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Performance AnalysisPerformance Analysis
 Performance = Measurement, Simulation, Analytical Modeling
 Both measurement and simulation require resources and time
 Performance is affected by many factors: 

 For example: Network appliance performance is affected by 
CPU, Disk, network card, packet sizes

 Each of these factors can have several levels:For example: 
 3 types of CPUs: Single core, dual core, multicore
 4 types of disks: 4800 rpm, 5200 rpm, 7200 rpm, 10000 rpm
 2 types of network: 10 Mbps, 100 Mpbs, 1 Gbps, 10 Gbps
 6 packet sizes: 64B, 128KB, 512B, 1024B, 1518B, 9KB

 How many experiments do we need? 34  2  6 = 144
 What is the effect of CPU?
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Experimental DesignExperimental Design
 Design a proper set of experiments for measurement or 

simulation. Don’t need to do all possible combinations.
 Develop a model that best describes the data obtained.
 Estimate the contribution of each factor  to the performance.
 Isolate the measurement errors
 Estimate confidence intervals for model parameters.
 Check if the alternatives are significantly different.
 Check if the model is adequate.
 The techniques apply to all systems: Networks, Distributed 

Systems, Data bases, algorithms, …
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Text BookText Book

 R. Jain, “Art of Computer Systems Performance 
Analysis,” Wiley, 1991, ISBN:0471503363
(Winner of the “1992 Best Computer Systems Book”
Award from Computer Press Association”)
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OverviewOverview

1. Introduction to Design of Experiments

2. 2k Factorial Designs

3. 2kr Factorial Designs

4. 2k-p Fractional Factorial Designs



7
©2011 Raj Jainhttp://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htmWashington University in St. Louis

Module 1: Module 1: 
Introduction to Introduction to 

Design of Design of 
ExperimentsExperiments
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OverviewOverview

 What is experimental design?
 Terminology
 Common mistakes
 Sample designs
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TerminologyTerminology
 Factors: Variables that affect the response variable.

E.g., CPU type, memory size, number of disk drives, workload 
used, and user's  educational level.
Also called predictor variables or predictors.

 Levels: The values that a factor can assume, E.g., the CPU type 
has three levels: 68000, 8080, or Z80.
# of disk drives has four levels.
Also called treatment.

 Replication: Repetition of all or some experiments. 
 Design: The number of experiments, the factor level and  

number of replications for each experiment.
E.g., Full Factorial Design with 5 replications: 3 3  4  3  3 
or 324 experiments, each repeated five times. 
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Terminology (Cont)Terminology (Cont)

 Interaction  Effect of one factor depends upon the 
level of the other.
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Common Mistakes in ExperimentationCommon Mistakes in Experimentation

 The variation due to experimental error is ignored.
 Important parameters are not controlled.
 Effects of different factors are not isolated
 Simple one-factor-at-a-time designs are used
 Interactions are ignored
 Too many experiments are conducted.

Better: two phases.
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Types of Experimental DesignsTypes of Experimental Designs
 Simple Designs: Vary one factor at a time

 Not statistically efficient.
 Wrong conclusions if the factors have interaction.
 Not recommended. 

 Full Factorial Design: All combinations. 

 Can find the effect of all factors.
 Too much time and money.
 May try 2k design first.
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Types of Experimental Designs (Cont)Types of Experimental Designs (Cont)

 Fractional Factorial Designs: Less than Full Factorial
 Save time and expense.
 Less information.
 May not get all interactions.
 Not a problem if negligible interactions
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ExampleExample

Personal workstation design
1. Processor: 68000, Z80, or 8086.
2. Memory size: 512K, 2M, or 8M bytes
3. Number of Disks: One, two, three, or four
4. Workload: Secretarial, managerial, or scientific.
5. User education: High school, college, or post-

graduate level.
Five Factors at 3x3x4x3x3 levels
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A Sample Fractional Factorial DesignA Sample Fractional Factorial Design
 Workstation Design:

(3 CPUs)(3 Memory levels)(3 workloads)(3 ed levels) 
= 81 experiments
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Summary ISummary I

 Goal of proper experimental design is to get the 
maximum information with minimum number of 
experiments

 Factors, levels, full-factorial designs
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Module 2:Module 2:
22kk Factorial Factorial 

DesignsDesigns
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OverviewOverview

 22 Factorial Designs
 Model
 Computation of Effects
 Sign Table Method
 Allocation of Variation
 General 2k Factorial Designs
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22kk Factorial DesignsFactorial Designs

 k factors, each at two levels.
 Easy to analyze.
 Helps in sorting out impact of factors.
 Good at the beginning of a study.
 Valid only if the effect is unidirectional. 

E.g., memory size, the number of disk drives
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2222 Factorial DesignsFactorial Designs

 Two factors, each at two levels.
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ModelModel

Interpretation: Mean performance = 40 MIPS
Effect of memory = 20 MIPS; Effect of cache = 10 MIPS
Interaction between memory and cache = 5 MIPS.
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Sign Table MethodSign Table Method



23
©2011 Raj Jainhttp://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htmWashington University in St. Louis

Allocation of VariationAllocation of Variation
 Importance of a factor =  proportion of the variation explained

 For a 22 design:

 Variation due to A = SSA = 22 qA
2

 Variation due to B = SSB = 22 qB
2

 Variation due to interaction = SSAB = 22 qAB
2

 Fraction explained by A =                          Variation  Variance
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Example 17.2Example 17.2
 Memory-cache study:

 Total variation= 2100
Variation due to Memory = 1600 (76%)
Variation due to cache = 400 (19%)
Variation due to interaction = 100 (5%) 
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Case Study 17.1: Interconnection NetsCase Study 17.1: Interconnection Nets
 Memory interconnection networks: Omega and 

Crossbar.
 Memory reference patterns: Random and Matrix
 Fixed factors:

 Number of processors was fixed at 16.
 Queued requests were not buffered but blocked.
 Circuit switching  instead of packet switching.
 Random arbitration instead of round robin.
 Infinite interleaving of memory  no memory 

bank contention.
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2222 Design for Interconnection NetworksDesign for Interconnection Networks
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Interconnection Networks ResultsInterconnection Networks Results

 Average throughput = 0.5725
 Most effective factor = B = Reference pattern
⇒ The address patterns chosen are very different.

 Reference pattern explains ∓ 0.1257 (77%) of variation.
 Effect of network type = 0.0595

Omega networks = Average + 0.0595
Crossbar networks = Average - 0.0595

 Slight interaction (0.0346) between reference pattern and 
network type.



28
©2011 Raj Jainhttp://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htmWashington University in St. Louis

General 2General 2kk Factorial DesignsFactorial Designs

 k factors at two levels each.
2k experiments.
2k effects:
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22kk Design ExampleDesign Example

 Three factors in designing a machine:
 Cache size
 Memory size
 Number of processors

y = q0+qAxA+qBxB+qCxC+qABxAxB+qACxAxC+qBCxBxC+qABCxAxBxC
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22kk Design Example (cont)Design Example (cont)
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Analysis of 2Analysis of 2kk DesignDesign

 Number of Processors (C) is the most important 
factor. 
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SummarySummary

 2k design allows k factors to be studied at two levels each
 Can compute main effects and all multi-factors interactions
 Easy computation using sign table method
 Easy allocation of variation using squares of effects
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Module 3:Module 3:
22kkr Factorial r Factorial 

DesignsDesigns
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OverviewOverview

 Computation of Effects
 Estimation of Experimental Errors
 Allocation of Variation
 Confidence Intervals  for Effects
 Confidence Intervals for Predicted Responses
 Visual Tests for Verifying the assumptions
 Multiplicative Models
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22kkr Factorial Designsr Factorial Designs

 r replications of 2k Experiments
2kr observations.
Allows estimation of experimental errors.

 Model:

 e = Experimental error
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Computation of EffectsComputation of Effects

Simply use means of r measurements

 Effects: q0= 41, qA= 21.5, qB= 9.5, qAB= 5.
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Experimental Errors: ExampleExperimental Errors: Example
 Estimated Response:

 Experimental errors:
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Allocation of VariationAllocation of Variation

 Total variation or total sum of squares:
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Confidence Intervals For EffectsConfidence Intervals For Effects
 Effects are random variables.
 Errors ∼ N(0,e)  y ∼ N(   , e)
 Variance of errors: 

 Similarly,

 Confidence intervals (CI) for the effects:

 CI does not include a zero  significant 
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Example 18.4Example 18.4
 For Memory-cache study:  Standard deviation of errors:

 Standard deviation of effects:

 For 90% Confidence:  t[0.95,8]= 1.86 

 Confidence intervals: qi ∓ (1.86)(1.03) = qi ∓ 1.92
q0= (39.08, 42.91)
qA=(19.58, 23.41)
qB=(7.58, 11.41)
qAB= (3.08, 6.91)
 No zero crossing All effects are significant.
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AssumptionsAssumptions

1. Errors are statistically independent.
2. Errors are additive. 
3. Errors are normally distributed.
4. Errors have a constant standard deviation e.
5. Effects of factors are additive

 observations are independent and normally 
distributed with constant variance. 
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Visual TestsVisual Tests
1. Independent Errors:
 Scatter plot of residuals versus the predicted response 
 Magnitude of residuals < Magnitude of responses/10 

 Ignore trends  
 Plot the residuals as a function of the experiment number
 Trend up or down  other factors  or side effects 

2. Normally distributed errors:  
Normal quantile-quantile plot of errors 

3. Constant Standard Deviation of Errors: 
Scatter plot of y for various levels of the factor  
Spread at one level significantly different than that at other
 Need transformation
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Example 18.7: MemoryExample 18.7: Memory--cachecache
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Multiplicative ModelsMultiplicative Models
 Additive model:

 Not valid if effects do not add.  
E.g., execution time of workloads.
ith processor speed= vi instructions/second.
jth workload Size= wj instructions

 The two effects multiply.  Logarithm  additive model:

 Correct Model:

Where, y'ij=log(yij)



45
©2011 Raj Jainhttp://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htmWashington University in St. Louis

Multiplicative Model (Cont)Multiplicative Model (Cont)
 Taking an antilog of effects:

uA = 10qA, uB=10qB, and uAB=10qAB

 uA= ratio of MIPS rating of the two processors
 uB= ratio of the size of the two workloads.
 Antilog of additive mean q0  geometric mean
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Example 18.8: Execution TimesExample 18.8: Execution Times

Additive model is not valid because:
 Physical consideration  effects of workload and processors do 

not add. They multiply.
 Large range for y. ymax/ymin= 147.90/0.0118 or 12,534

 log transformation
 Taking an arithmetic mean of 114.17 and 0.013 is inappropriate.
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Example 18.8 (Cont)Example 18.8 (Cont)
 The residuals are not small as compared to the response. 

 The spread of residuals is large at larger value of the response.
 log transformation
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Example 18.8 (Cont)Example 18.8 (Cont)

 Residual distribution has a longer tail than normal
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Analysis Using Multiplicative ModelAnalysis Using Multiplicative Model


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Variation Explained by the Two ModelsVariation Explained by the Two Models

 With multiplicative model:
 Interaction is almost zero.
 Unexplained variation is only 0.2%
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Visual TestsVisual Tests

 Conclusion: Multiplicative model is better than the 
additive model.
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Interpretation of ResultsInterpretation of Results

 The time for an average processor on an average benchmark is 
1.07.

 The time on processor A1 is nine times (0.107-1) that on an 
average processor.  The time on A2 is one ninth (0.1071) of that 
on an average processor.

 MIPS rate for A2 is 81 times that of A1.
 Benchmark B1 executes 81 times more instructions than B2.
 The interaction is negligible.

 Results apply to all benchmarks and processors.
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SummarySummary

 Replications allow estimation of measurement errors
 Confidence Intervals of parameters
Allocation of variation is proportional to square of effects

 Multiplicative models are appropriate if the factors multiply
 Visual tests for independence normal errors



54
©2011 Raj Jainhttp://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htmWashington University in St. Louis

Module 4:Module 4:
22kk--pp Fractional Fractional 

Factorial Factorial 
DesignsDesigns
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OverviewOverview

 2k-p Fractional Factorial Designs
 Sign Table for a 2k-p Design 
 Confounding
 Other Fractional Factorial Designs
 Algebra of Confounding
 Design Resolution
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22kk--pp Fractional Factorial DesignsFractional Factorial Designs

 Large number of factors
⇒ large number of experiments
⇒ full factorial design too expensive
⇒ Use a fractional factorial design 

 2k-p design allows analyzing k factors with only 2k-p

experiments.
2k-1 design requires only half as many experiments
2k-2 design requires only one quarter of the 
experiments
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Example: 2Example: 277--44 DesignDesign

 Study 7 factors with only 8 experiments!
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Fractional Design FeaturesFractional Design Features
 Full factorial design is easy to analyze due to orthogonality of

sign vectors.
Fractional factorial designs also use orthogonal vectors. 
That is:
 The sum of each column is zero.

i xij =0  ∀ j
jth variable, ith experiment.
 The sum of the products of any two columns is zero.

i xijxil=0  ∀ j l 
 The sum of the squares of each column is 27-4, that is, 8.

i xij
2 = 8  ∀ j
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Analysis of Fractional Factorial DesignsAnalysis of Fractional Factorial Designs

 Factors A through G explain 37.26%, 4.74%, 43.40%,  6.75%, 
0%, 8.06%, and 0.03% of variation, respectively.
 Use only factors C and A for further experimentation.
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Sign Table for a 2Sign Table for a 2kk--pp Design Design 

Steps:
1. Prepare a sign table  for a full factorial design with 

k-p factors.
2. Mark the first column I.
3. Mark the next  k-p columns  with the k-p factors.
4. Of the (2k-p-k-p-1) columns on the right, choose p  

columns and mark them with the p factors which 
were not  chosen in step 1.
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Example: 2Example: 277--44 Design Design 


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Example: 2Example: 244--11 DesignDesign


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ConfoundingConfounding
 Confounding: Only the combined influence of two or more 

effects can be computed.
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Confounding (Cont)Confounding (Cont)

 ⇒ Effects of D and ABC are confounded.  Not a problem if 
qABC is negligible.



65
©2011 Raj Jainhttp://www1.cse.wustl.edu/~jain/tutorials/ied_tut.htmWashington University in St. Louis

Confounding (Cont)Confounding (Cont)
 Confounding representation: D=ABC

Other Confoundings:

 I=ABCD ⇒ confounding of ABCD with the mean. 
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Other Fractional Factorial DesignsOther Fractional Factorial Designs
 A fractional factorial design is not unique. 2p different designs. 

 Confoundings:

Not as good as the previous design.
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SummarySummary

 Fractional factorial designs allow a large number of 
variables to be analyzed with a small number of 
experiments

 Many effects and interactions are confounded
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Other DesignsOther Designs

 One factor with many levels
e.g., 1 factor with 5 levels

 Two factors with different levels,
e.g., 2 factors with 4×5 levels

 Multiple factors with different levels,
e.g., 4 factors with 3×4×5×2 levels

 All these designs and others are discussed in the book.
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Overall SummaryOverall Summary

 2k design allows k factors to be studied at two levels each
 Can compute main effects and all multi-factors interactions
 Easy computation using sign table method
 Easy allocation of variation using squares of effects
 2kr design with replications allow estimation of measurement 

errors  Confidence Intervals of parameters
 Multiplicative models are appropriate if the factors multiply
 Visual tests for independence normal errors 
 2k-p Fractional factorial designs allow a large number of 

variables to be analyzed with a small number of experiments
 Many effects and interactions are confounded


