Computer Systems Performance Analysis: Design of Experiments

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130, USA

Jain@cse.wustl.edu

A Tutorial given at XXIX Brazilian Symposium on Computer Networks and Distributed Systems, May 30-June 3, 2011, Campo Grande, Brazil

The Audio/Video recordings of this tuorial are available at:

http://www.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Performance Analysis

- □ Performance = Measurement, Simulation, Analytical Modeling
- Both measurement and simulation require resources and time
- Performance is affected by many factors:
 - > For example: Network appliance performance is affected by CPU, Disk, network card, packet sizes
- Each of these factors can have several levels:For example:
 - > 3 types of CPUs: Single core, dual core, multicore
 - > 4 types of disks: 4800 rpm, 5200 rpm, 7200 rpm, 10000 rpm
 - > 2 types of network: 10 Mbps, 100 Mpbs, 1 Gbps, 10 Gbps
 - > 6 packet sizes: 64B, 128KB, 512B, 1024B, 1518B, 9KB
- How many experiments do we need? $3 \times 4 \times 2 \times 6 = 144$
- What is the effect of CPU?

Experimental Design

- Design a proper set of experiments for measurement or simulation. Don't need to do all possible combinations.
- Develop a model that best describes the data obtained.
- Estimate the contribution of each factor to the performance.
- Isolate the measurement errors
- Estimate confidence intervals for model parameters.
- Check if the alternatives are significantly different.
- □ Check if the model is adequate.
- □ The techniques apply to all systems: Networks, Distributed Systems, Data bases, algorithms, ...

Text Book

R. Jain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363 (Winner of the "1992 Best Computer Systems Book" Award from Computer Press Association")

- 1. Introduction to Design of Experiments
- 2. 2^k Factorial Designs
- 3. 2^kr Factorial Designs
- 4. 2^{k-p} Fractional Factorial Designs

Module 1: Introduction to Design of Experiments

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

- □ What is experimental design?
- □ Terminology
- Common mistakes
- □ Sample designs

Terminology

Factors: Variables that affect the response variable.

E.g., CPU type, memory size, number of disk drives, workload used, and user's educational level.

Also called predictor variables or predictors.

□ Levels: The values that a factor can assume, E.g., the CPU type has three levels: 68000, 8080, or Z80.

of disk drives has four levels.

Also called **treatment**.

- **Replication**: Repetition of all or some experiments.
- **Design**: The number of experiments, the factor level and number of replications for each experiment.

E.g., Full Factorial Design with 5 replications: $3 \times 3 \times 4 \times 3 \times 3$ or 324 experiments, each repeated five times.

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Terminology (Cont)

□ Interaction ⇒ Effect of one factor depends upon the level of the other.

Table 1: Noninteracting Factors

	A_1	A_2
B_1	3	5
B_2	6	8

Table 2: Interacting Factors

	A_1	A_2
B_1	3	5
B_2	6	9

Common Mistakes in Experimentation

- □ The variation due to experimental error is ignored.
- □ Important parameters are not controlled.
- □ Effects of different factors are not isolated
- □ Simple one-factor-at-a-time designs are used
- □ Interactions are ignored
- □ Too many experiments are conducted.

Better: two phases.

Types of Experimental Designs

□ Simple Designs: Vary one factor at a time

of Experiments =
$$1 + \sum_{i=1}^{\kappa} (n_i - 1)$$

- > Not statistically efficient.
- > Wrong conclusions if the factors have interaction.
- > Not recommended.
- □ Full Factorial Design: All combinations.

of Experiments =
$$\prod_{i=1}^{n} n_i$$

- > Can find the effect of all factors.
- > Too much time and money.
- > May try 2^k design first.

Types of Experimental Designs (Cont)

- □ Fractional Factorial Designs: Less than Full Factorial
 - > Save time and expense.
 - > Less information.
 - > May not get all interactions.
 - > Not a problem if negligible interactions

Example

Personal workstation design

- 1. Processor: 68000, Z80, or 8086.
- 2. Memory size: 512K, 2M, or 8M bytes
- 3. Number of Disks: One, two, three, or four
- 4. Workload: Secretarial, managerial, or scientific.
- 5. User education: High school, college, or post-graduate level.

Five Factors at 3x3x4x3x3 levels

A Sample Fractional Factorial Design

■ Workstation Design:

(3 CPUs)(3 Memory levels)(3 workloads)(3 ed levels)

= 81 experiments

Experiment	CPU	Memory	Workload	Educational
Number		Level	Type	Level
1	68000	512K	Managerial	High School
2	68000	2M	Scientific	Post-graduate
3	68000	8M	Secretarial	College
4	Z80	512K	Scientific	College
5	Z80	2M	Secretarial	High School
6	Z80	8M	Managerial	Post-graduate
7	8086	512K	Secretarial	Post-graduate
8	8086	2M	Managerial	College
9	8086	8M	Scientific	High School

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

- □ Goal of proper experimental design is to get the maximum information with minimum number of experiments
- □ Factors, levels, full-factorial designs

Module 2: k Factorial Designs

- 2² Factorial Designs
- Model
- Computation of Effects
- □ Sign Table Method
- Allocation of Variation
- ☐ General 2^k Factorial Designs

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

2^k Factorial Designs

- □ k factors, each at two levels.
- Easy to analyze.
- □ Helps in sorting out impact of factors.
- □ Good at the beginning of a study.
- □ Valid only if the effect is unidirectional. E.g., memory size, the number of disk drives

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

2² Factorial Designs

□ Two factors, each at two levels.

Performance in MIPS

Cache	Memory Size					
Size	4M Bytes	16M Bytes				
1K	15	45				
2K	25	75				

$$x_A = \begin{bmatrix} -1 & \text{if 4M bytes memory} \\ 1 & \text{if 16M bytes memory} \end{bmatrix}$$
 $x_B = \begin{bmatrix} -1 & \text{if 1K bytes cache} \\ 1 & \text{if 2K bytes cache} \end{bmatrix}$

$$x_B = \begin{bmatrix} -1 & \text{if 1K bytes cache} \\ 1 & \text{if 2K bytes cache} \end{bmatrix}$$

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Model

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

Observations:

$$15 = q_0 - q_A - q_B + q_{AB}$$

$$45 = q_0 + q_A - q_B - q_{AB}$$

$$25 = q_0 - q_A + q_B - q_{AB}$$

$$75 = q_0 + q_A + q_B + q_{AB}$$

Solution:

$$y = 40 + 20x_A + 10x_B + 5x_A x_B$$

Interpretation: Mean performance = 40 MIPS Effect of memory = 20 MIPS; Effect of cache = 10 MIPS Interaction between memory and cache = 5 MIPS.

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Sign Table Method

I	A	В	AB	У
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	Total/4

Allocation of Variation

Importance of a factor = proportion of the *variation* explained

Sample Variance of
$$y = s_y^2 = \frac{\sum_{i=1}^{2^2} (y_i - \bar{y})^2}{2^2 - 1}$$

Total Variation of
$$y = SST = \sum_{i=1}^{2^2} (y_i - \bar{y})^2$$

For a 2^2 design:

$$SST = 2^2 q_A^2 + 2^2 q_B^2 + 2^2 q_{AB}^2 = SSA + SSB + SSAB$$

- Variation due to $A = SSA = 2^2 q_A^2$
- Variation due to B = SSB = $2^2 q_B^2$
- □ Variation due to interaction = SSAB = $2^2 q_{AB}^2$ □ Fraction explained by A = $\frac{SSA}{SST}$ Var

Variation ≠ Variance

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Example 17.2

■ Memory-cache study:

$$\bar{y} = \frac{1}{4}(15 + 55 + 25 + 75) = 40$$
Total Variation
$$= \sum_{i=1}^{4} (y_i - \bar{y})^2$$

$$= (25^2 + 15^2 + 15^2 + 35^2)$$

$$= 2100$$

$$= 4 \times 20^2 + 4 \times 10^2 + 4 \times 5^2$$

□ Total variation= 2100

Variation due to Memory = 1600 (76%)

Variation due to cache = 400 (19%)

Variation due to interaction = 100 (5%)

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Case Study 17.1: Interconnection Nets

- Memory interconnection networks: Omega and Crossbar.
- Memory reference patterns: *Random* and *Matrix*
- ☐ Fixed factors:
 - > Number of processors was fixed at 16.
 - > Queued requests were not buffered but blocked.
 - > Circuit switching instead of packet switching.
 - > Random arbitration instead of round robin.
 - > Infinite interleaving of memory \Rightarrow no memory bank contention.

2² Design for Interconnection Networks

Factors Used in the Interconnection Network Study

		Lev	el
Symbol	Factor	-1	1
A	Type of the network	Crossbar	Omega
В	Address Pattern Used	Random	Matrix

			Response	
A	В	Throughput T	90% Transit N	Response R
-1	-1	0.0641	3	1.655
1	-1	0.4220	5	2.378
-1	1	0.7922	2	1.262
1	1	0.4717	4	2.190

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Interconnection Networks Results

Para-	Mean	Estin	nate	Variati	on Exp	plained
meter	T	N	R	Τ	N	R
q_0	0.5725	3.5	1.871			
$\mid q_A \mid$	0.0595	-0.5	-0.145	17.2%	20%	10.9%
$\mid q_B \mid$	-0.1257	1.0	0.413	77.0%	80%	87.8%
q_{AB}	-0.0346	0.0	0.051	5.8%	0%	1.3%

- \Box Average throughput = 0.5725
- \square Most effective factor = B = Reference pattern
 - \Rightarrow The address patterns chosen are very different.
- □ Reference pattern explains \mp 0.1257 (77%) of variation.
- □ Effect of network type = 0.0595

Omega networks = Average + 0.0595

Crossbar networks = Average - 0.0595

□ Slight interaction (0.0346) between reference pattern and network type.

shington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied-tut.htm

General 2^k Factorial Designs

- □ k factors at two levels each.
 - 2^k experiments.
 - 2^k effects:

k main effects

$$\begin{pmatrix} k \\ 2 \end{pmatrix}$$
 two factor interactions $\begin{pmatrix} k \\ 3 \end{pmatrix}$ three factor interactions...

2^k Design Example

- □ Three factors in designing a machine:
 - > Cache size
 - > Memory size
 - > Number of processors

	Factor	Level -1	Level 1
\overline{A}	Memory Size	4MB	16MB
В	Cache Size	1kB	2kB
\mathbf{C}	Number of Processors	1	2

$$y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_{AB} x_A x_B + q_{AC} x_A x_C + q_{BC} x_B x_C + q_{ABC} x_A x_B x_C$$

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

2^k Design Example (cont)

Cache	4M F	Bytes	16M	Bytes
Size	1 Proc	2 Proc	1 Proc	2 Proc
1K Byte	14	46	22	58
2K Byte	10	50	34	86

I	A	В	С	AB	AC	BC	ABC	y
1	-1	-1	-1	1	1	1	-1	14
1	1	-1	-1	-1	-1	1	1	22
1	-1	1	-1	-1	1	-1	1	10
1	1	1	-1	1	-1	-1	-1	34
1	-1	-1	1	1	-1	-1	1	46
1	1	-1	1	-1	1	-1	-1	58
1	-1	1	1	-1	-1	1	-1	50
1	1	1	1	1	1	1	1	86
320	80	40	160	40	16	24	9	Total
40	10	5	20	5	2	3	1	Total/8

Washington University in St. Louis <a href="http://www.n

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Analysis of 2^k Design

SST =
$$2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$$

= $8(10^{2} + 5^{2} + 20^{2} + 5^{2} + 2^{2} + 3^{2} + 1^{2})$
= $800 + 200 + 3200 + 200 + 32 + 72 + 8 = 4512$
= $18\% + 4\% + 71\% + 4\% + 1\% + 2\% + 0\%$
= 100%

□ Number of Processors (C) is the most important factor.

- □ 2^k design allows k factors to be studied at two levels each
- □ Can compute main effects and all multi-factors interactions
- Easy computation using sign table method
- Easy allocation of variation using squares of effects

Module 3: 2^kr Factorial Designs

- Computation of Effects
- Estimation of Experimental Errors
- Allocation of Variation
- Confidence Intervals for Effects
- Confidence Intervals for Predicted Responses
- Visual Tests for Verifying the assumptions
- Multiplicative Models

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

2^kr Factorial Designs

- ightharpoonup r replications of 2^k Experiments
 - \Rightarrow 2^kr observations.
 - \Rightarrow Allows estimation of experimental errors.
- □ Model:

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$$

□ e = Experimental error

Computation of Effects

Simply use means of r measurements

I	A	В	АВ	У	$\overline{\text{Mean } \overline{y}}$
1	-1	-1	1	(15, 18, 12)	15
1	1	-1	-1	(45, 48, 51)	48
1	-1	1	-1	(25, 28, 19)	24
1	1	1	1	(75, 75, 81)	77
164	86	38	20		total
41	21.5	9.5	5		total/4

□ Effects: q_0 = 41, q_A = 21.5, q_B = 9.5, q_{AB} = 5.

Experimental Errors: Example

Estimated Response:

$$\hat{y}_1 = q_0 - q_A - q_B + q_{AB} = 41 - 21.5 - 9.5 + 5 = 15$$

■ Experimental errors:

$$e_{11} = y_{11} - \hat{y}_1 = 15 - 15 = 0$$

	Effect				Estimated	Measured					
i	I	A	В	АВ	Response	Responses		-	Errors		
	41	21.5	9.5	5	\hat{y}_i	$\overline{y_{i1}}$	y_{i2}	y_{i3}	$\overline{e_{i1}}$	e_{i2}	e_{i3}
1	1	-1	-1	1	15	15	18	12	C	3	-3
2	1	1	-1	-1	48	45	48	51	-3	0	3
3	1	-1	1	-1	24	25	28	19	1	4	-5
4	1	1	1	1	77	75	75	81	-2	-2	4

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Allocation of Variation

□ Total variation or total sum of squares:

$$SST = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2$$

$$y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + e_{ij}$$

$$\sum_{i,j} (y_{ij} - \bar{y}_{..})^2 = 2^2 r q_A^2 + 2^2 r q_B^2 + 2^2 r q_{AB}^2 + \sum_{i,j} e_{ij}^2$$

$$SST = SSA + SSB + SSAB + SSE$$

$$7032 = 5547 + 1083 + 300 + 102$$

$$100\% = 78.88\% + 15.4\% + 4.27\% + 1.45\%$$

Washington University in St. Louis

Confidence Intervals For Effects

- Effects are random variables.
- □ Errors $\sim N(0,\sigma_e) \Rightarrow y \sim N(\bar{y}_{\cdot,y},\sigma_e)$
- □ Variance of errors:

$$s_e^2 = \frac{1}{2^2(r-1)} \sum_{ij} e_{ij}^2 = \frac{\text{SSE}}{2^2(r-1)} \triangle \text{MSE}$$

□ Similarly,

$$s_{q_A} = s_{q_B} = s_{q_{AB}} = \frac{s_e}{\sqrt{2^2 r}}$$

□ Confidence intervals (CI) for the effects:

$$q_i \mp t_{[1-\alpha/2;2^2(r-1)]} s_{q_i}$$

 \square CI does not include a zero \Rightarrow significant

Example 18.4

For Memory-cache study: Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^2(r-1)}} = \sqrt{\frac{102}{8}} = \sqrt{12.75} = 3.57$$

Standard deviation of effects.

$$s_{q_i} = s_e / \sqrt{(2^2 r)} = 3.57 / \sqrt{12} = 1.03$$

□ For 90% Confidence: $t_{[0.95.8]}$ = 1.86

Confidence intervals: $q_i \mp (1.86)(1.03) = q_i \mp 1.92$

$$q_0 = (39.08, 42.91)$$

$$q_A = (19.58, 23.41)$$

$$q_B = (7.58, 11.41)$$

$$q_{AB} = (3.08, 6.91)$$

□ No zero crossing ⇒ All effects are significant.

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Assumptions

- 1. Errors are statistically independent.
- 2. Errors are additive.
- 3. Errors are normally distributed.
- 4. Errors have a constant standard deviation σ_e .
- 5. Effects of factors are additive
 - ⇒ observations are independent and normally distributed with constant variance.

Visual Tests

1. Independent Errors:

- lacksquare Scatter plot of residuals versus the predicted response \hat{y}_i
- ☐ Magnitude of residuals < Magnitude of responses/10⇒ Ignore trends
- ☐ Plot the residuals as a function of the experiment number
- \square Trend up or down \Rightarrow other factors or side effects

2. Normally distributed errors:

Normal quantile-quantile plot of errors

3. Constant Standard Deviation of Errors:

Scatter plot of y for various levels of the factor Spread at one level significantly different than that at other

⇒ Need transformation

Multiplicative Models

■ Additive model:

$$y_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$$

- Not valid if effects do not add.
 E.g., execution time of workloads.
 ith processor speed= v₁ instructions/second.
 - jth workload Size= w_i instructions
- The two effects multiply. Logarithm \Rightarrow additive model: Execution Time $y_{ij} = v_i \times w_j$ $\log(y_{ij}) = \log(v_i) + \log(w_j)$
- □ Correct Model:

$$y'_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$$

Where, $y'_{ij} = log(y_{ij})$

Washington University in St. Louis

Multiplicative Model (Cont)

□ Taking an antilog of effects:

$$u_A = 10^{qA}$$
, $u_B = 10^{qB}$, and $u_{AB} = 10^{qAB}$

- u_A = ratio of MIPS rating of the two processors
- $u_{\rm B}$ = ratio of the size of the two workloads.
- □ Antilog of additive mean $q_0 \Rightarrow$ geometric mean

$$\dot{y} = 10^{q_0} = (y_1 y_2 \cdots y_n)^{1/n} \quad n = 2^2 r$$

Example 18.8: Execution Times

Analysis Using an Additive Model

I	A	В	AB	У	$\overline{\text{Mean } \overline{y}}$
1	-1	-1	1	(85.10, 79.50, 147.90)	104.170
1	1	-1	-1	(0.891, 1.047, 1.072)	1.003
1	-1	1	-1	(0.955, 0.933, 1.122)	1.003
1	1	1	1	(0.0148, 0.0126, 0.0118)	0.013
-106.19	-104.15	-104.15	102.17	total	
26.55	-26.04	-26.04	25.54	total/4	

Additive model is not valid because:

- □ Physical consideration ⇒ effects of workload and processors do not add. They multiply.
- □ Large range for y. $y_{max}/y_{min} = 147.90/0.0118$ or 12,534 ⇒ log transformation
- □ Taking an arithmetic mean of 114.17 and 0.013 is inappropriate.

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Example 18.8 (Cont)

The residuals are not small as compared to the response.

- The spread of residuals is large at larger value of the response.

⇒ log transformation

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Example 18.8 (Cont)

□ Residual distribution has a longer tail than normal

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Analysis Using Multiplicative Model

Data After Log Transformation

_ I	A	В	AB	y	$\overline{\text{Mean } \overline{y}}$
1	-1	-1	1	(1.93, 1.90, 2.17)	2.00
1	1	-1	-1	(-0.05, 0.02, 0.03)	0.00
1	-1	1	-1	(-0.02, -0.03, 0.05)	0.00
1	1	1	1	(-1.83, -1.90, -1.93)	-1.89
0.11	-3.89	-3.89	0.11	total	
0.03	-0.97	-0.97	0.03	total/4	

Variation Explained by the Two Models

		Additiv	re Model	Multiplicative Model			
Factor	Effect	% Var.	Conf. Interval	Effect	% Var.	Conf. Interval	
I	26.55		(16.35, 36.74)	0.03		$(-0.02, 0.07)\dagger$	
A	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)	
В	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)	
AB	25.54	29.0%	(15.35, 35.74)	0.03	0.0%	$(-0.02, 0.07)\dagger$	
e		10.8%			0.2%		

 $[\]dagger \Rightarrow \text{Not Significant}$

- □ With multiplicative model:
 - > Interaction is almost zero.
 - > Unexplained variation is only 0.2%

Visual Tests

□ Conclusion: Multiplicative model is better than the additive model.

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Interpretation of Results

$$\log(y) = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$$

$$\Rightarrow y = 10^{q_0} 10^{q_A x_A} 10^{q_B x_B} 10^{q_{AB} x_A x_B} 10^e$$

$$= 10^{0.03} 10^{-0.97 x_A} 10^{-0.97 x_B} 10^{0.03 x_A x_B} 10^e$$

$$= 1.07 \times 0.107^{x_A} \times 0.107^{x_B} \times 1.07^{x_A x_B} 10^e$$

- □ The time for an average processor on an average benchmark is 1.07.
- The time on processor A_1 is nine times (0.107⁻¹) that on an average processor. The time on A_2 is one ninth (0.107^1) of that on an average processor.
- \square MIPS rate for A_2 is 81 times that of A_1 .
- Benchmark B_1 executes 81 times more instructions than B_2 .
- □ The interaction is negligible.
- ⇒ Results apply to all benchmarks and processors.

 Washington University in St. Louis http://www1.cse.wustl.edu/~iain/tutorials/jed_tut.htm

- Replications allow estimation of measurement errors
 - ⇒ Confidence Intervals of parameters
 Allocation of variation is proportional to square of effects
- Multiplicative models are appropriate if the factors multiply
- □ Visual tests for independence normal errors

Module 4: 2^{k-p} Fractional Factorial Designs

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

- □ 2^{k-p} Fractional Factorial Designs
- □ Sign Table for a 2^{k-p} Design
- Confounding
- Other Fractional Factorial Designs
- Algebra of Confounding
- Design Resolution

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

2^{k-p} Fractional Factorial Designs

- □ Large number of factors
 - \Rightarrow large number of experiments
 - ⇒ full factorial design too expensive
 - ⇒ Use a fractional factorial design
- □ 2^{k-p} design allows analyzing k factors with only 2^{k-p} experiments.
 - 2^{k-1} design requires only half as many experiments
 - 2^{k-2} design requires only one quarter of the experiments

Example: 2⁷⁻⁴ Design

Expt No.	A	В	С	D	E	F	G
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

□ Study 7 factors with only 8 experiments!

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Fractional Design Features

□ Full factorial design is easy to analyze due to orthogonality of sign vectors.

Fractional factorial designs also use orthogonal vectors. That is:

> The sum of each column is zero.

$$\sum_{i} x_{ij} = 0 \quad \forall j$$

jth variable, ith experiment.

> The sum of the products of any two columns is zero.

$$\sum_{i} x_{ij} x_{il} = 0 \quad \forall j \neq 1$$

> The sum of the squares of each column is 2^{7-4} , that is, 8.

$$\sum_{i} x_{ij}^{2} = 8 \quad \forall j$$

Washington University in St. Louis

Analysis of Fractional Factorial Designs

I	A	В	\mathbf{C}	D	${ m E}$	F	G	У
1	-1	-1	-1	1	1	1	-1	20
1	1	-1	-1	-1	-1	1	1	35
1	-1	1	-1	-1	1	-1	1	7
1	1	1	-1	1	-1	-1	-1	42
1	-1	-1	1	1	-1	-1	1	36
1	1	-1	1	-1	1	-1	-1	50
1	-1	1	1	-1	-1	1	-1	45
1	1	1	1	1	1	1	1	82
317	101	35	109	43	1	47	3	Total
39.62	12.62	4.37	13.62	5.37	0.125	5.87	0.37	Total/8

- □ Factors A through G explain 37.26%, 4.74%, 43.40%, 6.75%, 0%, 8.06%, and 0.03% of variation, respectively.
 - ⇒ Use only factors C and A for further experimentation.

Sign Table for a 2^{k-p} Design

Steps:

- 1. Prepare a sign table for a full factorial design with k-p factors.
- 2. Mark the first column I.
- 3. Mark the next k-p columns with the k-p factors.
- 4. Of the $(2^{k-p}-k-p-1)$ columns on the right, choose p columns and mark them with the p factors which were not chosen in step 1.

Example: 27-4 Design

Expt No.	A	В	С	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Example: 2⁴⁻¹ Design

Expt No.	A	В	С	AB	AC	BC	D
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Confounding

□ **Confounding**: Only the combined influence of two or more effects can be computed.

$$q_A = \sum_{i} y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$q_D = \sum_{i} y_i x_{Di}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

Washington University in St. Louis htt

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

Confounding (Cont)

$$q_{ABC} = \sum_{i} y_{i} x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_{1} + y_{2} + y_{3} - y_{4} + y_{5} - y_{6} - y_{7} + y_{8}}{8}$$

$$q_D = q_{ABC}$$

$$q_D + q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

Arr \Rightarrow Effects of D and ABC are confounded. Not a problem if q_{ABC} is negligible.

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied-tut.htm

Confounding (Cont)

□ Confounding representation: D=ABCOther Confoundings:

$$q_A = q_{BCD} = \sum_{i} y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$\Rightarrow A = BCD$$

□ $I=ABCD \Rightarrow$ confounding of ABCD with the mean.

Washington University in St. Louis http://www1.cse.wustl.edu/~jain/tutorials/ied tut.htm

Other Fractional Factorial Designs

ightharpoonup A fractional factorial design is not unique. 2^p different designs. Another 2^{4-1} Experimental Design

Expt No.	A	В	С	D	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

□ Confoundings: I=ABD, A=BD, B=AD, C=ABCD, D=AB, AC=BCD, BC=ACD, ABC=CD

Not as good as the previous design.

Washington University in St. Louis

http://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htm

- □ Fractional factorial designs allow a large number of variables to be analyzed with a small number of experiments
- Many effects and interactions are confounded

Other Designs

- One factor with many levels
 e.g., 1 factor with 5 levels
- □ Two factors with different levels, e.g., 2 factors with 4×5 levels
- Multiple factors with different levels, e.g., 4 factors with 3×4×5×2 levels
- □ All these designs and others are discussed in the book.

Overall Summary

- □ 2^k design allows k factors to be studied at two levels each
- Can compute main effects and all multi-factors interactions
- Easy computation using sign table method
- Easy allocation of variation using squares of effects
- $ightharpoonup 2^k$ r design with replications allow estimation of measurement errors \Rightarrow Confidence Intervals of parameters
- Multiplicative models are appropriate if the factors multiply
- □ Visual tests for independence normal errors
- □ 2^{k-p} Fractional factorial designs allow a large number of variables to be analyzed with a small number of experiments
- Many effects and interactions are confounded