

thorough the control port which connects it to the local control agent that is in

turn connected to a control plane controller.

Also, the sPort has an attached heartbeat thread that is connected through the

heartbeat interface. The heartbeat thread constantly monitors the liveness of

the AppFabric socket and the associated service.

– pPort: The pPort or proxy port connects message-level legacy services to the

AppFabric platform through the AppFabric Gateway Node (AGN) as shown in

Fig. 6.9. Fig. 6.11 shows the AGN architecture and its interface with the pPort.

Proxy server
(HTTP)

[HTTP connection handler #1]

[HTTP connection handler #2]

[HTTP connection handler #3]

[HTTP connection handler #4]

(…)

[HTTP connection handler #N]

[User Session manager thread #1]

[User Session manager thread #2]

[User Session manager thread #3]

[User Session manager thread #4]

[User Session manager thread #N]

(…)

pPort

Workflow Instance #1

Workflow Instance #2

Workflow Instance #3

AppFabric Gateway Node (AGN)

Figure 6.11: AppFabric Gateway Node - pPort interface

170

The AGN consists of two components - a proxy server and a user session

manager. Users or third-party services speaking a legacy application-level pro-

tocol such as HTTP or JSON connect to the proxy server. The proxy server

assigns a session manager thread to each connection. The session manager thread

is responsible for handling all the transactions within the user session. Each

application-level protocol has its own definition of a session. For example, HTPP

1.0 is a stateless protocol where each transaction is completely independent of

each other. Any notion of a session has to be implemented separately at the

application layer (for example, using application cookies). HTTP 1.1 introduces

some notion of a session by allowing more than one transaction over the same

established connection. Other protocols such as Session Initiation Protocol (SIP

)[117] has very well defined concept of a session where the session start and send

are explicitly signaled within the protocol. The session manager in the AGN al-

lows the application architect to specify how different transactions from the same

user may be classified into a session. For example, a simple rule could be to set

an upper limit on the number of messages exchanged with a user or the time for

which the connection is inactive to implicitly signal the end of a session. More

robust methods such as identifying the context of a transaction from actually

looking into the content of the messages exchanged and signaling the end of the

session when the transaction is logically concluded could also be implemented.

For example, a session could be signaled as concluded after the user successfully

makes a payment on the items in his shopping cart. For protocols with explicit

signaling for the beginning and the end of sessions, these explicit signaling mes-

sages may be used. The key point is that, in AppFabric, the application architect

may define how the beginning and end of a session may be identified, either by

looking at the content of the messages, tracking the context of message exchanges

or using explicit application-layer signaling messages. Note that this definition

of a session only applies to a live connection between the user and the applica-

tion. The users state may be stored by the application in long term persistent

storage to be used later when the user returns. But, when the user returns, his

transactions would be part of another session and the stored user context can be

used to drive the application-level routing policies within this new session. For

example, a frequent shopper to a e-commerce portal may be allowed access to

171

certain discounted services as compared to a regular user. Therefore, whenever

the user logs into the application, his state is fetched and based on it his transac-

tions may be routed differently within the rest of the application service workflow.

The AGN is connected to a pPort. The pPort spawns a separate thread to handle

each session manager thread. Each session manager thread is provided with an

unique ID. This ID is copied into the Layer 4.5 OpenADN header of each incoming

message to be able to identify the user connection in the message’s return path

(from the application to the user). Unlike the sPort, where each sPort hosts only

one service, the pPort maybe shared among many different application workflow

instances. This is because, the AGN nodes could be specialized hardware devices

handling millions of users whereas the application and middlebox services may be

hosted on commodity servers with limited capacity. Therefore, the AGN may need

to be shared by multiple instances of the workflow to maintain resource balance.

The job of the pPort is to automatically load balance user sessions across the

workflow instances that are connected to it and route return messages to their

appropriate session manager threads.

– tPort: The tPort or tunnel port allows attaching packet-level services to the

application workflows. As shown in Fig. 6.12, unlike the sPort, tPort is a shared

port that can be shared with more than one packet-level service and these services

may belong to different workflow instances. As shown in the figure, the tPort has

four types of interfaces.

172

AppFabric
Socket

Interface

tPort

Local
Control
Agent

Controller

IPC IPC

TCP/IP

Packet-
level

Service

control Service ports

Hardware NIC
Driver

<<Public IP>>

TAP Driver
<<Private IP>>

AppFabric
Socket

Interface

IPC

Packet-
level

Service

…

nic tap

Figure 6.12: tPort Interfaces

∗ control interface: The control interface connects the tPort to the local

control agent which in turn is connected to a controller node. The control

plane configures/programs the tPort through this interface.

∗ nic interface: The tPort sends and receives packets from the hardware NIC

device through the nic interface. The nic interface has a public IP address

through which it can communicate with services in other hosts.

∗ tap interface: The tPort sends and receives packets from the virtual TAP

device through the tap interface. The tap interface has a private IP address.

The use of the TAP device and the private IP address an interesting archi-

tectural detail of the AppFabric design and will be discussed in more detail

in the next subsection when we describe the common packet and message

switching substrate.

173

∗ service ports: The service ports connect the tPort to one or more packet-

level services. As mentioned earlier, the tPort may be shared between mul-

tiple packet-level services. These services may belong to different workflow

instances. As shown in Fig. 6.13, the tPort implements 2-level switching. In

the first level, packets are de-multiplexed based on their workflow instance ID.

The workflow instance ID is also part of the the OpenADN layer 3.5 header

which is currently carried in the IP OPTIONS field. In the second stage, the

packets are switched based on the meta-tag (also carried in the IP OPTIONS

field); between packet level services belonging to the same workflow instance.

WF ID 1

WF ID K

WF ID N

App Router for WF_ID 1

App Router for WF_ID K

App Router for WF_ID N

Figure 6.13: 2-level Switching in tPort

6.4.2 The common packet and message switching substrate

In the last subsection, we discussed the different types of ports (sPort, pPort and tPort) in

AppFabric through which different types of services can attach to the platform. Apart from

this, these ports also implement a distributed switching substrate for messages and packet

that form the heart of the AppFabric Virtual Distributed Switch (ADVS) implementation

discussed in Chapter. 3. The common packet and message switching substrate implemen-

tation makes extensive use of the ZeroMQ[143] distributed messaging library. ZeroMQ is

basically a messaging library which hides almost all aspects of actual socket-level communi-

cation from the user programs. Therefore, we had to hack into the ZeroMQ source code to

add support for packet tagging; that is add an IP OPTIONS field to all packets being sent

174

out of a particullar socket connection. In this subsection, we will discuss how the AppFabric

ports implement the common packet and message switching substrate.

The key mechanism for converging different types of services including application services,

packet and message level middleboxes and network transport services onto a common switch-

ing substrate is nested tunneling. We discussed the high-level idea behind nested tunneling

in Chapter. 4. In the current version of the AppFabric prototype (version 0.1), we do not

implement the network tunnels (VxLAN or MPLS-TP). The architecture assumes that the

network tunnels will be implemented; that is instantiated and configured; by the network

provider. The network provider could be the cloud service provider in the case of a cloud dat-

acenter network, or an ISP for a WAN network. The ASP does not need to implement these

tunnels explicitly but rather needs to request them from the third party network providers

and access them to send packets in the data plane. Therefore, implementing network tun-

nels in AppFabric involves extending the software-defined cloud management stacks such as

OpenStack or CloudStack, or software defined network controllers such as OpenDayLight.

By suggesting the APIs needed to implement AppFabric network tunnels, we hope to make

useful contributions to the effort in defining define proper northbound and southbound inter-

faces to the software defined infrastructure space. These features will be part of our future

extensions to the present AppFabric prototype.

In the current prototype implementation, we have been more interested in the design and

implementation of two new tunneling mechanisms, the OpenADN Layer 3.5 tunnel and Layer

4.5 tunnel. These tunnels are unique to application delivery networks and is one of the major

contributions of this work. Some of the features of the Layer 3.5 and Layer 4.5 OpenADN

tunnels include:

• These tunnels are created, configured, and managed fully by the Application Service

Provider.

• A common switching layer implementing Layer 4.5 and Layer 3.5 tunneling allows

the convergence of message-level and packet-level services to be part of a commonly

controlled infrastructure instead of the current state-of-the-art where message-level

service deployments are managed by solutions such as middlewares and packet-level

services(such as middleboxes) are managed by ad-hoc network management techniques.

175

• Switching messages and packets on this system of nested tunnels is application-aware.

Each tunnel is associated with an application context and the switching mechanism dy-

namically establishes the application-level context of a message or packet and forwards

it over the appropriate tunnel.

Fig. 6.14 shows the relationship between Layer 3.5 and Layer 4.5 tunneling in OpenADN.

Note that Layer 3.5 OpenADN tunnels are a bit unique in the sense that it allows multiple-

hops between the start and end points of the tunnel. Therefore, in Fig. 6.14, there is a

single Layer 3.5 tunnel between Host 1 and Host 3 with Host 2 being an intermediary hop.

New tunneling mechanisms such as VxLAN also implements a mechanism called VPath[138]

which allows hop-by-hop forwarding within the tunnel.

Layer 4.5

Layer 3.5 Layer 3.5 Layer 3.5

Layer 4.5

Host 1 with message-level
service

Host 2 with packet-level
service

Host 3 with message-level
service

L 4.5 Tunnel

L 3.5 Tunnel

L 3.5 Tunnel
Hop #1

L 3.5 Tunnel
Hop #2

Figure 6.14: Layer 3.5 and Layer 4.5 Tunelling

Now, let us look at the details of how this tunneling mechanism is implemented by considering

the following four cases.

• Case 1: Between two message-level services on the same host (S1–> S2): As

shown in Fig. 6.15, service S1 sends out the message to its sPort, which is transported

over the local IPC transport to the sPort of service S2. The Layer 4.5 tunnel is

transported over IPC in this case and since there are no packet level entities, there is

no Layer 3.5 tunnel.

176

TUN/
TAP

tPort

S1

sPort

S2

NIC

P1

Physical Network

Kernel Network
Stack

1

Message

Packets

IPC

sPort

2

3

132.10.0.1/16

192.168.1.1/16

Figure 6.15: Case 1. Between two message-level services on the same host

• Case 2: Between two message-level services with one or more intermediary

packet-level services; all on the same host (S1–> P1 –> S2): This case is shown

in Fig. 6.16. The message-level services (S1 and S2) are attached to their corresponding

sPorts while the packet-level service (P1) is attached to the tPort. Note that the tPort

is shared and therefore if there would have been more than one packet level services,

all of them would be attached to the same tPort.

177

TUN/
TAP

tPort

S1

sPort

S2

NIC

P1

Physical Network

IPC Kernel Network Stack

1

2

4

4

6

Message

Packets

sPort

3

5

132.10.0.1/16

192.168.1.1/16

Figure 6.16: Case 2. Between two message-level services with one or more intermediary

packet-level services

Now, before we explain the details of the nested tunneling mechanism, let us look at

the addressing scheme. As shown in Fig. 6.17, each host has two interfaces, a physical

NIC interface and virtual TUN/TAP interface. The physical NIC interface is used

to communicate with other nodes and hence is assigned a externally routable public

IP address (such as 132.10.0.1/16). Note that we use the term ”external” instead of

”global” since there may be infrastructure Network Address Translator (NAT) devices

that can be used to create smaller domains within the datacenter and the addresses

may need to be translated when communicating with hosts in a different datacenter.

The TUN/TAP interface is used for local communication between services within the

same host and hence provided with a private IP address (192.168.1.0/16). Actually

the TUN/TAP can be viewed as a point-to-point device. In our case, one end of

178

our TUN/TAP device is attached to the host kernel (192.168.1.1/16) while the other

end (192.168.1.254/16) is connected to a user-space program, which in our case is the

tPort. The tPort is attached to both the TUN interface as well as the NIC, while

sPorts are attached only to the TUN interface.

TUN/
TAP

tPort

NIC

Kernel Routing
Module

Physical Network

132.10.0.1/16
192.168.1.1/16 192.168.1.254/16

sPort sPort

132.10.0.0/16

192.168.0.0/16

NIC

TUN/TAP

Routing Table

Figure 6.17: Host Interfaces

Therefore, the tPort acts like a local switch between the sPorts in the same hosts. And

just like a switch, as shown in Fig. 6.18 it may host several packet level services through

which it may forward the packets. The tPort uses the meta-tag in the OpenADN layer

3.5 header to determine which packet level services the packet needs to go through and

in what order. For now consider the whole application, that is, all the services in the

AppFabric Service Workflow, to be hosted in a single host. We will consider the case

of multiple hosts in the next example.

179

TUN/TAP
 interface

tPort
switching logic

P1 P2 Pn … s1 s2 s3

Pk Packet-level services

Sk Message-level service

TCP/IP
Stack

…

Switching based on Layer 4
port numbers

Layer 4 ports

Figure 6.18: tPort Switch

So, Fig. 6.16 shows how message/packet forwarding is done for the service graph S1–>

P1 –> S2. Service S1 sends out messages to its sPort (Step 1). The sPort classifies

the message and determines that its bound towards service S2 through packet-level

service P1. It sends out the message with the destination address set to 192.168.1.254

and the source address set to 192.168.1.1. The kernel network stack encapsulates the

packet into an IP packet and may also need to fragment it. Based on the destination

address the the kernel routing module will route the packets to the TUN/TAP interface

(Step 2) which will forward the packets to the tPort (Step 3). The tPort will look at

the OpenADN layer 3.5 header, and forward the packets to the packet-level service P1

attached to it (Step 4). Service P1 will processes the packets and send them back to the

tPort. The tPort will swap the source and destination addresses of the packet (so the

destination address is now 192.168.1.1) and send it back to the TUN/TAP interface.

The TUN/TAP interface injects it back to the kernel network stack where the the IP

packets are re-assembled (if required) and converted back to the message. The message

is then delivered to service S2 by de-multiplexing over the TCP port number (Step 6

).

• Case 3: Between two message-level services on different hosts (S1–> S2):

As shown in Fig. 6.19, in the third case, a message is sent from service S1 to service

S2; where service S1 and S2 are hosted on different hosts. Note that there are no

intermediary packet-level services in the graph. The interesting point to note in this

180

example is that even though there are no packet-level services involved in this service

graph, we still forward the packets through the tPort twice- once in the sending host

and once in the receiving host. This is because message-level services in each host

is attached to the local TUN/TAP interface which only has a local IP address that

is valid only within the host. To communicate with an external remote host, the

communication has to go through the physical NIC interfaces and hence the local

addresses need to be converted to the externally routable addresses assigned to the

NICs. Therefore, although it may be very inefficient (because the packets have to

unnecessarily cross the (kernel-user space) boundary several times), this is the only

way to nest OpenADN Layer 4.5 tunnels inside a OpenADN Layer 3.5 tunnels. To

address the efficiency issue, in future version of the AppFabric prototype we plan to

replace the user-space tPort implementation with a kernel module implementation.

TUN/
TAP

tPort

S1

NIC

Physical Network

1

Message

Packets

IPC

sPort

2

TUN/
TAP

tPort

S2

NIC

11

IPC

sPort

3

4
5

6

7 8

9

10

Kernel Network Stack Kernel Network Stack

132.10.0.1/16 132.10.0.2/16

192.168.1.1/16 192.168.1.2/16

Figure 6.19: Case 3: Between two message-level services on different hosts

Now let us trace the steps in Fig. 6.19. Service S1 sends out a message to its sPort

(Step1). The sPort classifies the message and determines that its bound towards service

S2. Therefore it sends the message towards service S2 with the source address set to

192.168.1.1 and the destination address set to 192.168.1.2 (Step 2). The kernel network

stack sends the message towards its destination over IP. Based on the destination

181

address the the kernel routing module will route the packets to the TUN/TAP interface

(Step 3) which will forward the packets to the tPort (Step 4). The tPort determines

the public IP addresses corresponding to the private IP address and translates the

source address to 132.10.0.1 and the destination address to 132.10.0.2. It then injects

the packets to the kernel network stack which forwards them to the NIC interface

(Step 5). The packets are routed in the external network (Step 6) and delivered to the

NIC interface of the host associated with the address 132.10.0.2. At the destination

host, the tPort is the only service listening on the NIC interface and hence receives

the packets from it in Step 7. The tPort has to re-translate the source and destination

address of the packets to the private addresses (source = 192.168.1.1 and destination

= 192.168.1.2) and inject them back into the network stack. The packets are converted

back to the message and delivered to service S2 (Steps 8, 9, 10 and 11).

• Case 4: Between two message-level services on different hosts thorough

a packet level service(S1–> P1 –> S2): Case 4 is shown in Fig. 6.20. Case 4

is very similar to Case 3 discussed above and hence the steps are very similar. The

only difference is that the tPort in the sending host forwards the packets through

service P1 before sending them out through the physical NIC. Also note that in the

current prototype design, we are restricted to hosting all the packet-level services on

the tPort of the sending host. In future versions, this restriction shall be removed

with additional flexibility of hosting the packet-level services on a completely separate

host. This will allow physical packet-level middlebox devices to be incorporated into

the AppFabric platform if they decide to become AppFabric-aware. Currently, the

AppFabric prototype only allows virtual packet-level middleboxes to be incorporated

into the service graph.

182

TUN/
TAP

tPort

S1

NIC

Physical Network

1

Message

Packets

IPC

sPort

2

TUN/
TAP

tPort

S2

NIC

11

IPC

sPort

3

4

5

6

7 8

9

10

P1

Kernel Network Stack Kernel Network Stack

132.10.0.1/16 132.10.0.2/16

192.168.1.1/16 192.168.1.2/16

Figure 6.20: Case 4: Between two message-level services on different hosts thorough a

packet level service

Fig. 6.21 shows the overall OpenADN architecture as it is currently implemented in the

AppFabric protocol.

183

Inter-Process
Communication (IPC)

P
F_

IN
E

T Layer 4 (TCP/UDP)

sPort #1 sPort #N
…

pPort #1
…

pPort #N

HTTP Proxy
Service

JSON Proxy
Service

OpenADN Layer 3.5

Packet-level
Service #1

Packet-level
Service #N

IP

pPort – Message Level

Message-level
Service #1

Message-level
Service #N

sPort – Message Level

OpenADN Layer 4.5

AppFabric-unaware Service Access

* *

*AppFabric
socket

abstraction
(packet-level)

AppFabric socket abstraction (message -level)

device driver TUN/TAP driver

Bridge

Physical

Kernel space

User space

Figure 6.21: OpenADN: Overall Architecture (as implemented)

As already mentioned, implementing the tPort in user space is highly inefficient since the

packets need to cross the kernel-user space boundaries several times. To address this issue,

future versions of AppFabric needs to implement the tPort as a kernel module as shown in

Fig. 6.22.

184

Inter-Process
Communication (IPC) PF_INET

Layer 4 (TCP/UDP)

sPort #1 sPort #N … pPort #1 … pPort #N

HTTP Proxy
Service

JSON Proxy
Service

Layer 3.5 (tPort) – Packet-level

Packet-level
Service #1

Packet-level
Service #N

IP

pPort – Message Level

Message-level
Service #1

Message-level
Service #N

sPort – Message Level

Layer 4.5

AppFabric-unaware Service Access

* *

*AppFabric
socket

abstraction
(packet-level)

AppFabric socket abstraction (message -level)

Kernel space

User space

The	
 services	

	
 will	
 be	
 in	
 	

User-­‐space	

Figure 6.22: OpenADN: Overall Architecture (future implementation)

Also, in the current prototype implementation of the nested tunneling mechanism, we do

not map the Layer 3.5 tunnels over VxLAN-like MAC-over-IP network tunnels or wide-area

Layer 2.5 MPLS-TP tunnels. Mapping network tunnels into the OpenADN nested-tunneling

mechanism is one of the future goals of the project.

6.5 AppFabric Prototype: Lighthouse Control/Man-

agement Plane

The architecture of the Lighthouse control and management plane was discussed in some

detail in Chapter. 5. In this section we will discuss some of the implementation details of

185

Lighthouse in the current AppFabric prototype. As shown in Fig. 6.23, the Lighthouse control

and management plane has a hierarchical structure. In our current prototype implementation

we support only two-levels of hierarchy. However, additional levels may be added if required

in future versions. Also, the current prototype does not implement the virtual network

controller or the virtual WAN controller. Most of the management interfaces of Lighthouse

has been discussed in the Section. 6.3. Here we will focus our discussion mostly on the control

plane and management plane modules that implement these interfaces and also program

the data plane nodes to enforce the policies specified by the application architects and

administrators on the actual data plane traffic..

Enterprise
Datacenter ISP Network

AppFabric datacenter
 controller

AppFabric Global
 Controller

AppFabric Global
 Manager

AppFabric
inter-datacenter virtual

WAN controller

ISP virtual WAN
network

OpenStack

Virtual
Network

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

VM
#1 …

AppFabric virtual
compute/storage

controller

VM
#N

AppFabric
virtual network

controller

Cloud
Datacenter

AppFabric datacenter
 controller

OpenStack

Virtual
Network

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

VM
#1 …

VM
#N

AppFabric
virtual network

controller

AppFabric virtual
compute/storage

controller

OpenADN Data Plane
Lighthouse Control and Management Plane

Figure 6.23: High-level Architecture of AppFabric showing the distributed data plane, hier-

archical control plane and centralized management plane (reproduction of Fig. 3.2)

The Lighthouse code is written entirely in Python and is located at∼/AppFabric/platform/src/

lighthouse. This directory has three subdirectories.

186

• globalc: The globalc directory contains the code for the global controller and the

central manager modules.

• localc: The localc directory contains the code for the datacenter controller module.

• ns: The fakeNameServer directory contains the code for a name service implemen-

tation called the fake name server. The name server is like a DNS server mapping an

application name (or url) to the locator (IP address) of an AppFabric proxy which has

the required resources to handle the user session.

The scripts directory (∼/AppFabric/runtime/scripts) contains the scripts to start the

different control modules. In the rest of this section, we will describe the code in each of

these subdirectories on some more detail.

6.5.1 The Global Controller and Central Manager modules

Fig. 6.24 shows the class diagram of the global controller modules. The global controller init.py

script is fired in the node that takes up the role of the global controller. This script (located

in the scripts directory mentioned above) instantiates a gc controller class object.

187

rmStub

scripts

local_controller_init.py global_controller_init.py name_server_init.py

<instantiate>>

Local controller modules Name server modules

<instantiate>>

Global controller

<instantiate>>

gc_controller

gc_connection_dispatcher

<<instantiate>>

gc_workflow_manager

<<instantiate>>

rmStub

rmStub

rmStubThread

rmStubThread

rmStubThread

local_controller
(datacenter #1)

local_controller
(datacenter #2)

local_controller
(datacenter #N)

<<instantiate>>
<<instantiate>>

workflowThread

Zone 1

workflowThread
…

workflowInstance

workflowInstance

…

<<instantiate>>

<<instantiate>>

Zone N

workflowInstanceThread

wfInstance

<<instantiate>>

<<instantiate>>

wfProxyNode

<<instantiate>>

<<contains>>

wfServiceGraphInstance

createServiceGraph() <<call>>

<<call>>

<<create>>

globalResourceManager

local_controller
(datacenter #1)

local_controller
(datacenter #N)

…

<<instantiate>>

Figure 6.24: Class Diagram of the Global Controller

The gc controller object instantiates three more objects:

• globalResourceManager Object: The globalResourceManager object talks to the

resource manager modules in each local (datacenter) controller to request allocation of

additional resource when required. This object has not been implemented in the current

version of the code but has instead been replaced by the mininet driver code in the

∼/AppFabric/experiments/mininet simulations directory. The mininet driver module

allocates resources statically at the start of the application instead of dynamically

allocating resource on-demand. In order to simulate on-demand allocation of resources,

we allocate extra resources at the beginning of the application and manage this large

resource pool to allow the application to grow and shrink dynamically. In future

versions of the code, this resource manager subsystem will be fully implemented.

188

• gc connection dispatcher Object: The gc connection dispatcher object handles

the communication between local datacenter controllers and the global controller.

Whenever a new datacenter controller is started, it registers itself with the global

controller. The gc connection dispatcher is forwarded these registration requests and

it spawns a new rmStub object. The rmStub object acts as the local stub for each dat-

acenter controller. The global controller accesses these stub objects locally whenever

it needs to communicate with any datacenter controller; for example to pass control

messages, make resource requests or query resource or application deployment state

(load, liveness,etc.). These requests are either handled locally by the rmStub object or

forwarded to the actual datacenter controller. The global controller oblivious to how

this communication is handled. The rmStub object may need to continuously synchro-

nize some critical state information such as those related to failure and performance

with their corresponding datacenter controllers while it may resort to a more lazier

query based approach for other state information such as to keep track of resource

availability. For control messages that are sent to program the data plane nodes, the

rmStub object will simply forward them to their corresponding datacenter controller

who will in-turn forward them to the appropriate data plane nodes. Note that data

plane objects are addressed in the global controller using their globally unique iden-

tifiers (UUID[75]) and not their IP addresses. The local controller is responsible for

mapping the UUIDs to IP addresses for forwarding the messages to the appropriate

data plane node over the IP network.

• gc workFlowManager Object: The gc workflowManager object is responsible for

the deployment and runtime control of the AppFabric Service workflows. It spawns

multiple workflowThread objects; one for each zone where the application is to be

deployed and as specified by the application deployment administrator through the

management plane interface. Each workflowThread object spawns multiple workflowIn-

stance objects which are independent replicated instances of the service workflow. How

and when these workflowInstance are spawned and destroyed; for instance triggered by

overload/underload conditions, need to distribute the applications footprint, or handle

failures in the existing active workflow instances; is again specified by the application

deployment administrator through the management plane interface. Each workflowIn-

stance needs a proxy node and a service graph instance. The proxy node is created

by the workflowThread object and may be shared by one or more workflowInstance

189

objects. The workflowThread will spawn new proxy nodes when none are available for

new workflowInstance objects. Also, the workflowThread calls the createServiceGraph

function which creates the service graph instance for the workflow Instance.The cre-

ation of a service graph instance comprises of querying the appropriate datacenters for

resource availability, choosing between multiple candidate datacenters that are both

appropriate and have the required resources, reserving the required resources on the se-

lected datacenters, starting the appropriate services on different datacenter nodes, and

finally connecting these nodes over the common data plane communication substrate

comprising of nested tunnels and application-level routing (discussed in the previous

section).

Once a workflow instance is started it is also registered with the nameserver to be

listed as an active application instance ready to receive user requests.

6.5.2 The Local Controller

Fig. 6.25 shows the class diagram of the local datacenter controller modules. The lo-

cal controller init.py script is fired in the node that takes up the role of the local controller.

This script (located in the scripts directory mentioned above) instantiates a lc controller

class object.

190

global controller
resource requests

hostStub

scripts

local_controller_init.py global_controller_init.py name_server_init.py

<instantiate>>

Name server modules

<instantiate>>

Local controller

<instantiate>>

lc_controller

lc_connectionDispatcher

<<instantiate>>

resourceManager

<<instantiate>>

hostStub

hostStub

hostStubThread

hostStubThread

hostStubThread

cPort (host)
(host #1)

cPort (host)
(host #2)

cPort (host)
(host #N)

<<instantiate>>
<<instantiate>>

global controller modules

resourceDriver

<<instantiate>>

Datceneter Controller
(OpenStack, ClouStack, OpenDayLight, etc.)

Figure 6.25: Class Diagram of the Local Controller

The lc controller object instantiates two more objects:

• lc connectionDispatcher Object: The lc connection dispatcher object handles the

communication between local datacenter controllers and the data plane nodes. When-

ever a new data plane node is started, it registers itself with the local datacenter

controller. The lc connection dispatcher is forwarded these registration requests and it

spawns a new hostStub object. The hostStub object acts as the local stub for each data

plane node. The local controller accesses these stub objects locally whenever it needs

to communicate with any data plane node; for example to pass control messages, query

resource or application deployment state (load, liveness,etc.). These requests are ei-

ther handled locally by the hostStub object or they are forwarded to the control agent

(cPort) in the actual data plane node. The local controller is oblivious to how this

communication is handled. The hostStub object may need to continuously synchro-

nize some critical state information such as those related to failure and performance,

with their corresponding data plane nodes while it may resort to a more lazier query

191

based approach to keep track of other state information such as resource availability.

For control messages that are sent to program the data plane nodes from the global

controller, the hostStub object will simply forward them to their corresponding data

plane node cPort who will in-turn forward them to the appropriate data plane module

(the appropriate OpenADN port in the node). The hostStub also maps the ID of the

host to which all control plane messages from the global controller is addressed to the

appropriate IP address. This allows data plane nodes to move within the datacen-

ter; for example virtual machine mobility to optimize the resources of the datacenter

. Inter-datacenter migration of virtual machines would require a handoff between the

home (from where the virtual machine is migrating) and the remote (to which the vir-

tual machine is migrating) datacenter controller. The handoff mechanism, currently

not implemented in the current AppFabric prototype implementation, would need the

hostStub object in the home datacenter controller to be destroyed and a new hostStub

object to be instantiated at the remote datacenter controller. This would also require

re-registering the host IDs at the appropriate rmStub objects in the global controller.

• resourceManagerr Object: The resourceManager object handles resource requests

form the global controller. It keeps track of all the hostStub objects and their resource

states. In future versions of AppFabric, the resource manager will also instantiate a

resourceDriver object that will be capable of dynamically allocating more resources

from the datacenter on-demand.

6.5.3 The Name Server

The third component of the Lighthouse control plane is the name server module. The code

for this module is located at ∼ /AppFabric/platform/src/lighthouse/ns. We call our name

server implementation fake name server since it does not comply with the standard DNS

standards and may not be very useful since legacy user agents will not be able to query it.

Future implementation of the name server must make it compatible with DNS.

Each workflow instance registers its workflow with the name server. The workflow is identi-

fied by an <application name, workflow instance ID>. The application name s similar

to the concept of an url - a human readable name that the users want to connect to. The

192

nameserver keeps a mapping of all the active workflow instances corresponding to an applica-

tion name and implements a simple round-robin mechanism to map the name to a workflow

instance ID. However, the user is not returned the workflow instance ID, but instead returned

the IP address of the proxy server for the workflow instance. Note that for a legacy user,

this is no different from mapping an url to an IP through the DNS.

The name server also implements an interface with the global controller module through

which a workflow instance may add, delete, activate, suspend its entry in the name server

mapping. The difference between suspend and delete is that in the suspended state the

workflow instance may still be returned to the user if all workflow instances corresponding

to an application are overloaded and are hence suspended.

So, this concludes our discussion on the implementation details of the AppFabric prototype.

There are many subtle implementation details that have been deliberately omitted from the

discussion for simplicity. This documentation serves the purpose of providing some high idea

on the structure of the code to developers who wish to modify/extend the design. The only

way to learn the details is to dive into the actual code and parse it within the high-level

framework provided in this subsection.

6.6 Prototype Validation

Now that we have discussed the design of the AppFabric prototype, let us try to validate

some of its architectural claims. At this point we are not interested in studying the perfor-

mance of the system since we have not yet got to the point of optimizing the performance of

the different components. The purpose of the current prototype was to validate the archi-

tectural claims of AppFabric and demonstrate the viability and usefulness of such a design.

Our performance evaluation is limited to running some micro-benchmarking tests in order

to identify the components that attribute to the performance bottlenecks and suggesting

improvements in future versions of the code.

This section is divided into two sub-sections. In the first section we will present the tests

we performed to validate the architectural claims of AppFabric. In the second section we

193

provide the micro-benchmarking tests we performed to evaluate the relative performance of

the platform.

6.6.1 Validating Functionality

To validate the functionality, we run AppFabric within an emulated mininet[72] environment.

Mininet allows emulating a whole network ,running real kernel, switch and application code,

within a single computer. We performed the following functionality validation tests.

• Initial BootStrapping - Infrastructure: Before we get to the configurations for

the application deployment, let us take a look at the bootstrapping process of the

platform. This step validates the claim that the platform automatically bootstraps

and self configures itself and the only node that needs to be manually started is the

resource manager that is responsible for allocating resources to the application from

many different providers. The resource manager initiates the bootstrap process where

it assigns a role to each node that is started. On startup, each node checks for the

role it has been assigned by the resource manager and fires the appropriate bootstrap

script to assume its role.

In the first scenario, we emulate five datacenter networks each with five data plane

nodes as shown in Fig. 6.26

194

Fake Name Server mapping user
Requests to one of the proxy server’s
IP address

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

3/13/14 10:09 PMswitch

Page 1 of 1file:///users/subharthi/Desktop/switch.svg

CORE
Site 4

EDGE – Site 0

EDGE – Site 1

EDGE – Site 2

EDGE – Site 3

ASW #1

ASW #2

ASW #3

ASW #N

ASW #N+1

ASW #N+2

…

1

K

DNS
Proxy Node
Each proxy can support
at most 3 AppFabric Service Workflows (ASW)

Users
~10000 simulated users with each user
starting a application session in which
 multiple messages are exchanged

Infrastructure
-  1 Zone
-  4 Edge datacenters
-  1 Core datacenter
-  6 VMs per datacenter

Application Cloud

Figure 6.26: Emulation Scenario 1

Out of these five datacenters, four datacenters are EDGE datacenters that can host

EDGE services only, while one datacenter is a CORE datacenter that can host CORE

services. Listing. 6.11 shows the initial bootstrap messages when the system is started

showing the infrastructure coming up.

Listing 6.11: Initial Bootstrap Messages - Infrastructure

1

2 adding global nameserver<FakeNS, 00:00:00:00:03:e8, 100.100.0.1>

3 adding global lighthouse controller <gc, 00:00:00:00:00:01, 10.10.0.1>

4 adding client host <client, 00:00:00:00:03:e9, 200.200.0.1>

5 adding lighthouse controller for site 1: <lc_s_1, 00:00:00:00:00:02, 10.10.1.1>

6 adding host to site 1: <h1s1, 00:00:00:00:00:03, 10.10.1.2>

7 adding host to site 1: <h2s1, 00:00:00:00:00:04, 10.10.1.3>

8 adding host to site 1: <h3s1, 00:00:00:00:00:05, 10.10.1.4>

9 adding host to site 1: <h4s1, 00:00:00:00:00:06, 10.10.1.5>

10 adding host to site 1: <h5s1, 00:00:00:00:00:07, 10.10.1.6>

11 adding lighthouse controller for site 2: <lc_s_2, 00:00:00:00:00:08, 10.10.2.1>

12 adding host to site 2: <h1s2, 00:00:00:00:00:09, 10.10.2.2>

13 adding host to site 2: <h2s2, 00:00:00:00:00:0a, 10.10.2.3>

14 adding host to site 2: <h3s2, 00:00:00:00:00:0b, 10.10.2.4>

15 adding host to site 2: <h4s2, 00:00:00:00:00:0c, 10.10.2.5>

195

16 adding host to site 2: <h5s2, 00:00:00:00:00:0d, 10.10.2.6>

17 adding lighthouse controller for site 3: <lc_s_3, 00:00:00:00:00:0e, 10.10.3.1>

18 adding host to site 3: <h1s3, 00:00:00:00:00:0f, 10.10.3.2>

19 adding host to site 3: <h2s3, 00:00:00:00:00:10, 10.10.3.3>

20 adding host to site 3: <h3s3, 00:00:00:00:00:11, 10.10.3.4>

21 adding host to site 3: <h4s3, 00:00:00:00:00:12, 10.10.3.5>

22 adding host to site 3: <h5s3, 00:00:00:00:00:13, 10.10.3.6>

23 adding lighthouse controller for site 4: <lc_s_4, 00:00:00:00:00:14, 10.10.4.1>

24 adding host to site 4: <h1s4, 00:00:00:00:00:15, 10.10.4.2>

25 adding host to site 4: <h2s4, 00:00:00:00:00:16, 10.10.4.3>

26 adding host to site 4: <h3s4, 00:00:00:00:00:17, 10.10.4.4>

27 adding host to site 4: <h4s4, 00:00:00:00:00:18, 10.10.4.5>

28 adding host to site 4: <h5s4, 00:00:00:00:00:19, 10.10.4.6>

29 adding lighthouse controller for site 5: <lc_s_5, 00:00:00:00:00:1a, 10.10.5.1>

30 adding host to site 5: <h1s5, 00:00:00:00:00:1b, 10.10.5.2>

31 adding host to site 5: <h2s5, 00:00:00:00:00:1c, 10.10.5.3>

32 adding host to site 5: <h3s5, 00:00:00:00:00:1d, 10.10.5.4>

33 adding host to site 5: <h4s5, 00:00:00:00:00:1e, 10.10.5.5>

34 adding host to site 5: <h5s5, 00:00:00:00:00:1f, 10.10.5.6>

35 Starting network

36 -------------

37

38 1. Starting Global Fake Nameserver (as a replacement of DNS) started

39

40 2. Starting Global Lighthouse Controller started

41

42

43 3. Starting Local Lighthouse Controllers:

44 Starting Local Lighthouse Controller (EDGE Site)<Site= 1, 10.10.1.1> started

45 Starting Local Lighthouse Controller (EDGE Site)<Site= 2, 10.10.2.1> started

46 Starting Local Lighthouse Controller (EDGE Site)<Site= 3, 10.10.3.1> started

47 Starting Local Lighthouse Controller (CORE Site) <Site= 5, 10.10.5.1> started

48

49

50 4. Starting hosts:

51

52 Site:0:

53 Starting host <Site = 1, Controller = 10.10.1.1, h1s1, 10.10.1.2> started

54 Starting host <Site = 1, Controller = 10.10.1.1, h2s1, 10.10.1.3> started

55 Starting host <Site = 1, Controller = 10.10.1.1, h3s1, 10.10.1.4> started

56 Starting host <Site = 1, Controller = 10.10.1.1, h4s1, 10.10.1.5> started

57 Starting host <Site = 1, Controller = 10.10.1.1, h5s1, 10.10.1.6> started

58

59 Site:1:

60 Starting host <Site = 2, Controller = 10.10.2.1, h1s2, 10.10.2.2> started

61 Starting host <Site = 2, Controller = 10.10.2.1, h2s2, 10.10.2.3> started

62 Starting host <Site = 2, Controller = 10.10.2.1, h3s2, 10.10.2.4> started

63 Starting host <Site = 2, Controller = 10.10.2.1, h4s2, 10.10.2.5> started

196

64 Starting host <Site = 2, Controller = 10.10.2.1, h5s2, 10.10.2.6> started

65

66 Site:2:

67 Starting host <Site = 3, Controller = 10.10.3.1, h1s3, 10.10.3.2> started

68 Starting host <Site = 3, Controller = 10.10.3.1, h2s3, 10.10.3.3> started

69 Starting host <Site = 3, Controller = 10.10.3.1, h3s3, 10.10.3.4> started

70 Starting host <Site = 3, Controller = 10.10.3.1, h4s3, 10.10.3.5> started

71 Starting host <Site = 3, Controller = 10.10.3.1, h5s3, 10.10.3.6> started

72

73 Site:3:

74 Starting host <Site = 4, Controller = 10.10.4.1, h1s4, 10.10.4.2> started

75 Starting host <Site = 4, Controller = 10.10.4.1, h2s4, 10.10.4.3> started

76 Starting host <Site = 4, Controller = 10.10.4.1, h3s4, 10.10.4.4> started

77 Starting host <Site = 4, Controller = 10.10.4.1, h4s4, 10.10.4.5> started

78 Starting host <Site = 4, Controller = 10.10.4.1, h5s4, 10.10.4.6> started

79

80 Site:4:

81 Starting host <Site = 5, Controller = 10.10.5.1, h1s5, 10.10.5.2> started

82 Starting host <Site = 5, Controller = 10.10.5.1, h2s5, 10.10.5.3> started

83 Starting host <Site = 5, Controller = 10.10.5.1, h3s5, 10.10.5.4> started

84 Starting host <Site = 5, Controller = 10.10.5.1, h4s5, 10.10.5.5> started

85 Starting host <Site = 5, Controller = 10.10.5.1, h5s5, 10.10.5.6> started

86 5. Starting client host started

First, the resource manager adds resources from different sites to the global resource

pool. In this simulation, it allocate the resources from Mininet through the mininet

driver script. In future versions, it should start separate threads for each resource

provider (cloud datacenter, ISP network, etc.) that will in turn spawn resource drivers

capable of consuming the APIs of the datacenter’s management software stack such

as OpenStack or EC2 to negotiate and allocate the resources. The resource manager

also allocates a specific role to each node and configures it accordingly. On starting,

the node assumes its role as shown in the listing where we can see the different types

of nodes getting started including the fake name server, the global controller, local

datacenter controllers for each site and data plane nodes. Also in Step 5 (line 86 in

Listing. 6.11), a client host is started. For our experiments, the client host simulates

around 10,000 users, each starting a separate user session with the application.

• Initial Bootstrapping: Platform Components: After the infrastructure boots up,

each infrastructure node assumes its specific role that has been assigned to it within

the AppFabric platform and together run a distributed mechanism to automatically

bootstrap the whole platform and self-configure based on the the policies specified by

197

the application administrator. All the platform components have been discussed in the

previous sections and we will not repeat that discussion here.

Listing. 6.12 shows the different steps in the auto bootstrap process of the AppFabric

platform. Note that this distributed bootstrapping mechanism has been designed to

be completely asynchronous. This removes node-level dependencies in the proper

functioning of the platform.

Listing 6.12: Initial Bootstrap Messages - Platform
1

2

3 gc: WFM: Initializing workflow manager

4 WFM: Starting workflow manager

5

6 WFT <ABC, US-E>: started

7 WFT <ABC, US-E>: connected to fake name server port

8 GC Controller:Workflow Manager(WFM) started...will start Global Connection Dispatcher(CD) now

9 Global CD: Intializing GC connection dispatcher

10 Global CD: initialized

11 Global CD: Starting gc connection dispatcher

12 Global CD: Ready to receive connection requests from Datacenter Controllerss

13 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: started

14 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting proxy Node

15 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting proxy Node

16 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting proxy Node

17 RM Stub <1dcc3c64-da20-4bc6-a51a-876603bba99b: 10.10.2.1, EDGE>: InitializedWFM:<site_2>: available resource = 0

18

19 RM Stub <9646d4b5-12a3-4702-b6ed-0066bb446e42: 10.10.3.1, EDGE>: InitializedWFM:<site_3>: available resource = 0

20

21 RM Stub <e5cafa30-f5a6-4166-b0fd-06e6acbaf739: 10.10.1.1, EDGE>

22

23 lc_s_1: Datacenter controller <US-E:site_1>:Starting resource manager (RM)

24 Datacenter controller <US-E:site_1>: Resource Manager(RM) started...will start Connection Dispatcher(CD) now

25 Datacenter controller <US-E:site_1>: Starting connection dispatcher...

26

27 lc_s_2: Datacenter controller <US-E:site_2>:Starting resource manager (RM)

28 Datacenter controller <US-E:site_2>: Resource Manager(RM) started...will start Connection Dispatcher(CD) now

29 Datacenter controller <US-E:site_2>: Starting connection dispatcher...

30

31 lc_s_3: Datacenter controller <US-E:site_3>:Starting resource manager (RM)

32 Datacenter controller <US-E:site_3>: Resource Manager(RM) started...will start Connection Dispatcher(CD) now

33 Datacenter controller <US-E:site_3>: Starting connection dispatcher...

34

35 gc: : InitializedWFM:<site_1>: available resource = 0

36

37 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting proxy Node

38 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting proxy Node

39

40 gc: WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting proxy Node

41

42 gc: WFM:<site_1>: available resource = 10000

43 sending proxy resource req to 10.10.1.1

44 WFM:<site_2>: available resource = 10000

45 WFM:<site_3>: available resource = 10000

46 WFM:<site_3>: available resource = 20000

47 WFM:<site_3>: available resource = 30000

198

48 WFM:<site_1>: available resource = 20000

49 WFM:<site_2>: available resource = 20000

50 WFM:<site_2>: available resource = 30000

51 WFM:<site_2>: available resource = 40000

52 WFM:<site_1>: available resource = 30000

53 WFM:<site_1>: available resource = 40000

54 WFM:<site_2>: available resource = 50000

55 WFM:<site_1>: available resource = 50000

56 WFM:<site_3>: available resource = 40000

57 WFM:<site_3>: available resource = 50000

58

59 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting proxy Node

60

61 gc: WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: proxynode initialized, get resources for the rest

62 WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Requesting resources

63

64 gc: WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: WFINSTANCE_WFT_GET_RESOURCES_REP failed

65

66 gc: WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: WFINSTANCE_WFT_GET_RESOURCES_REP failed

67

68 h1s1: Starting server, use Ctrl-C to stop

69

70 h1s1: HTTP PRoxy: Add threads to the threadpool ===== 10

71

72 h1s1: HTTP Proxy Num threads alloted =================== 0

In line 3, the global controller(gc) initializes a the workflow manager (WFM). The

WFM spawns an initial workflow thread (WFT) in line 6 for application ”ABC” in the

zone ”US-E.” Note that in this experiment we have only one zone. In line 7, the work-

flow thread registers this application instance with the fake name server (replacement

of the DNS mapping system in our prototype). The name server does not yet advertise

this mapping. It will do so only when the WFT explicitly activates the mapping entry.

The other thing the WFT does on being started is to get a proxy node allocated to itself

(line 14) that will be the interface between the workflow services and the external users.

A proxy node is shared between many WFTs each of which are replicated instances

of the same application. The WFM is responsible for allocating a proxy node to each

WFT. However, the WFM does not yet have the resources to start the proxy node and

hence it is not able to allocate one to the requesting WFT. Instead of the WFM keeping

state of this requests, it simply sends back a ”REQUEST FAILED” type message to

the WFT. It is now the responsibility of the WFT to try again later. The WFT runs

an exponential backoff mechanism to repeat its request instead of flooding the system

with useless request messages. The WFM on the other hand is independently trying

to get the resources required to allocate a proxy node.

199

On the other side, each datacenter controller boots up independently and tries to reg-

ister itself with the gc. In the listing the local datacenter controllers may be identified

as lc s [site num]. the lc stands for ”local controller” while the s [site num] repre-

sents the site number. line 23-25 shows the datacenter controller for the site 1 coming

up and starting a connection dispatcher. Apart form registering with the gc, starting

the connection dispatcher is the other job that the datacenter controller needs to do

during bootstrap. The connection dispatcher allows data plane nodes to register with

the data center controller.

In line 35, you can see the WFM making a resource request to site 1 (after the dat-

acenter controller has registered with the gc). However, site 1 offers no resources to

the WFM since none of its data plane nodes have registered their resources with it

and so it does not have any available resources. The WFM would try other sites and

repeat these requests later (based on an exponential backoff mechanism) till it gets the

required resources. In the meantime, the WFT thread keeps on polling the WFM for

a proxy node(lines 37-40).

In lines 42-57, we see the WFM flooded with resource updates from the different sites.

Each data plane node in our experiment reports 1000 units of resources and hence the

total resource available per-site is 5000. Currently, we implement a greedy mechanism

for resource selection and hence, as can be seen in line 43, the WFM sends the request

to allocate a data plane node to run the proxy service to the first site (site 1 in this

case) that reports enough available resource.

In line 61, we can see that the proxy node has been initialized and now the WFM

starts gathering the resources to deploy the other services within the workflow. In line

68, you can see that the proxy service has been started on node h1s1 (host 1, site 1).

We will narrate the next part of the story in the next point that shows the steps in

starting a workflow that involves starting the service on the different data plane nodes

and configuring application-level routing policies into the platform ports through which

the service connect to the platform.

200

• Initial Bootstrapping- Starting a Workflow: Once the required data plane nodes

with enough resources to run the workflow has been identified, the next step is to

actually start the application services on these nodes and setup the message and packet

routing services. Listing. 6.13 lists these steps. In this listing we have replaced some

of the output with ”...” to fit the output within the width of the page.

Listing 6.13: Initial Bootstrapping - Starting a Workflow
1

2 gc: WFT <ABC, US-E, 1abf7081-58b0-410c-8f98-ce4648b093a4>: Starting services

3 h3s2: Hello! I am service_3:d9c2c88b-5455-40d0-8a9c-e8168d9b52ec

4 h4s2: Hello! I am service_4:89820cb5-79a2-414b-b2f4-6cec4a7ce230

5

6 h3s2: service3: connecting to appfabric socket

7

8 h2s2: Hello! I am service_2:cb15f190-9cff-495b-8622-2ea82edcfe52

9

10 h4s2: service4: connecting to appfabric socket

11

12

13

14

15 h3s2: hearbeatREP initialized

16

17 h4s2: hearbeatREP initialized

18

19

20

21

22 h3s2: heartbeat REQ thread started for service: service_3

23

24 h1s2: service5: connecting to appfabric socket

25

26 gc: WFT <ABC, US-E, ... >: Service <service_3> <d9c2c88b-5455-40d0-8a9c-e8168d9b52ec> started on host:10.10.2.4

27

28 gc: WFT <ABC, US-E, ... >: Service <service_4> <89820cb5-79a2-414b-b2f4-6cec4a7ce230> started on host:10.10.2.5

29

30 gc: WFT <ABC, US-E, ... >: Service <service_2> <cb15f190-9cff-495b-8622-2ea82edcfe52> started on host:10.10.2.3

31

32 gc: WFT <ABC, US-E, ... >: Service <service_5> <2ab20b69-16ea-4e0d-9fb9-77c55bf5896e> started on host:10.10.2.2

33

34 gc: WFT <ABC, US-E, ... >: WF attached to proxy node <proxy_service_http> on <10.10.1.2>

35

36 gc: WFT <ABC, US-E, ... >: setting up links

37

38 h4s2: Service Port: Adding ingress

39

40 h1s2: Service Port: Adding ingress

41

42 h3s2: Service Port: Adding ingress

43

44 h2s2: Service Port: Adding ingress

45

46 h2s2: Service Port: Adding ingress

47

48 h2s2: Service Port: Adding ingress

49

201

50 gc: WFT <ABC, US-E, ... >: service_2[2] --> [0]service_4

51

52 gc: WFT <ABC, US-E, ... >: service_4[0] --> [0]service_5

53

54 gc: WFT <ABC, US-E, ... >: service_2[0] --> [0]proxy_service_http

55

56 gc: WFT <ABC, US-E, ... >: service_2[1] --> [0]service_3

57

58 gc: WFT <ABC, US-E, ... >: proxy_service_http[0] --> [0]service_2

59

60 gc: WFT <ABC, US-E, ... >: service_3[0] --> [1]service_2

61

62 gc: WFT <ABC, US-E, ... >: service_5[0] --> [2]service_2

63

64 gc: WFT <ABC, US-E, ... >: App. Routing Table intialized in <service_5> <2ab20b69-16ea-4e0d-9fb9-77c55bf5896e>

65

66 gc: WFT <ABC, US-E, ... >: App. Routing Table intialized in <service_2> <cb15f190-9cff-495b-8622-2ea82edcfe52>

67

68 gc: WFT <ABC, US-E, ... >: App. Routing Table intialized in <service_4> <89820cb5-79a2-414b-b2f4-6cec4a7ce230>

69

70 gc: WFT <ABC, US-E, ... >: App. Routing Table intialized in <proxy_service_http> <026f1948-e8d5-477b-8831-04aff93e4057>

71

72 gc: WFT <ABC, US-E, ... >: App. Routing Table intialized in <service_3> <d9c2c88b-5455-40d0-8a9c-e8168d9b52ec>

73

74 gc: WFT <ABC, US-E, ...>: Sent activate WF message to proxy port

75

76 h1s2: number of active_wf_ports = 1

77

78 gc: WFT <ABC, US-E, ...>:

79 Workflow <5c23dc37-2636-48c7-aff5-948385d5c629><6d815b1d-831c-4b94-a6a0-373ed60c06a6> activated

80

81 h2s1: HTTP PRoxy: Add threads to the threadpool ===== 10

82

83 h2s1: number of active_wf_ports = 1

84

85 h2s1: HTTP Proxy Num threads alloted =================== 3

86

87 h2s1: Port= 0, Load = 1

88

89 h2s1: HTTP PRoxy: Add threads to the threadpool ===== 3

90

91 h2s1: Port= 0, Load = 2

92

93 h2s1: Port= 0, Load = 3

94 number of active_wf_ports = 1

95

96 h2s1: HTTP Proxy Num threads alloted =================== 3

97

98 h2s1: Port= 0, Load = 4

99

100 h2s1: Port= 0, Load = 5

101

102 h2s1: Port= 0, Load = 6

In line 2, the WFT gets to the job of starting the services for the workflow after

the WFM has allocated it the required resources. After each service is initialized it

connects to the AppFabric socket which opens a communication channel between the

202

service and the platform. Also, as shown in line 15, the AppFabric socket also starts

a hearbeat reply service to reply to liveness queries from the platform. In line 34 the

WFT attaches itself to one of the ports of the shared proxy service.

As already discussed in the previous sections, the AppFabric socket connects to and

AppFabric port (pPort or a tPort). These ports are configured for:

– Setting up the ingress and egress links - example in line 38, 40, 42. (Note, the

platform does not have an output for reporting the success of setting up the egress

links)

– Setting up application routing policies in the ports - example in line 64, 66, 68.

After configuring the ports, the deployment of the workflow is complete. Lines 5–62

shows the setup service graph for the workflow. At this point the workflow is ready

to serve user requests and a message to activate its mapping entry in the name server

is sent and the workflow is activated in line 79. After this, the listing simply shows

user session connecting to the workflow increasing the load on Port = 0 of the proxy

service to which this workflow is attached. From this point on, the application instance

(workflow) starts serving user requests and is automatically controlled by the runtime

control poiicies.

• Initial Bootstrapping- Multiple Zones Listing. 6.14 shows the listing for an ap-

plication deployment scenario with two zones - US-E and US-W. Note that the only

difference from the listing for single zone deployment is that the global controller (or gc)

launches a workflow managers (WFM) that launches two separate workflow threads;

one for each zone. Therefore, the WFM is in control of all the application instances in

all the zones but maintains separate data structures internally to distinguish between

resource allocation and control policies in the different zones.

Listing 6.14: Bootstrapping messages for multi-zone deployment
1

2

3

4 gc: WFM: Initializing workflow manager

5 WFM: Starting workflow manager

6

7 WFT <ABC, US-E>: started

8 WFT <ABC, US-E>: connected to fake name server port

9 WFT <ABC, US-E, 25b58903-d802-41c4-9c0e-d4903cee62e5>: started

10 WFT <ABC, US-E, 25b58903-d802-41c4-9c0e-d4903cee62e5>: Requesting proxy Node

203

11 WFT <ABC, US-W>: started

12 WFT <ABC, US-W, de43b6b7-403d-4be3-a824-40236f54393f>: started

13 WFT <ABC, US-W, de43b6b7-403d-4be3-a824-40236f54393f>: Requesting proxy Node

14

15

16

17

18 WFT <ABC, US-E, 25b58903-d802-41c4-9c0e-d4903cee62e5>: Requesting proxy Node

19

20 gc: WFT <ABC, US-E, 25b58903-d802-41c4-9c0e-d4903cee62e5>: proxynode initialized, get resources for the rest

21

22 gc: WFT <ABC, US-E, 25b58903-d802-41c4-9c0e-d4903cee62e5>: Requesting resources

23

24 gc: WFT <ABC, US-E, 25b58903-d802-41c4-9c0e-d4903cee62e5>: Starting services

25

26 gc: WFT <ABC, US-W, de43b6b7-403d-4be3-a824-40236f54393f>: Requesting proxy Node

27

28

29

• Application-level routing We demonstrate application level routing through the

following two outputs:

– Workflow comprising of message-level services only: We created a simple

service graph shown in Fig. 6.27.

Node 0
<<ProxyService>>

[0]

Node 1
<<Service_2>>

[0]

[0] [0]

[1]
Node 2

<<Service_3>>

[0]

[0] [1]

[2]
Node 3

<<Service_4>>

[0]
[0]

[2]

Node 4
<<service_5>>

[0]

Input port

Output port
[0]

Ingress/Egress
 port

Figure 6.27: Service Graph to Demonstrate Application-level Routing

Listing. 6.15 shows the message received at the client demonstrating that the

message from the same client for the same session may traverse two different

paths (through different services) based content-based message classification.

Listing 6.15: Application-level routing output corresponding to service graph

shown in Fig. 6.27

204

1

2 client: Sender:water.dhr.com , URL: /~card/guest.htm,

3 Response: Hello! I am service_2:cb15f190-9cff-495b-8622-2ea82edcfe52

4 Hello! I am service_4:89820cb5-79a2-414b-b2f4-6cec4a7ce230

5 Hello! I am service_5:2ab20b69-16ea-4e0d-9fb9-77c55bf5896e

6 Hello! I am service_2:cb15f190-9cff-495b-8622-2ea82edcfe52

7

8 client: Sender:water.dhr.com , URL: /~scottp/publish.html,

9 Response: Hello! I am service_2:cb15f190-9cff-495b-8622-2ea82edcfe52

10 Hello! I am service_3:d9c2c88b-5455-40d0-8a9c-e8168d9b52ec

11 Hello! I am service_2:cb15f190-9cff-495b-8622-2ea82edcfe52

– Workflow comprising of both message-level services and packet level

services: Listing. 6.16 validates the application-level routing scenario in a mixed

workflow constituting both, packet-level services as well as message-level services.

Listing 6.16: Application-level routing output showing a workflow consisting of

message-level services interposed with packet-level services
1

2 client: Sender:sirius.develcon.com , URL: /~lowey/saskatoon/about_saskatoon/pictures.html,

3 Response: Hello! I am service_2:f471c087-11f4-4284-b242-fa34b60018d1

4 Hello! I am packet_service1 on host: e072cb1e-a217-4b87-9495-283350e658e0

5 Hello! I am service_3:5f4e6fe7-058d-47f5-b61f-c5e203689012

6 Hello! I am packet_service2 on host: df144359-a1e5-4cf5-a33d-a365e5ffe237

7 Hello! I am service_2:f471c087-11f4-4284-b242-fa34b60018d1

• Dynamically creating new application instances to manage long user ses-

sions: Fig. 6.28 shows an experiment where we simulated long user sessions. Each

user exchanges many messages within its session spanning a considerably long dura-

tion. The motive of this experiment was to create a condition where the application

would be forced to rapidly replicate itself to serve new users. As shown in Fig. 6.28, the

application starts with one application instance at time t = 0.The maximum capacity

(in terms of number of user sessions) for each application session has been set to 15.

The re-order level is set to 50 percent of the maximum capacity; that is around 8. The

re-order level indicates when an application instance reports an overload condition.

The re-order level should be set based on the delay of launching a new application

instance such that the the new instance is activated before the existing instances get

overwhelmed with user requests beyond their maximum capacity.

205

Application
Instance 1

Application
 Instance 2

Application
 Instance 3

Application
 Instance 4 Application

 Instance 5

Application
 Instance 6

Application
 Instance 7

Proxy 1 Proxy 2 Proxy 3

Figure 6.28: Dynamically Creating New Application Instances to Manage Long User Sessions

At t ∼ 50 secs; application instance 1 reports possible overload to which the controller

reacts by spawning a new application instance (application instance 2) at t ∼ 90

secs. This process continues as more and more instances are launched. We already

mentioned earlier in this chapter that the proxy service is a shared resource between

multiple application instances. In this experiment, each proxy server is configured to

be shared by at most three application instances. Fig. 6.28 also shows that the platform

dynamically allocates new proxy servers along with spawning new application instances

to accomodate the load. Another observable behavior evident from this experiment

is that after reaching the maximum capacity, the application instance suspends itself

- that is marks its mapping in the name server as suspended. However, even in the

suspended state, it keeps serving new users if there are no other active instances in the

system. Also, if there are more than one suspended instances, the additional load is

balanced between all the suspended instances. This ensures that if for some reason the

system has not been able to launch new instances in a timely fashion the application

206

does not become completely un-responsive. To prevent the application from serving

new users completely, its mapping needs to be deleted from the name server.

• Dynamically creating and destroying application instances for short user

sessions: This experimental setup is similar to the previous setup except that in

this case the user sessions are short. This experiment is designed to show the dynamic

behavior of the platform as the number of users in the system vary over time. Similar to

the previous experiment, the maximum capacity (in terms of number of user sessions)

for each application session has been set to 15. The re-order level is set to 50 percent

of the maximum capacity; that is around 8. As shown in Fig. 6.29 :

Application Instance 1

Application Instance 1

Application Instance 3

Application Instance 3
stopped

Figure 6.29: Dynamically Creating and Destroying Application Instances to Manage Short

User Sessions

– At t = 0 sec: The first application instance is started.

– At t ∼ 15 secs: Load > 8, application instance 1 reports of a a possible overload

in the future. The controller reacts to this by automatically starting a second

application instance. All lad is balanced between these two instances. Note that

207

the mechanism to predict a future overload has to take care of local perturbations

(due to temporary bursts). there are several algorithms to do this. In our current

implementation, we have implemented a specific weighted time wait mechanism

that may be replaced by more robust predictors in the future.

– At t ∼ 110 secs: Similarly a third application instance is started.

– At t ∼ 161 secs: When the average load drops below a pre-specified level (under-

load), the platform stops application instance 3. Application instance 3 stops

accepting new user sessions and after it has served all the existing users connected

to it, it may free all the resource allocated to it. We have implemented a chaining

mechanism for spawning and destroying application instances wherein the most

recent application instance is dropped during overload. We realize that this may

not be always the case, and in future versions, the policy to be used to launch

or remove application instance will be specified by the application administrator.

Also note that the system works on presumptive estimates of overload/under-load

conditions to account for the delays in dealing with them.

6.6.2 Performance Benchmarking

AppFabric makes heavy use of the ZeroMQ communication library and hence its perfor-

mance is limited by the performance of ZeroMQ. ZeroMQ provides benchmarking tests for

throughput and latency that provide a good estimate to the best possible performance that

we may achieve in AppFabric. As mentioned earlier, the AppFabric code has not been tuned

for performance. Therefore, the results reported in this section are only intended to give

us some idea about the combined effect of the AppFabric platform overhead and the un-

optimized code on the overall performance of the system. As of now, it is not possible for us

to estimate the individual contributions of each of these factors, however, we can still provide

some objective insights based on the observations. Each of these tests were performed on

commodity server hardware with Intel Xeon 3.2 GHz processors (dual core), 4GB RAM, 16

K L1 cache, and 2048 K L2 cache.

• Latency tests: The first set of tests measure the latency in terms of the round-trip

times (RTT) for processing each message. The setup for the tests shown in Fig. 6.30 is

208

very simple. A client sends a message to the application that comprises of a workflow

of two message-level services (S1 and S2) chained together. We measure the RTT of

the message traversing the service chain and returning to the client. We capture three

scenarios :

– Inproc: In this scenario, S1 and S2 are started as two separate processes on the

same host with the IPC as the underlying transport.

– TCP-1 Host: In this scenario, S1 and S2 are started as two separate processes

on the same host with TCP as the underlying transport.

– TCP-1 Host: In this scenario, S1 and S2 are started as two separate processes

on the two separate hosts with TCP as the underlying transport.

While in the first two scenarios the latency is mostly contributed by the limitation of

the host configuration (CPU, RAM and Cache architecture), the latency in scenario

three is mostly contributed by the underlying transport (TCP over 1Gbps Ethernet

link).

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

Message size [B]

La
te

nc
y

[µ
c]

Latency − inproc

libzmq
pyzmq
AppFabric−no tPort

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

Message size [B]

La
te

nc
y

[µ
c]

Latency − TCP − 1 host

libzmq
pyzmq
AppFabric−no tPort

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

Message size [B]

La
te

nc
y

[µ
c]

Latency − TCP − 2 hosts

libzmq
pyzmq
AppFabric−no tPort

A B C

Figure 6.30: Latency Tests - Different Scenarios

In Fig. 6.30, each graph has three plots; one each for libzmq, pyzmq, and AppFabrc.

The libzmq is the C library for ZeroMQ, the pyzmq provides the python language

bindings for the libzmq APIs and AppFabric is the AppFabric code on top of pyzmq.

Also, no tPort for the AppFabric represents that the application workflow comprises

only of message-level services and does not have a packet-level port involved.

The results show that changing the message size from 100 Bytes to 10000 Bytes does

not have a significant effect on any of the plots across all the three scenarios. This

209

is an expected result for latency measurements which tend to be a function of header

processing and queueing overheads. This is exactly the reason why we see AppFabric

adding an additional latency of 250 microseconds to each message over libzmq and

pyzmq. AppFabric has significant application-level routing overhead where application-

level headers are parsed and matched against classifiers to make a forwarding decision.

Currently, the classifiers used in AppFabric are highly un-optimized implementations

of regex-based classifiers, Future versions can use more optimized classifier implemen-

tations to get the AppFabric latency closer to the optimal (pyzmq latency).

0 2500 5000 7500 10000
0

200

400

600

800

Message size [B]

La
te

nc
y

[µ
c]

Comparison of latencies for the different AppFabric scenarios
(without tPort)

inproc
TCP − 1 host
TCP − 2 hosts

Figure 6.31: Latency Tests - Relative Contribution of the Different Transports Across the

Three AppFabric Scenarios

210

Fig. 6.31 shows the relative contribution of the underlying transport across the three

scenarios for AppFabric. As expected, the TCP 2-Host scenario has more latency than

both the 1-Host scenario owing to the latency introduced by the network link. Also,

increasing message sizes does not affect the 1-Host scenarios as much as the 2-Host

scenario owing to the transmission delays being a function of the message size and

the bit rate of the network link (in this case 1 Gbps Ethernet).

Next, we measured the latency for the scenario where the message has to go through

packet-level services interposed between message-level services. We only compare the

2-Host case for these measurements. Also, for these measurements, the message was

not actually passed through a packet-level service attached to a tPort so that we could

realistically compare it with a 2 service sPort only scenario. The messages do hit

the tPort twice (once for each host - tPort tunnel endpoints). Fig. 6.32 shows the

comparison of the 2-Host scenario without tPort with the 2-Host scenario with tPort.

211

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

14000

Message size [B]

La
te

nc
y

[µ
s]

tPort Latency

2−Host without tPort
2−Host with tPort

Figure 6.32: Latency Tests - Comparison of sPort vs tPort

As can be seen in Fig. 6.32. introducing the tPort has a severe negative impact on

the latency. Again this is due to the highly un-optimized implementation of the tPort

in the current code. In the current implementation, the packets have to cross the

kernel-userspace boundary four times (twice for each tPort) which introduces signifi-

cant overheads. Note that in Fig. 6.32 the latency for the tPort scenario increases with

increasing message size, clearly indicating that copying the message multiple times is

the reason for the lower performance. Implementing a zero-copy mechanism will sig-

nificantly improve the latency for the tPort as indicated by the significantly smaller

difference in the latency values for lower message sizes. Therefore, In the future we

are looking towards a kernel implementation of the tPort with packet-level services

212

connecting to the kernel tPort switch using shared memory. This zero-copy implemen-

tation will improve the tPort performance significantly.

• Throughput tests: The second set of tests measure the throughput in terms of the

Msg/sec that can be processed by the system. The setup for the tests shown in Fig.

6.33 is similar to the latency test setup. A client sends messages to the application that

comprises of a workflow of two message-level services (S1 and S2) chained together. In

this case, we measure the throughput at S2 in terms of the number of messages/sec

that the system could sustain after allowing the system to reach equilibrium. Also,

similar to the latency tests, we capture three scenarios :

– Inproc: In this scenario, S1 and S2 are started as two separate processes on the

same host with the IPC as the underlying transport.

– TCP-1 Host: In this scenario, S1 and S2 are started as two separate processes

on the same host with TCP as the underlying transport.

– TCP-1 Host: In this scenario, S1 and S2 are started as two separate processes

on the two separate hosts with TCP as the underlying transport.

Similar to the latency tests, the throughput tests also indicate that the AppFabric

platform needs to be further optimized to match the benchmark results.

0 2000 4000 6000 8000 10000
0

1

2

3

x 106

Message size [B]

Th
ro

ug
hp

ut
 [m

sg
s/

se
c]

Throughput − inproc

libzmq
pyzmq
AppFabric−no tPort

0 2000 4000 6000 8000 10000
0

1

2

3

x 106

Message size [B]

Th
ro

ug
hp

ut
 [m

sg
s/

se
c]

Throughput − TCP − 1 host

libzmq
pyzmq
AppFabric−no tPort

0 2000 4000 6000 8000 10000
0

1

2

3

x 106

Message size [B]

Th
ro

ug
hp

ut
 [m

sg
s/

se
c]

Throughput − TCP − 2 hosts

libzmq
pyzmq
AppFabric−no tPort

A B C

Figure 6.33: Throughput Tests - Different Scenarios

Again, similar to the latency tests, in Fig. 6.33, each graph has three plots; one each

for libzmq, pyzmq, and AppFabrc. The libzmq is the C library for ZeroMQ, the

213

pyzmq provides the python language bindings for the libzmq APIs and AppFabric is

the AppFabric code on top of pyzmq. Also, no tPort for the AppFabric represents

that the application workflow comprises only of message-level services and does not

have a packet-level port involved.

Some interesting observations from the graphs presented in Fig. 6.33 are as follows:

– In the first graph, the libzmq throughput is orders of magnitude greater than

both pyzmq and AppFabric indicating that the python binding introduces signifi-

cant overheads in interprocess communication as a result of which the AppFabric

performance is also affected.

– For the TCP 1-Host scenario, the libzmq performance quickly deteriorates with

increasing message size while the pyzmq and the AppFabric throughputs almost

remain constant. This is because, while the performance of the TCP stack limits

the performance of the libzmq(which quickly fills the available bandwidth), libzmq

and AppFabric never really manage to fill the available bandwidth and hence their

performance is not affected with increasing the message size to the extent of that

of libzmq.

– The TCP 2-Host scenario is very similar to the TCP 1-Host scenario except that

the limiting bandwidth is now 1Gbps.

214

0 2000 4000 6000 8000 10000
0

1

2

3
x 10

4

Message size [B]

Th
ro

ug
hp

ut
 [m

sg
s/

se
c]

Comparison of AppFabric for the different AppFabric scenarios
(without tPort)

inproc
TCP − 1 host
TCP − 2 hosts

Figure 6.34: Throughput Tests - Relative Contribution of the Different Transports Across

the Three AppFabric Scenarios

Fig. 6.34 shows the relative contribution of the underlying transport to the throughput

across the three scenarios for AppFabric. As expected, the TCP 2-Host scenario has

more latency than both the 1-Host scenario owing to the latency introduced by the

network link. Also, increasing message sizes does not affect the 1-Host scenarios as

much as the 2-Host scenario owing to the transmission delays being a function of the

message size and the bit rate of the network link (in this case 1 Gbps Ethernet).

Next, we measured the throughput for the scenario where the message has to go through

packet-level services interposed between message-level services. Again, similar to the

latency measurements, we only compare the 2-Host case for these measurements. Also,

for these measurements, the message was not actually passed through a packet-level

service attached to a tPort so that we could realistically compare it with a 2 service

215

sPort only scenario. The messages do hit the tPort twice (once for each host - tPort

tunnel endpoints). Fig. 6.35 shows the comparison of the 2-Host scenario without

tPort with the 2-Host scenario with tPort.

0 2000 4000 6000 8000 10000
0

1

2

3 x 104

Message size [B]

Th
ro

ug
hp

ut
 [m

sg
s/

se
c]

 tPort Throughput
2−Host without tPort
2−Host with tPort

Figure 6.35: Throughput Tests - Comparison of sPort vs tPort

Again, similar to the latency tests, it can be seen from Fig. 6.35 that introducing the

tPort has a severe negative impact on the throughput of the system. Similar to the

latency tests, this is also expected to be because of the user-space implementation of

the tPort causing messages to have to cross the kernel-userspace boundary four times

(twice for each tPort) which introduces significant overheads. However, unlike the

latency test results, this cause is not very evident from the graph in Fig. 6.35. This is

216

because for throughput of the system is limited by the width of the least throughput

link in the system which is not identifiable from this graph. This will require running

further micro-benchmarking tests on the throughput of the system with the tPort.

These micro-benchmarking tests have not been conducted as part of the present work

and will be undertaken in the future. But nonetheless, it may be safely assumed that

zero-copy methods, which is expected to improve the latency significantly, will also

play a major role in improving the throughput as well.

These benchmarking tests clearly suggest that there is a lot of room for optimizing the

performance of the current AppFabric implementation and also provide some insights into

some of the probable causes underlying these performance issues.

In this chapter, we discussed the AppFabric prototype implementation in much detail. As

indicated several times, although the present implementation serves as a good proof-of-

concept for validating the architectural design claims made in this thesis, there is a lot of

scope for both design improvements and performance optimizations. These improvements

may be expected to be part of the AppFabric platform as the architecture matures and

evolves to serve real application use-cases.

217

Chapter 7

Summary and Future Work

In this thesis we presented the architecture, design and prototype implementation details of

AppFabric. AppFabric is a platform for automatically deploying and delivering massively

distributed and extremely dynamic applications over next generation software defined infras-

tructures. We believe that AppFabric makes very timely and extremely relevant contribution

that will open up a vast space of new and exciting application use-cases that were not possible

to be deployed before. Internet-of-Things, Cyber-Physical Systems, online gaming, virtual

worlds, mobile apps are just a few application examples that will benefit tremendously from

a platform such as AppFabric. We expect AppFabric to be as disruptive as operating systems

were to the wide-scale adoption and usage of computers or the app model of open APIs was

to the success of modern smart phones. Like these two, AppFabric is also a ”platform” that

provides generic abstractions making it much easier to leverage the dynamism and flexibility

of modern software-defined infrastructures. Additionally, AppFabric allows applications to

easily create and manage their application deployments over virtual resources leased from

many different providers distributed across many geographical sites. In this sense, App-

Fabric enables a two-sided market with Application Service Providers (ASPs) on one side

and Infrastructure providers such as Internet Service Providers (ISPs) and Cloud Service

Providers (CSPs) on the other. This role of AppFabric as an economic platform increases

its chances of its success as a disruptive, new technology.

This thesis does not represent the culmination of the ideas that led to the development of

AppFabric but rather marks the beginning of a new discussion. The work to improve and

build upon the initial framework proposed in this thesis will continue over the next few

218

years. The idea of AppFabric has been funded and appreciated both by government research

funding agencies as well as the industry. There seems to be a lot of interest around the

idea already and we are pretty certain that this interest will only grow over the next few

years. We believe that the success of AppFabric will depend on the simplicity and clarity

of its architectural foundations, the robustness of its design and implementation and the

generality of its exposed interfaces. We will make sure that we meet each of these criteria as

we move forward towards the possible adoption of AppFabric in the real-world.

The current architecture and design of AppFabric has been covered quite extensively in this

thesis.

• In chapter 1, we tried to motivate the case for AppFabric by presenting the benefits

of having a platform that can easily and automatically manage the deployment and

delivery of massively distributed application use-cases over virtual infrastructure leased

from many different providers distributed across many different geographical sites.

• In chapter 2, we provided an extensive background on current and past research

efforts that has in some way, directly or indirectly, motivated the design of AppFabric.

The diversity and the quantity of the research presented in this chapter indicates the

usefulness of AppFabric in that it converges many different ideas and makes them all

part of a single platform.

• In chapter 3, we provided the high-level ideas behind the overall architectural frame-

work of AppFabric. There are two key ideas discussed in this chapter.

– The basic control framework of AppFabric is designed to create an integrated ap-

plication delivery network (ADN) comprising of all the components required to de-

liver modern distributed applications including local and wide area network rout-

ing, forwarding and QoS transport services, middlebox services (including both,

packet and message level middleboxes) providing security, optimizing performance

and improving the efficiency of application deployments and application-level ser-

vices implementing application logic including web servers, application servers

and storage servers; and place them under a single control structure that can

219

program and administer each of these different components together to optimize

the application delivery process.

– The basic management framework of AppFabric is designed to accommodate

many different software defined infrastructure stacks and negotiate with many

different resource providers to acquire virtual resources from many geographi-

cally distributed sites and present the abstraction of a resource pool where each

resource is represented by some attributes such as cost or latency from another

resource etc. In the application runtime, these attributes are used by the platform

to make a decision on resource selection.

• In chapter 4, the data plane architecture of AppFabric called OpenADN or Open

Application Delivery Network is presented. OpenADN is the distributed and pro-

grammable data plane of the converged application delivery network or ADN controlled

by the AppFabric control plane. The key idea behind the design of OpenADN is nested

tunneling and programmable tunnel endpoint ports.

• In chapter 5, the control and management plane architecture of AppFabric called

Lighthouse is presented. Lighthouse has a hierarchical design that enables it to ef-

fectively control and manage a massively distributed data plane. Also, Lighthouse

interfaces with the application architects and administrators on one side (northbound

interface) and with the OpenADN data plane nodes on the other side (southbound

interface). Through the northbound interface, the application architects and adminis-

trators are allowed to specify the application’s deployment and delivery policies. These

polices are compiled by Lighthouse and it uses them to program the data plane nodes

through the southbound interface.

• In chapter 6, we discussed the details of the implementation of the AppFabric pro-

totype implementation. The AppFabric prototype has been implemented in C and

Python. The present version has around 10,000 lines of code. Several parts of the

AppFabric architecture have not yet been implemented and they have been clearly

mentioned and documented in this chapter to serve as a reference for the future devel-

opment. Only those parts of the architecture has been implemented that seem to be

challenging and novel and hence require validation.

220

As we already mentioned, this thesis marks the beginning of further research on AppFabric-

like platform. Given its present appeal, its usefulness to drive future innovations and the clear

economic motivations to its adoption, we are more than hopeful that it will be a successful

endeavor and will contribute to significantly changing our lives in the future. The present

work on AppFabric may be extended in several different directions, including:

• Migrate the platform to run on real multi-cloud deployment environments:

Currently, the AppFabric development branch is tested only within emulated lab envi-

ronments. The next step forward is certainly to run it on real multi-cloud deployment

environments and deal with some of the issues of failures, latency, security, and inter-

operability which are difficult to emulate within a lab environment.

• Run real application workloads on the platform: Currently we run only exper-

imental workloads to test and debug the platform services. In the future, we would

need to run real application workloads on the platform. Many IoT use-cases present a

massively distributed application deployment scenario that may be mapped to run over

AppFabric. Another example is mapping distributed game deployment engine such as

Colyseus[11] to run over AppFabric. Running real application workloads over App-

Fabric will help extend the architecture design of AppFabric to expose more relevant

APIs and implement newer services.

• Making the platform secure: The current implementation of AppFabric does not

have any notion of platform security built into it. While this may be acceptable for

experimental systems, our vision is to have a much greater impact than just confining it

to be just a prototype design. Therefore, the first step is to make the platform secure.

This involves both, securing the code against vulnerabilities as well as securing the

communication between the different distributed components in the platform. Also,

the platform needs to provide secure APIs for services to connect and communicate

with the platform.

• Performance optimization: As shown in our micro-benchmarking results in Chap-

ter. 6, the current implementation of AppFabric is highly un-optimized for high-

performance environments. Also, the platform introduces significant overheads that

may also be optimized by more careful and stricter architectural design reviews.

221

• Running on multiple kernel versions and exposing APIs with many different

language bindings: Currently the AppFabric code has been tested to run only on

Linux kernel version 3.0 and needs to support newer (and some older) kernel versions

moving forward. Also, currently the AppFabric socket library exposes only Python-

based APIs and hence only Python-based services can connect to the platform services

presently. Creating more language bindings for the socket APIs will allow more general

use of the platform by removing this restriction.

• GUI-based management interface: GUI-based management interfaces are eas-

ier for system administrators to work with. Currently, AppFabric does not provide

a GUI-based management interface. System administrators have to edit xml-based

configuration scripts. Future releases of AppFabric should provide a GUI-based man-

agement console for system administrators to easily manage the system. Also, the GUI

should allow the administrator to monitor the runtime state of the system by allowing

him to create centralized views. Currently, the administrator has to manually process

the distributed logs to get this information.

• Setting up more efficient and relevant sensors across the distributed plat-

form components: Currently, AppFabric is setup with a minimal heartbeat sensor

to monitor the liveness of the attached services. This is clearly not enough for a dis-

tributed and dynamic system of the size and complexity of AppFabric. Several other

sensors monitoring the platform components for failures, performance issues, security

attacks, etc. need to be in place.

The list presented above enumerates some of the tasks that are in the immediate roadmap

of AppFabric development. Once we are able to create a minimal framework to add these

extensions to the current design, the goal is to open source the project to create a community

of developers who can then take the project forward. Ultimately, we hope that AppFabric

will successfully evolve to be the platform for deploying and delivering next generation,

massively distributed applications over multi-cloud environments.

222

References

[1] IEEE Std. 802.1Q-2005. Virtual bridged local area networks. IEEE Standards, 2005.

[2] IEEE Std. 802.1Q-2011. Media access control (mac) bridges and virtual bridged local
area networks. IEEE Standards, 2011.

[3] IEEE Std. 802.1Qbg-2012. ieee standard for local and metropolitan area networks
media access control(mac) bridges and virtual bridged local area networks amendment
21: Edge virtual bridging. http://standards.ieee.org/getieee802/download/

802.1Qbg-2012.pdf, 2012. [Online; accessed 17-June-2014].

[4] Dan Aloni. Cooperative linux. In Proceedings of the Linux Symposium, volume 2,
pages 23–31, 2004.

[5] AMD-V. Amd virtualization. http://www.amd.com/en-us/solutions/servers/

virtualization. [Online; accessed 17-June-2014].

[6] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient
overlay networks, volume 35. ACM, 2001.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view
of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[8] Array networks. http://www.arraynetworks.com/. [Online; accessed 17-June-2014].

[9] Jerry Ash. Path computation element (pce) communication protocol generic require-
ments. rfc 4657, 2006.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[11] Ashwin R Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A distributed
architecture for online multiplayer games. In NSDI, volume 6, pages 12–12, 2006.

[12] Dhruba Borthakur. Hdfs architecture guide. HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

223

http://standards.ieee.org/getieee802/download/802.1Qbg-2012.pdf
http://standards.ieee.org/getieee802/download/802.1Qbg-2012.pdf
http://www.amd.com/en-us/solutions/servers/virtualization
http://www.amd.com/en-us/solutions/servers/virtualization
http://www.arraynetworks.com/

[13] Brocade. http://www.brocade.com/index.page. [Online; accessed 17-June-2014].

[14] Stephen F Bush. Active virtual network management protocol. In Parallel and Dis-
tributed Simulation, 1999. Proceedings. Thirteenth Workshop on, pages 182–192. IEEE,
1999.

[15] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,
and Jacobus van der Merwe. Design and implementation of a routing control platform.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 15–28. USENIX Association, 2005.

[16] Brian Carpenter and Scott Brim. Middleboxes: Taxonomy and issues. Technical
report, RFC 3234, February, 2002.

[17] Jeffery Case, Mark Fedor, Martin Schoffstall, and C Davin. A simple network man-
agement protocol (snmp), 1989.

[18] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer Sys-
tems (TOCS), 26(2):4, 2008.

[19] David Chappell. Enterprise service bus. ” O’Reilly Media, Inc.”, 2004.

[20] Hung-Bing Chen and Calvin Y Liu. Network attached storage, March 11 2008. US
Patent D563,994.

[21] David R Cheriton and Mark Gritter. Triad: A new next-generation internet architec-
ture. 2000.

[22] Ludmila Cherkasova and Jangwon Lee. Fastreplica: Efficient large file distribution
within content delivery networks. In USENIX Symposium on Internet Technologies
and Systems, 2003.

[23] Susanta Nanda Tzicker Chiueh and Stony Brook. A survey on virtualization technolo-
gies. RPE Report, pages 1–42, 2005.

[24] Cisco. Cisco one platform kit(onepk). http://www.cisco.com/c/en/us/products/

ios-nx-os-software/onepk.html. [Online; accessed 17-June-2014].

[25] Citrix systems. http://www.citrix.com/. [Online; accessed 17-June-2014].

[26] Citrix. Netscalar application delivery controller. [Online; accessed 17-June-2014].

[27] Citrix. xenmotion. http://knowcitrixx.wordpress.com/xenserver-6/

xenmotion/. [Online; accessed 17-June-2014].

224

http://www.brocade.com/index.page
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
http://www.citrix.com/
http://knowcitrixx.wordpress.com/xenserver-6/xenmotion/
http://knowcitrixx.wordpress.com/xenserver-6/xenmotion/

[28] Apache cloudstack. http://cloudstack.apache.org/. [Online; accessed 17-June-
2014].

[29] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and Andrew Warfield.
Qos’s downfall: at the bottom, or not at all! In Proceedings of the ACM SIGCOMM
workshop on Revisiting IP QoS: What have we learned, why do we care?, pages 109–
114. ACM, 2003.

[30] Yi Cui, Baochun Li, and Klara Nahrstedt. ostream: asynchronous streaming multi-
cast in application-layer overlay networks. Selected Areas in Communications, IEEE
Journal on, 22(1):91–106, 2004.

[31] B Davie, J Gross, et al. A stateless transport tunneling protocol for network virtual-
ization (stt)(version 4), 13-sep-2013.

[32] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazon’s highly available key-value store. In ACM SIGOPS
Operating Systems Review, volume 41, pages 205–220. ACM, 2007.

[33] Jeff Dike. User mode linux, volume 2. Prentice Hall Englewood Cliffs, 2006.

[34] Avri Doria, Ram Gopal, Hormuzd Khosravi, Ligang Dong, Jamal Salim, and Weiming
Wang. Forwarding and control element separation (forces) protocol specification. rfc
5810, 2010.

[35] Amazon ec2. http://aws.amazon.com/ec2/. [Online; accessed 17-June-2014].

[36] Rob Enns, Martin Bjorklund, and Juergen Schoenwaelder. Netconf configuration pro-
tocol. rfc 6241, 2011.

[37] ETSI. Nfv whitepaper. 2012. [Online; accessed 17-June-2014].

[38] Eucalyptus. https://www.eucalyptus.com/. [Online; accessed 17-June-2014].

[39] F5 networks. https://f5.com/. [Online; accessed 17-June-2014].

[40] Dino Farinacci, Darrel Lewis, David Meyer, and Vince Fuller. The locator/id separation
protocol (lisp). 2013.

[41] Nsf future internet architecture project. http://www.nets-fia.net/. [Online; ac-
cessed 17-June-2014].

[42] Roy T Fielding and Richard N Taylor. Principled design of the modern web architec-
ture. ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

225

http://cloudstack.apache.org/
http://aws.amazon.com/ec2/
https://www.eucalyptus.com/
https://f5.com/
http://www.nets-fia.net/

[43] Project FloodLight. Floodlight openflow controller. http://www.

projectfloodlight.org/floodlight/. [Online; accessed 17-June-2014].

[44] Bryan Ford and Janardhan R Iyengar. Breaking up the transport logjam. In HotNets,
pages 85–90, 2008.

[45] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer Rex-
ford, Alec Story, and David Walker. Frenetic: A network programming language. In
ACM SIGPLAN Notices, volume 46, pages 279–291. ACM, 2011.

[46] Open Networking Foundation. Openflow switch specification version 1.3.2.
https://www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.3.2.pdf, 2013. [Online;
accessed 17-June-2014].

[47] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
ACM SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM, 2003.

[48] Garth A Gibson and Rodney Van Meter. Network attached storage architecture.
Communications of the ACM, 43(11):37–45, 2000.

[49] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube traffic
characterization: a view from the edge. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 15–28. ACM, 2007.

[50] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. The flattening inter-
net topology: Natural evolution, unsightly barnacles or contrived collapse? In Passive
and Active Network Measurement, pages 1–10. Springer, 2008.

[51] IETF Working Group. Content delivery networks interconnection (cdni). https:

//datatracker.ietf.org/wg/cdni/. [Online; accessed 17-June-2014].

[52] Object Management Group. Corba. [Online; accessed 17-June-2014].

[53] Saikat Guha and Paul Francis. An end-middle-end approach to connection estab-
lishment. In ACM SIGCOMM Computer Communication Review, volume 37, pages
193–204. ACM, 2007.

[54] Joel Halpern and J Hadi Salim. Forwarding and control element separation (forces)
forwarding element model. Technical report, RFC 5812, March, 2010.

[55] IBM. Ibm websphere. [Online; accessed 17-June-2014].

[56] IETF. Application layer traffic optimization. http://datatracker.ietf.org/wg/

alto/charter/. [Online; accessed 17-June-2014].

226

http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://datatracker.ietf.org/wg/cdni/
https://datatracker.ietf.org/wg/cdni/
http://datatracker.ietf.org/wg/alto/charter/
http://datatracker.ietf.org/wg/alto/charter/

[57] IETF. Interface to the routing system working group. http://datatracker.ietf.

org/wg/i2rs/charter/. [Online; accessed 17-June-2014].

[58] IETF. Network virtualization overlays working group. https://datatracker.ietf.

org/wg/nvo3/. [Online; accessed 17-June-2014].

[59] IETF. Open shortest path first igp. http://datatracker.ietf.org/wg/ospf/

charter/. [Online; accessed 17-June-2014].

[60] Intel-VT. Hardware-assisted virtualization technology. http://www.intel.

com/content/www/us/en/virtualization/virtualization-technology/

hardware-assist-virtualization-technology.html. [Online; accessed 17-
June-2014].

[61] IRTF. Routing research group. https://irtf.org/concluded/rrg. [Online; accessed
17-June-2014].

[62] IRTF. Routing research group wiki. http://trac.tools.ietf.org/group/irtf/

trac/wiki/RoutingResearchGroup. [Online; accessed 17-June-2014].

[63] IRTF. Software defined networking working group. https://irtf.org/sdnrg. [On-
line; accessed 17-June-2014].

[64] Raj Jain. Internet 3.0: ten problems with current internet architecture and solutions
for the next generation. In Military Communications Conference, 2006. MILCOM
2006. IEEE, pages 1–9. IEEE, 2006.

[65] Dilip A Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware switching layer for
data centers. In ACM SIGCOMM Computer Communication Review, volume 38, pages
51–62. ACM, 2008.

[66] Poul-Henning Kamp and Robert NM Watson. Jails: Confining the omnipotent root.
In Proceedings of the 2nd International SANE Conference, volume 43, page 116, 2000.

[67] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[68] Virtual ethernet bridging. http://www.ieee802.org/1/files/public/docs2008/

new-dcb-ko-VEB-0708.pdf. [Online; accessed 17-June-2014].

[69] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun
Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond) network architec-
ture. ACM SIGCOMM Computer Communication Review, 37(4):181–192, 2007.

[70] Linux KVM. Kvm live migration. http://www.pcisig.com/specifications/iov/

single_root/. [Online; accessed 17-June-2014].

227

http://datatracker.ietf.org/wg/i2rs/charter/
http://datatracker.ietf.org/wg/i2rs/charter/
https://datatracker.ietf.org/wg/nvo3/
https://datatracker.ietf.org/wg/nvo3/
http://datatracker.ietf.org/wg/ospf/charter/
http://datatracker.ietf.org/wg/ospf/charter/
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
https://irtf.org/concluded/rrg
http://trac.tools.ietf.org/group/irtf/trac/wiki/RoutingResearchGroup
http://trac.tools.ietf.org/group/irtf/trac/wiki/RoutingResearchGroup
https://irtf.org/sdnrg
http://www.ieee802.org/1/files/public/docs2008/new-dcb-ko-VEB-0708.pdf
http://www.ieee802.org/1/files/public/docs2008/new-dcb-ko-VEB-0708.pdf
http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/single_root/

[71] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[72] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, page 19. ACM, 2010.

[73] Layer 7 technologies. http://www.layer7tech.com/. [Online; accessed 17-June-2014].

[74] J-L Le Roux. Path computation element communication protocol (pcecp) specific
requirements for inter-area mpls and gmpls traffic engineering. rfc 4927, 2007.

[75] Paul J Leach, Michael Mealling, and Rich Salz. A universally unique identifier (uuid)
urn namespace. 2005.

[76] T Li. Preliminary recommendation for a routing architecture. draft-irtf-rrg-
recommendation-02 (work in progress), 2009.

[77] Mallik Mahalingam, D Dutt, Kenneth Duda, Puneet Agarwal, Lawrence Kreeger,
T Sridhar, Mike Bursell, and Chris Wright. Vxlan: A framework for overlaying vir-
tualized layer 2 networks over layer 3 networks. draftmahalingam-dutt-dcops-vxlan-01.
txt, 2012.

[78] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation
in campus networks. ACM SIGCOMM Computer Communication Review, 38(2):69–
74, 2008.

[79] David Meyer, Lixia Zhang, Kevin Fall, et al. Report from the iab workshop on routing
and addressing. Technical report, RFC 4984, 2007.

[80] Microsoft. Component object model (com). [Online; accessed 17-June-2014].

[81] Microsoft. Distributed component object model (dcom). [Online; accessed 17-June-
2014].

[82] Mobility first. http://mobilityfirst.winlab.rutgers.edu/. [Online; accessed 17-
June-2014].

[83] Robert Moskowitz, Pekka Nikander, Petri Jokela, and Thomas Henderson. Host iden-
tity protocol. RFC5201, April, 2008.

[84] Named data networking. http://named-data.net/. [Online; accessed 17-June-2014].

[85] Nebula. http://nebula-fia.org/publications.html. [Online; accessed 17-June-
2014].

228

http://www.layer7tech.com/
http://mobilityfirst.winlab.rutgers.edu/
http://named-data.net/
http://nebula-fia.org/publications.html

[86] F5 Networks. Big-ip. [Online; accessed 17-June-2014].

[87] Juniper Networks. Understanding edge virtual bridging for use with vepa tech-
nology. http://www.juniper.net/techpubs/en_US/junos12.3/topics/concept/

bridging-edge-virtual-bridging-understanding.html. [Online; accessed 17-
June-2014].

[88] Pekka Nikander, Jari Arkko, and Börje Ohlman. Host identity indirection infras-
tructure (hi3). In Proc. Second Swedish National Computer Networking Workshop
(SNCNW), Karlstad, Sweden, 2004.

[89] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 multihoming shim protocol for
ipv6. Technical report, RFC 5533, June, 2009.

[90] Erik Nordström, David Shue, Prem Gopalan, Robert Kiefer, Matvey Arye, Steven Ko,
Jennifer Rexford, and Michael J Freedman. Serval: An end-host stack for service-
centric networking. In NSDI, pages 85–98, 2012.

[91] NSF. The nation science foundation. [Online; accessed 17-June-2014].

[92] NSF. Nsf-find. [Online; accessed 17-June-2014].

[93] Eiji Oki, Tomonori Takeda, JL Le Roux, and A Farrel. Framework for pce-based
inter-layer mpls and gmpls traffic engineering. rfc 5623, 2009.

[94] Openstack. https://www.openstack.org/. [Online; accessed 17-June-2014].

[95] Oracle. Oracle weblogic. [Online; accessed 17-June-2014].

[96] Jianli Pan, Raj Jain, and Subharthi Paul. A novel incrementally-deployable multi-
granularity multihoming framework for the future internet. In Global Communications
Conference (GLOBECOM), 2012 IEEE, pages 2659–2664. IEEE, 2012.

[97] Jianli Pan, Raj Jain, Subharthi Paul, Mic Bowman, Xiaohu Xu, and Shanzhi Chen.
Enhanced milsa architecture for naming, addressing, routing and security issues in
the next generation internet. In Communications, 2009. ICC’09. IEEE International
Conference on, pages 1–6. IEEE, 2009.

[98] Jianli Pan, Raj Jain, Subharthi Paul, and Chakchai So-In. Milsa: A new evolutionary
architecture for scalability, mobility, and multihoming in the future internet. Selected
Areas in Communications, IEEE Journal on, 28(8):1344–1362, 2010.

[99] Jianli Pan, Subharthi Paul, Raj Jain, and Mic Bowman. Milsa: a mobility and mul-
tihoming supporting identifier locator split architecture for naming in the next gener-
ation internet. In Global Telecommunications Conference, 2008. IEEE GLOBECOM
2008. IEEE, pages 1–6. IEEE, 2008.

229

http://www.juniper.net/techpubs/en_US/junos12.3/topics/concept/bridging-edge-virtual-bridging-understanding.html
http://www.juniper.net/techpubs/en_US/junos12.3/topics/concept/bridging-edge-virtual-bridging-understanding.html
https://www.openstack.org/

[100] Jianli Pan, Subharthi Paul, Raj Jain, and Xiaohu Xu. Hybrid transition mechanism
for milsa architecture for the next generation internet. In GLOBECOM Workshops,
2009 IEEE, pages 1–6. IEEE, 2009.

[101] Embrane Architecture White Paper. Powering virtual network services. [Online; ac-
cessed 17-June-2014].

[102] David A Patterson, Garth Gibson, and Randy H Katz. A case for redundant arrays
of inexpensive disks (RAID), volume 17. ACM, 1988.

[103] Subharthi Paul, Raj Jain, and Jianli Pan. An identifier/locator split architecture for
exploring path diversity through site multi-homing-a hybrid host-network cooperative
approach. In Communications (ICC), 2010 IEEE International Conference on, pages
1–5. IEEE, 2010.

[104] Subharthi Paul, Raj Jain, and Jianli Pan. Multi-tier diversified architecture for the next
generation internet. In Proceedings of Cloud Computing and virtualization Conference
(CCV 2010), Singapore, 2010.

[105] Subharthi Paul, Raj Jain, Jianli Pan, and Mic Bowman. A vision of the next generation
internet: A policy oriented perspective. In BCS Int. Acad. Conf., pages 1–14, 2008.

[106] Subharthi Paul, Jianli Pan, and Raj Jain. A future internet architecture based on de-
conflated identities. In Global Telecommunications Conference (GLOBECOM 2010),
2010 IEEE, pages 1–6. IEEE, 2010.

[107] Subharthi Paul, Jianli Pan, and Raj Jain. Architectures for the future networks and
the next generation internet: A survey. Computer Communications, 34(1):2–42, 2011.

[108] Pci sig. http://www.pcisig.com/home/. [Online; accessed 17-June-2014].

[109] R Perlman, D Eastlake, D Dutt, S Gai, and A Ghanwani. Routing bridges (rbridges):
Base protocol specification. rfc 6325, 2011.

[110] Radia Perlman. Interconnections: bridges, routers, switches, and internetworking pro-
tocols. Pearson Education India, 2000.

[111] Lucian Popa, Norbert Egi, Sylvia Ratnasamy, and Ion Stoica. Building extensible
networks with rule-based forwarding. In OSDI, pages 379–392, 2010.

[112] A Linux Foundation Collaborative Project. Opendaylight. http://www.

opendaylight.org/. [Online; accessed 17-June-2014].

[113] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. Contextphone:
A prototyping platform for context-aware mobile applications. Pervasive Computing,
IEEE, 4(2):51–59, 2005.

230

http://www.pcisig.com/home/
http://www.opendaylight.org/
http://www.opendaylight.org/

[114] Ahmad Rahmati and Lin Zhong. Context-for-wireless: context-sensitive energy-
efficient wireless data transfer. In Proceedings of the 5th international conference on
Mobile systems, applications and services, pages 165–178. ACM, 2007.

[115] Redback networks - a subsidiary of ericsson. http://www.ericsson.com/. [Online;
accessed 17-June-2014].

[116] Remote differential compression. http://msdn.microsoft.com/en-us/library/

aa372948(v=vs.85).aspx. [Online; accessed 17-June-2014].

[117] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon
Peterson, Robert Sparks, Mark Handley, Eve Schooler, et al. Sip: session initiation
protocol. Technical report, RFC 3261, Internet Engineering Task Force, 2002.

[118] Peter Saint-Andre. Extensible messaging and presence protocol (xmpp): Core. rfc
6120, 2011.

[119] Peter Saint-Andre. Extensible messaging and presence protocol (xmpp): Instant mes-
saging and presence. rfc 6121, 2011.

[120] Vyas Sekar, Sylvia Ratnasamy, Michael K Reiter, Norbert Egi, and Guangyu Shi. The
middlebox manifesto: enabling innovation in middlebox deployment. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, page 21. ACM, 2011.

[121] Amazon Web Services. Elastic load balancing. [Online; accessed 17-June-2014].

[122] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick
McKeown, and Guru Parulkar. Flowvisor: A network virtualization layer. OpenFlow
Switch Consortium, Tech. Rep, 2009.

[123] PCI SIG. Single root i/o virtualization. http://www.linux-kvm.org/page/

Migration. [Online; accessed 17-June-2014].

[124] Chakchai So-In, Raj Jain, Subharthi Paul, and Jianli Pan. Virtual id: a technique
for mobility, multi-homing, and location privacy in next generation wireless networks.
In Consumer Communications and Networking Conference (CCNC), 2010 7th IEEE,
pages 1–5. IEEE, 2010.

[125] Chakchai So In, Raj Jain, Subharthi Paul, and Jianli Pan. Future wireless networks:
key issues and a survey (id/locator split perspective). International Journal of Com-
munication Networks and Distributed Systems, 8(1):24–52, 2012.

[126] WU Song and JIN Hai. A survey of storage virtualization. Mini-micro Systems,
24(4):728–732, 2003.

231

http://www.ericsson.com/
http://msdn.microsoft.com/en-us/library/aa372948(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa372948(v=vs.85).aspx
http://www.linux-kvm.org/page/Migration
http://www.linux-kvm.org/page/Migration

[127] M Sridharan, K Duda, I Ganga, A Greenberg, G Lin, M Pearson, P Thaler, C Tu-
muluri, N Venkataramiah, and Y Wang. Nvgre: Network virtualization using generic
routing encapsulation. IETF draft, 2011.

[128] Randall R Stewart and Qiaobing Xie. Stream control transmission protocol (SCTP):
a reference guide. Addison-Wesley Longman Publishing Co., Inc., 2001.

[129] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Internet
indirection infrastructure. In ACM SIGCOMM Computer Communication Review,
volume 32, pages 73–86. ACM, 2002.

[130] Jon Tate, Fabiano Lucchese, and Richard Moore. Introduction to storage area networks.
IBM Corporation, International Technical Support Organization, 2005.

[131] Technavio. Global application delivery controllers market in
datacenters 2009-2013. http://www.technavio.com/content/

global-application-delivery-controllers-market-datacenters-2009-2013.
[Online; accessed 17-June-2014].

[132] David L Tennenhouse, Jonathan M Smith, W David Sincoskie, David J Wetherall,
and Gary J Minden. A survey of active network research. Communications Magazine,
IEEE, 35(1):80–86, 1997.

[133] Joe Touch and Radia Perlman. Transparent interconnection of lots of links (trill):
Problem and applicability statement. rfc 5556, 2009.

[134] Jonathan S Turner, Patrick Crowley, John DeHart, Amy Freestone, Brandon Heller,
Fred Kuhns, Sailesh Kumar, John Lockwood, Jing Lu, Michael Wilson, et al. Super-
charging planetlab: a high performance, multi-application, overlay network platform.
In ACM SIGCOMM Computer Communication Review, volume 37, pages 85–96. ACM,
2007.

[135] VMware. Understanding full virtualization, paravirtualization and hardware-assist.
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf. [Online;
accessed 17-June-2014].

[136] VMware. vmotion. https://www.vmware.com/products/vsphere/features/

vmotion.html. [Online; accessed 17-June-2014].

[137] vmware esx. Vmware esx and vmware esxi. http://www.vmware.com/files/pdf/

VMware-ESX-and-VMware-ESXi-DS-EN.pdf. [Online; accessed 17-June-2014].

[138] Enabling service chaining on cisco nexus 1000v series. http://www.cisco.com/c/

en/us/products/collateral/switches/nexus-1000v-switch-vmware-vsphere/

white_paper_c11-716028.html. [Online; accessed 17-June-2014].

232

http://www.technavio.com/content/global-application-delivery-controllers- market-datacenters-2009-2013
http://www.technavio.com/content/global-application-delivery-controllers- market-datacenters-2009-2013
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
https://www.vmware.com/products/vsphere/features/vmotion.html
https://www.vmware.com/products/vsphere/features/vmotion.html
http://www.vmware.com/files/pdf/VMware-ESX-and-VMware-ESXi-DS-EN.pdf
http://www.vmware.com/files/pdf/VMware-ESX-and-VMware-ESXi-DS-EN.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-1000v-switch-vmware-vsphere/white_paper_c11-716028.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-1000v-switch-vmware-vsphere/white_paper_c11-716028.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-1000v-switch-vmware-vsphere/white_paper_c11-716028.html

[139] Michael Walfish, Jeremy Stribling, Maxwell N Krohn, Hari Balakrishnan, Robert Mor-
ris, and Scott Shenker. Middleboxes no longer considered harmful. In OSDI, volume 4,
pages 15–15, 2004.

[140] Wilkipedia. http://www.wikipedia.org/. [Online; accessed 17-June-2014].

[141] xpressive internet architecture. http://www.cs.cmu.edu/~./xia/. [Online; accessed
17-June-2014].

[142] Lily Yang, Ram Dantu, T Anderson, and Ram Gopal. Forwarding and control element
separation (forces) framework. Technical report, RFC 3746, April, 2004.

[143] Zeromq. http://zeromq.org/. [Online; accessed 17-June-2014].

[144] Ying Zhu, Baochun Li, and Jiang Guo. Multicast with network coding in application-
layer overlay networks. Selected Areas in Communications, IEEE Journal on,
22(1):107–120, 2004.

233

http://www.wikipedia.org/
http://www.cs.cmu.edu/~./xia/
http://zeromq.org/

Vita

This is just a sample of what to do in a vita

Subharthi Paul

Degrees B.S. Magna Cum Laude, computer Science, May 1988

M.S. Computer Science, December 1990

D.Sc. (or Ph.D.) Some Department, May 2007

Professional

Societies

Association for Computing Machines

The Touring Society

The Free Software Foundation

Publications Student, I. D. (2005). LATEX document class for Sever Institute, The

LATEX J. 10(4): 323–336.

Student, I. D. (2005). More LATEX wisdom, Another LATEX J. 42(7): 100–

101.

June 2014

Note: Use month and year in which your degree will be conferred.

234

	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	Objectives
	Approach
	Contribution
	Potential Impact
	Organization

	Background
	What does ÒSoftware-DefinedÓ mean?
	Software-Defined Networking (SDN)
	Application-Delivery Networking (ADN)
	Virtual compute, network and storage infrastructures
	Middleboxes and Middleware

	Next-generation Internet
	ID-locator split architectures
	Internet 3.0
	Future Internet Architectures (FIA) projects

	Other Related Work

	AppFabric High-level Architecture
	High-level Ideas
	Horizontal integration Platform
	Separation of control and data planes
	ID/Locator Split

	High-level Goal

	OpenADN: The AppFabric Data Plane
	OpenADN: Architectural Requirements
	OpenADN: Architecture

	Lighthouse: The AppFabric Control and Management Plane System
	The Management Subsystem
	The Control Subsystem
	The Global Controller
	The Local Controller

	AppFabric Prototype
	High-level Design Issues
	AppFabric Prototype: Structure
	AppFabric Prototype: Management Plane Configurations
	Configuring the AppFabric Service Workflow (ASW)
	Configuring the AppFabric Application Cloud (AAC)

	AppFabric Prototype: The OpenADN Data Plane
	AppFabric Service Conduit (ASC) Abstraction
	 The common packet and message switching substrate

	AppFabric Prototype: Lighthouse Control/Management Plane
	The Global Controller and Central Manager modules
	The Local Controller
	The Name Server

	Prototype Validation
	Validating Functionality
	Performance Benchmarking

	Summary and Future Work
	References
	Vita

