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Performance Analysis

O Performance = Measurement, Simulation, Analytical Modeling
O Both measurement and simulation require resources and time
O Performance 1s affected by many factors:

» For example: Network appliance performance 1s affected by
CPU, Disk, network card, packet sizes

O Each of these factors can have several levels:For example:
> 3 types of CPUs: Single core, dual core, multicore
> 4 types of disks: 4800 rpm, 5200 rpm, 7200 rpm, 10000 rpm
> 2 types of network: 10 Mbps, 100 Mpbs, 1 Gbps, 10 Gbps
> 6 packet sizes: 64B, 128KB, 512B, 1024B, 1518B, 9KB
O How many experiments do we need? 3X4 X 2 X 6 =144
O What 1s the effect of CPU?
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Experimental Design

(

Design a proper set of experiments for measurement or
simulation. Don’t need to do all possible combinations.

Develop a model that best describes the data obtained.
Estimate the contribution of each factor to the performance.
Isolate the measurement errors

Estimate confidence intervals for model parameters.

Check 1f the alternatives are significantly different.

Check 1f the model 1s adequate.

O 00000 DPo

The techniques apply to all systems: Networks, Distributed
Systems, Data bases, algorithms, ...
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Text Book

a R. Jain, “Art of Computer Systems Performance
Analysis,” Wiley, 1991, ISBN:0471503363

(Winner of the “1992 Best Computer Systems Book™
Award from Computer Press Association”)
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Overview

1. Introduction to Design of Experiments

2. 2k Factorial Designs

3. 2kr Factorial Designs

4. 2kp Fractional Factorial Designs
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Module 1:
Introduction to
Design of

Experiments
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Overview

0 What 1s experimental design?
a Terminology
0 Common mistakes

a Sample designs

Washington University in St. Louis

©2011 Raj Jain




Terminology

a Factors: Variables that affect the response variable.

E.g., CPU type, memory size, number of disk drives, workload
used, and user's educational level.

Also called predictor variables or predictors.

a Levels: The values that a factor can assume, E.g., the CPU type
has three levels: 68000, 8080, or Z80.

# of disk drives has four levels.
Also called treatment.
O Replication: Repetition of all or some experiments.

a Design: The number of experiments, the factor level and
number of replications for each experiment.

E.g., Full Factorial Design with 5 replications: 3x 3 x 4 x 3 x 3

or 324 experiments, each repeated five times.
Washington University in St. Louis ©2011 Raj Jain
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level of the other.

Terminology (Cont)

Table 1: Noninteracting Factors

A | Ao
B 3 D
Bs 6 8

Table 2: Interacting Factors

Al | As
B 3 5
Bs 6 9

Washington University in St. Louis

a Interaction = Effect of one factor depends upon the

©2011 Raj Jain
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Common Mistakes in Experimentation

a The variation due to experimental error 1s 1gnored.
a Important parameters are not controlled.

a Effects of different factors are not 1solated

a Simple one-factor-at-a-time designs are used

Q Interactions are 1gnored

a Too many experiments are conducted.

Better: two phases.

Washington University in St. Louis ©2011 Raj Jain
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Types of Experimental Designs

a Simple Designs: Vary one factor at a time
k

# of Experiments = 1 + Z (n; — 1)
1=1
» Not statistically efficient.
» Wrong conclusions if the factors have interaction.
» Not recommended.

O Full Factorial Design: A;lfl combinations.

# of Experiments = H n;
i=1
> Can find the effect of all factors.
» Too much time and money.

> May try 2¥ design first.

Washington University in St. Louis ©2011 Raj Jain
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Types of Experimental Designs (Cont)

A Fractional Factorial Designs: Less than Full Factorial
» Save time and expense.
> Less information.
> May not get all interactions.

> Not a problem if negligible interactions

Washington University in St. Louis ©2011 Raj Jain
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A N

Example

Personal workstation design
1.

Processor: 68000, Z80, or 8086.

Memory size: 512K, 2M, or 8M bytes

Number of Disks: One, two, three, or four
Workload: Secretarial, managerial, or scientific.

User education: High school, college, or post-
graduate level.

Five Factors at 3x3x4x3x3 levels

Washington University in St. Louis ©2011 Raj Jain
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A Sample Fractional Factorial Design

0 Workstation Design:
(3 CPUs)(3 Memory levels)(3 workloads)(3 ed levels)
= 81 experiments

Experiment CPU Memory Workload  Educational
Number Level Type Level

1 68000 512K Managerial High School
2 68000 2M  Scientific Post-graduate
3 68000 8M Secretarial College
4 7,80 512K  Scientific College
5 7,80 2M  Secretarial High School
6 /.80 8M Managerial Post-graduate
7 8086 512K Secretarial Post-graduate
8 8086 2M Managerial College
9 8086 8M  Scientific High School

Washington University in St. Louis

©2011 Raj Jain
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3 Goal of proper experimental design 1s to get the

maximum information with minimum number of
experiments

a Factors, levels, full-factorial designs

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Module 2:
2k Factorial
Designs

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Overview

0 22 Factorial Designs

a Model

a Computation of Effects
a Sign Table Method

a Allocation of Variation

1 General 2k Factorial Designs

Washington University in St. Louis

©2011 Raj Jain
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2k Factorial Designs

3 k factors, each at two levels.

a Easy to analyze.

a Helps 1n sorting out impact of factors.
3a Good at the beginning of a study.

a Valid only if the effect is unidirectional.
E.g., memory size, the number of disk drives

Washington University in St. Louis ©2011 Raj Jain
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22 Factorial Designs

a Two factors, each at two levels.
Performance in MIPS

Cache
Size

Memory Size

4M Bytes | 16M Bytes

1K
2K

15 45
25 75

Washington University in St. Louis

LA —

rp =—

—1 if 4M bytes memory
1 if 16M bytes memory

—1 if 1K bytes cache
1 if 2K bytes cache

©2011 Raj Jain
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Model

Y=(qo+4gara +gdBTB + JABTATRB

Observations:
15=¢q0—q9a —qB + qaB
45 =qo +q9a — qB — qaB
25=qo —qa+ 9B — qaB
75 =qo+qga+qB + qaB
Solution:

y=40+20x4 + 10z + dza7p

Interpretation: Mean performance = 40 MIPS
Effect of memory = 20 MIPS; Effect of cache = 10 MIPS

Interaction between memory and cache = 5 MIPS.
Washington University in St. Louis ©2011 Raj Jain
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Sign Table Method

A B AB y
-1 -1 1 15
-1 -1 45
-1 1 -1 25
1 1 1 1 75
160 80 40 20 Total
40 20 10 5 Total/4

©2011 Raj Jain
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Allocation of Variation

a Importance of a factor = proportion of the variation explained

22 _
2 Zz’:l(yi — y)2

Sample Variance of y = s, =

Y 22 _ 1
22

Total Variation of y = SST = Z(yz — 3?)2
i=1

Q2 For a 2% design:
SST = 2%¢% + 2%¢% + 2%¢% 5 = SSA + SSB + SSAB

Q Variation due to A = SSA =27 ¢ /°

Q Variation due to B =SSB = 22 ¢,°

Q Variation due to interaction = SSAB = 272 ¢ ,5°

Q Fraction explained by A = <= Variation # Variance
Mashington Ui ey in st Lot ©2011 Raj Jain
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Example 17.2

O Memory-cache study:

1
g = (15 + 55 + 25 4 75) = 40

4
Total Variation = Z (yi — §)2
i—=1
= (252 + 152 4+ 152 + 35%)
— 2100

= 4%x20%4+4x10°+4 x5

Q Total variation= 2100
Variation due to Memory = 1600 (76%)
Variation due to cache =400 (19%)

Variation due to interaction = 100 (5%)
Washington University in St. Louis ©2011 Raj Jain
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Case Study 17.1: Interconnection Nets

0 Memory interconnection networks: Omega and
Crossbar.

a Memory reference patterns: Random and Matrix

3 Fixed factors:
> Number of processors was fixed at 16.
» Queued requests were not buffered but blocked.
> Circuit switching 1nstead of packet switching.
» Random arbitration instead of round robin.

» Infinite interleaving of memory = no memory
bank contention.

Washington University in St. Louis ©2011 Raj Jain
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2% Design for Interconnection Networks

Factors Used in the Interconnection Network Study

Level
Symbol Factor -1 1
A Type of the network  Crossbar Omega
B Address Pattern Used Random Matrix
Response

A B Throughput T 90% Transit N Response R

-1 -1 0.0641 3 1.655

1 -1 0.4220 5 2.378

-1 1 0.7922 2 1.262

1 1 0.4717 4 2.190

Washington University in St. Louis ©2011 Raj Jain
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Interconnection Networks Results

Para- Mean Estimate Variation Explained
meter T N R T N R
q0 0.5725 3.5 1.871

qa 0.0595 -0.5 -0.145 | 17.2% 20% 10.9%
qB -0.1257 1.0 0413 | 77.0% 80% &87.8%
dAB -0.0346 0.0 0.051| 58% 0% 1.3%

U

Average throughput = 0.5725

Most effective factor = B = Reference pattern

= The address patterns chosen are very different.
Reference pattern explains F  0.1257 (77%) of variation.
Effect of network type = 0.0595

Omega networks = Average + 0.0595

Crossbar networks = Average - 0.0595

a Slight interaction (0.0346) between reference pattern and

(

L O

network type. -
Washington University iff St. Louis ©2011 Raj Jain
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General 2% Factorial Designs

Q k factors at two levels each.

2k experiments.
2k effects:

k main effects

]; two factor interactions
k : :
3 three factor interactions...

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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2K Design Example

a Three factors 1n designing a machine:
» Cache size
> Memory size

> Number of processors

Factor Level -1 Level 1
A Memory Size 4MB 16MB
B Cache Size 1kB 2kB
C Number of Processors 1 2

Y =q01+94ATA+IBTB+GCTC+FABTATBTFACTATCHIBCXBLC +JABCTATBIC

Washington University in St. Louis ©2011 Raj Jain
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2k Design Example (cont)

Cache 4M Bytes 16M Bytes

Size 1 Proc | 2 Proc | 1 Proc | 2 Proc
1K Byte 14 46 22 58
2K Byte 10 50 34 86

I A B C AB AC BC ABC y
1 -1 -1 -1 1 1 1 -1 14
1 1 -1 -1 -1 -1 1 1 22
1 -1 1 -1 -1 1 -1 1 10
1 1 1 -1 1 -1 -1 -1 34
1 -1 -1 1 1 -1 -1 1 46
1 1 -1 1 -1 1 -1 -1 58
1 -1 1 1 -1 -1 1 -1 50
1 1 1 1 1 1 1 1 86
320 &0 40 160 40 16 24 9 Total
40 10 5 20 5) 2 3 1 Total/8

Washington University in St. Louis ©2011 Raj Jain
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Analysis of 2X Design

SST = 2%(qi +qp + q& + dap + dac + dbe + Canc)
= 8(10% + 5% +20° + 5% + 22 + 3 + 1?)
= 800 4 200 + 3200 + 200 + 32 + 72 + 8 = 4512
= 18% + 4% + 71% + 4% + 1% + 2% + 0%
= 100%

a Number of Processors (C) 1s the most important
factor.

Washington University in St. Louis ©2011 Raj Jain
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a 2k design allows k factors to be studied at two levels each

a Can compute main effects and all multi-factors interactions
O Easy computation using sign table method
Q Easy allocation of variation using squares of effects

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Module 3:

2kr Factorial

Designs

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm
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Overview

Computation of Effects

Estimation of Experimental Errors

Allocation of Variation

Confidence Intervals for Predicted Responses

Visual Tests for Verifying the assumptions

d
d
d
Q Confidence Intervals for Effects
d
d
d

Multiplicative Models

Washington University in St. Louis

©2011 Raj Jain
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2kr Factorial Designs

Q 7 replications of 2k Experiments
= 2kr observations.

= Allows estimation of experimental errors.

2 Model:
Y=4qo +9ATA + dBTB + qABTATB + €

a e = Experimental error

Washington University in St. Louis

©2011 Raj Jain

35




Computation of Effects

Simply use means of r measurements

I A B AB y  Mean y
1 -1 -1 1 (15,18, 12) 15
1 1 -1 -1 (45, 48, 51) 48
1 -1 1 -1 (25, 28, 19) 24
1 1 1 1 (75,75, 81) 77
164 86 38 20 total
41  21.5 9.5 5 total /4

a Effects: q=41, q,=21.5, qg= 9.5, q,5= 9.

Washington University in St. Louis ©2011 Raj Jain
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Experimental Errors: Example

O Estimated Response:
U1 =qo —qga — g + gap =41 —21.5—9.54+5 =15
a Experimental errors:

e11 =Y11 — Y1 =15-15=0

Effect Estimated Measured

i1 A B A B Response Responses Errors

41 21.5 9.5 D Ui Vil Yi2 Vi3 €l €2 €3
1 1 -1 -1 1 15 15 18 12 0o 3 -3
2 1 1 -1 -1 48 45 48 51 -3 0 3
3 1 -1 1 -1 24 25 28 19 1 4 -5
4 1 1 1 1 77 75 75 81 2 -2 4

Washington University in St. Louis ©2011 Raj Jain
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Allocation of Variation

a Total variation or total sum of squares:

SST = (yij —4.)°
i.d

Yij = 4o + 4ATA; + qBTB; + qABT AT B; + €45

> Wi —9.)°
SST
7032

100%

Washington University in St. Louis

227“q124
SSA
5547

78.88%

_|_
_|_
_|_
_|_

22”1129
SSB
1083

15.4%

_|_
_|_
_|_
_|_

227°qu

SSAB
300

4.27%

_|_
_|_
_|_
_|_

2

Zi,j €ij
SSE
102

1.45%

©2011 Raj Jain
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Confidence Intervals For Effects

O Effects are random variables.
Q Errors ~ N(0,6,) =y ~ N(¥., 6,)

0 Variance oflerrors: qop
2 2
— i AMSE
e T Q20— 1) & T 2(r — )=

¥

a Similarly,
_ — — _Se
Sqa = Sqp = Sqas T /53,
Q Conﬁdence 1ntervals (CI) for the effects:
Qi Fli—a/2:22(r—1)]Sq¢;
A CI does not include a zero = significant

Washington University in St. Louis ©2011 Raj Jain
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Example 18.4

a For Memory-cache study: Standard deviation of errors:

SSE 102
. = =/ =2 = /12,75 = 3.57
’ 22(r — 1) 8

Q Stanumu ucviduoll U1 C11CCLS.

Sq; = S/ (2%r) =3.57/v12 =1.03
a For 90% Confidence: ty g5 4= 1.86

A Confidence intervals: q. F (1.86)(1.03) =q, F 1.92
qo= (39.08, 42.91)

q,=(19.58, 23.41)

qg=(7.58, 11.41)

qap= (3.08, 6.91)

a No zero crossing = All effects are significant.
Washington University in St. Louis ©2011 Raj Jain
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Assumptions

Errors are statistically independent.
Errors are additive.
Errors are normally distributed.

Errors have a constant standard deviation o..

A e

Effects of factors are additive

—> observations are independent and normally
distributed with constant variance.

Washington University in St. Louis ©2011 Raj Jain
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Visual Tests

1. Independent Errors:
d Scatter plot of residuals versus the predicted response Y;

d Magnitude of residuals < Magnitude of responses/10
= Ignore trends

1 Plot the residuals as a function of the experiment number
d Trend up or down = other factors or side effects

2. Normally distributed errors:
Normal quantile-quantile plot of errors

3. Constant Standard Deviation of Errors:
Scatter plot of y for various levels of the factor
Spread at one level significantly different than that at other
= Need transformation

Washington University in St. Louis ©2011 Raj Jain
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Residusls

1-4
Ln

{1.4]

I
L

Example 18.7: Memory-cache

Washington University in St. Louis
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Multiplicative Models

O Additive model:
Yij = qo + qATA +4BTB + qABTAXB + €4

Q Not valid if effects do not add.
E.g., execution time of workloads.

ith processor speed= v. instructions/second.
Jth workload Size= w; instructions

a The two effects multiply. Logarithm = additive model:
Execution Time y;; = v; X w;

log(yi;) = log(v;) + log(w;)

a Correct Model:
Yi; = G0 + qATA + qBTB + qABTATB + €4
Where, y'=log(y;)

Washington University in St. Louis ©2011 Raj Jain
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Multiplicative Model (Cont)

O Taking an antilog of effects:

u, = 1094, ug=1098, and u ,z=109AB
d u,= ratio of MIPS rating of the two processors
Qd ug= ratio of the size of the two workloads.
Q Antilog of additive mean q, = geometric mean

g =107 = (y1ya - yn)/™ n=2%r

Washington University in St. Louis ©2011 Raj Jain
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Example 18.8: Execution Times

Analysis Using an Additive Model

I A B AB y Mean g

1 -1 -1 1 ( 85.10, 79.50, 147.90) 104.170

1 1 -1 -1 (0.891, 1.047, 1.072) 1.003

1 -1 1 -1 (10.955, 0.933, 1.122) 1.003

1 1 1 1 (0.0148, 0.0126, 0.0118) 0.013
106.19 -104.15 -104.15 102.17 total
26.50 -26.04 -26.04 25.54 total /4

Additive model 1s not valid because:

a Physical consideration = effects of workload and processors do
not add. They multiply.

Q Large range fory. ¥, ../Ymi,= 147.90/0.0118 or 12,534
= log transformation
a Taking an arithmetic mean of 114.17 and 0.013 1s inappropriate.

Washington University in St. Louis ©2011 Raj Jain
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Example 18.8 (Cont)

a The residuals are not small as compared to the response.

A
50—

Residuals
>

0 40 80 120 160

Mredicted response

a The spread of residuals 1s large at larger value of the response.

= log transformation
Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Example 18.8 (Cont)

a Residual distribution has a longer tail than normal

A

51—
o
E .
= -
=
= 2
R
= _,.-""#
] — -
= -
- 4 L

00— * 0 e T e e e s
- _,.-""
-
_.,..i""" |
25 al ] I ] I ]
-2 -1 0 I 2
Normal gquanrile
Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Analysis Using Multiplicative Model
Data After Log Transformation

-1 A B AB y Mean g
1 -1 -1 1 (11.93, 1.90, 2.17) 2.00
1 1 -1 -1 (-0.05, 0.02, 0.03) 0.00
1 -1 1 -1 (-0.02, -0.03, 0.05) 0.00
1 1 1 1 (-1.83,-1.90, -1.93) -1.89
0.11 -3.89 -3.89 0.11 total
0.03 -0.97 -0.97 0.03 total /4

49



Variation Explained by the Two Models

Additive Model Multiplicative Model
Factor Effect % Var. Conf. Interval Effect % Var. Conf. Interval
I 26.55 (16.35, 36.74) 0.03 (-0.02, 0.07)F
A -26.04  30.1% ( -36.23, -15.84) -0.97  49.9% (-1.02,-0.93)
B -26.04  30.1% (-36.23, -15.84) -0.97  49.9% (-1.02,-0.93)
AB 2554 29.0%  ( 15.35, 35.74) 0.03  0.0% (-0.02,0.07)t
e 10.8% 0.2%

T = Not Significant

a With multiplicative model:

> Interaction i1s almost zero.

» Unexplained variation is only 0.2%

Washington University in St. Louis

©2011 Raj Jain
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Visual Tests

0.2 02—
L L
0.1 L, LI o
S o
= u . g B P *
E . = ey
z 00 = 00 -
2 : : z A
o=t - . = - ,,.-"'r
ig .
- 4
0l . 01w _ -~
12 | I I | I | - 02 | I I | 1 .
-2 -1 { I a -2 -1 0 I a
Predicted response Normal quantile

a Conclusion: Multiplicative model 1s better than the
additive model.

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Interpretation of Results
log(y) = qo + qara + qBTB + qaBTATE + €

=y = 10901(09ATA 1()9B*B | ()9ABTATB ()¢
100.03 10_0-9733A 10—0.97333 100-0333ACUB 106

= 1.07 x 0.107"4 x 0.107"% x 1.07"A"510°

Q The time for an average processor on an average benchmark i1s
1.07.

Q The time on processor A, is nine times (0.107-1) that on an
average processor. The time on A, is one ninth (0.107") of that
on an average processor.

MIPS rate for A, 1s 81 times that of A,.
Benchmark B, executes 81 times more instructions than B,.

U O

a The interaction 1s negligible.

= Results apply to all benchmarks and processors. .
Washington University in St. T.ouis ©2011 Raj Jain
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a Replications allow estimation of measurement errors

—> Confidence Intervals of parameters
Allocation of variation 1s proportional to square of effects

a Multiplicative models are appropriate if the factors multiply

a Visual tests for independence normal errors

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Module 4:
2%-P Fractional
Factorial
Designs
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Overview

0 2kP Fractional Factorial Designs

2 Sign Table for a 2kP Design

a Confounding

A Other Fractional Factorial Designs
a Algebra of Confounding

a Design Resolution

Washington University in St. Louis ©2011 Raj Jain
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2kP Fractional Factorial Designs

a Large number of factors
= large number of experiments
= full factorial design too expensive
= Use a fractional factorial design

a 2kP design allows analyzing k factors with only 2k-P
experiments.

2k-1 design requires only half as many experiments

2k-2 design requires only one quarter of the
experiments

Washington University in St. Louis ©2011 Raj Jain
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Example: 274 Design

| — — —
A A A
—

~J O O = W o
|
|
|

8

Expt No.o. A B C D E F G

a Study 7 factors with only 8 experiments!

Washington University in St. Louis

©2011 Raj Jain
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Fractional Design Features

Q Full factorial design 1s easy to analyze due to orthogonality of
sign vectors.

Fractional factorial designs also use orthogonal vectors.
That 1s:

> The sum of each column 1s zero.
2 X =0 V]
Jjth variable, ith experiment.

» The sum of the products of any two columns 1s zero.

2 X;X;=0 Vj#1
> The sum of the squares of each column is 27-4, that is, 8.
2 _ °
Zi Xij 8 VJ
Washington University in St. Louis ©2011 Raj Jain
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Analysis of Fractional Factorial Designs

I A B C D E F G y
1 1 -1 11 1 1 -1 20
1 1 -1 -1 -1 -1 1 1 35
1 1 1 -1 -1 1 -1 1 7
1 1 1 -1 1 -1 -1 -1 42
1 1 -1 11 -1 -1 1 36
1 1 -1 1 -1 1 -1 -1 50
1 11 1 -1 -1 1 -1 45
1 11 11 1 1 1 82

317 101 35 109 43 1 47 3 Total
39.62 12.62 4.37 13.62 5.37 0.125 5.87 0.37 Total/8

a Factors A through G explain 37.26%, 4.74%, 43.40%, 6.75%,
0%, 8.06%, and 0.03% of variation, respectively.

= Use only factors C and A for further experimentation.

Washington University in St. Louis ©2011 Raj Jain
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Sign Table for a 2%P Design

Steps:

1. Prepare a sign table for a full factorial design with
k-p factors.

2. Mark the first column I.
3. Mark the next k-p columns with the k-p factors.

4. Of the (2kP-k-p-1) columns on the right, choose p
columns and mark them with the p factors which
were not chosen in step 1.

©2011 Raj Jain
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Example: 27 Design

Jd ExptNo. A B C AB AC BC ABC

1 -1 -1 -1 1 1 1

O ~J O O = W N
[
p—
|
p—d
p—
p—d
|
p—d
|
(-

Washington University in St. Louis

©2011 Raj Jain
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Example: 24! Design

Expt No.

A B C AB AC BC D

1

0 ~J O O = W o

Washington University in St. Louis

©2011 Raj Jain
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Confounding

a Confounding: Only the combined influence of two or more
effects can be computed.

qa = Z Yi L Aj
i

—Y1 T+ Y2 — Y3 T+ Y4 — Y5 T+ Ys — Y7 T+ Y8
8

4D = Zyﬂm
i

—Y1+Y2 T Y3 — Y4+ Y5 — Ys — Y7 T+ Y8
8

Washington University in St. Louis ©2011 Raj Jain
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Confounding (Cont)
dABC — ZyixAixBixCi

—Y1+Y2+Ys —Ys+Ys — Y — Y7 + Ys
8

dD = dABC

qp + {gaABC = ZyﬂAﬂBﬂCi
;
—Y1+ Y2+ Y3 —Ys T+ Ys — Yo — Y7 + Ys
8

a = Effects of D and ABC are confounded. Not a problem if
qagc 1S negligible.
Washington University in St. Louis ©2011 Raj Jain
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Confounding (Cont)

a Confounding representation: D=ABC
Other Confoundings:

4A = {4BCD = ZyifEAi
i

—Y1+ Y2 —Ys+Ys—Ys + Y — Y7 T Ys
8

= A= BCD

A=BCD, B=ACD, C=ABD, AB=CD, AC=BD,
BC=AD, ABC=D, and I=ABCD

a /I=ABCD = confounding of ABCD with the mean.

Washington University in St. Louis ©2011 Raj Jain
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Other Fractional Factorial Designs

a A fractional factorial design 1s not unique. 2P different designs.
Another 24! Experimental Design

Expt Noo. A B C D AC BC ABC

1 -1 -1 -1 1 1 1 -1
2 r -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 r 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 r 1 1 1 1 1 1

a Confoundings: [=ABD, A=BD, B=AD, C=ABCD,
D=AB, AC=BCD, BC=ACD, ABC=CD
Not as good as the previous design.
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a Fractional factorial designs allow a large number of

variables to be analyzed with a small number of
experiments

a Many effects and interactions are confounded

Washington University in St. Louis ___http://www ] cse.wustl.edu/~jain/tutorials/ied tut.htm ©2011 Raj Jain
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Other Designs

3 One factor with many levels
e.g., 1 factor with 5 levels

a Two factors with different levels,
e.g., 2 factors with 4x5 levels

a Multiple factors with different levels,
e.g., 4 factors with 3x4x5x2 levels

a All these designs and others are discussed 1n the book.
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AR
2k design allows k factors to be studied at two levels each
Can compute main effects and all multi-factors interactions

O 00 0O

Overall Summary

Easy computation using sign table method
Easy allocation of variation using squares of effects
2kr design with replications allow estimation of measurement

errors = Confidence Intervals of parameters
a Multiplicative models are appropriate if the factors multiply
a Visual tests for independence normal errors

0 2kP Fractional factorial designs allow a large number of
variables to be analyzed with a small number of experiments

a Many effects and interactions are confounded

Washington University in St. Louis
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