Optical Networking: Recent Developments, Issues, and Trends

Raj Jain

CTO and Co-founder

Nayna Networks, Inc.

180 Rose Orchard Way, San Jose, CA 95134

Email: jain@acm.org

www.nayna.com and http://www.cis.ohio-state.edu/~jain/

- 1. Trends in Networking
- 2. Core Network Issues: DWDM, OEO VS OOO
- 3. Metro Network Issues:
 Next Gen SONET vs Ethernet with RPR
- 4. Access Networks Issues: Passive optical networks
- 5. IP Control Plane: MPLS, GMPLS

Globecom 2003 ©2003 Raj Jain

Life Cycles of Technologies

Number of Problems Solved

Hype Cycles of Technologies

Globecom 2003

Industry Growth

Number of Companies

Globecom 2003

Trend: Back to ILECs

1. CLECs to ILECs

ILEC: Slow, steady, predictable.

CLEC: Aggressive, Need to build up fast

New networks with newest technology

No legacy issues

2. Back to Voice

CLECs wanted to *start* with data

ILECs want to *migrate* to data

⇒ Equipment that support voice circuits but allow packet based (hybrids) are more important than those that allow only packet based

Sparse and Dense WDM

- □ 10Mbps Ethernet (10Base-F) uses 850 nm
- □ 100 Mbps Ethernet (100Base-FX) + FDDI use 1310 nm
- □ Some telecommunication lines use 1550 nm
- □ WDM: 850nm + 1310nm or 1310nm + 1550nm
- □ Dense \Rightarrow Closely spaced ≈ 0.1 2 nm separation
- \Box Coarse = 2 to 25 nm = 4 to 12 λ 's
- □ Wide = Different Wavebands

Globecom 2003

Optical Networking: Key Enabler

- □ 1980 AT&T installed Boston-Washington Fiber cable
- 1985 Poole at U of Southampton discovered EDFA Erbium-Doped Fiber Amplifiers (EDFAs)
- □ 1991 First commercial EDFA by Bell-Labs
- □ Up to 30 dB amplification
- □ Flat response in 1535-1560 nm Fiber loss is minimum in this region
 - ⇒ DWDM revolution

Recent DWDM Records

- \square 32 λ × 5 Gbps to 9300 km (1998)
- \square 16 λ × 10 Gbps to 6000 km (NTT'96)
- \bigcirc 160 λ × 20 Gbps (NEC'00)
- \square 128 λ × 40 Gbps to 300 km (Alcatel'00)
- \bigcirc 64 λ × 40 Gbps to 4000 km (Lucent'02)
- \square 19 λ × 160 Gbps (NTT'99)
- \sim 7 λ × 200 Gbps (NTT'97)
- \supset 1 λ ×1200 Gbps to 70 km using TDM (NTT'00)
- □ 1022 Wavelengths on one fiber (Lucent'99)

Potential: 58 THz = 50 Tbps on 10,000 λ 's

Ref: IEEE J. on Selected Topics in Quantum Electronics, 11/2000.

Globecom 2003

©2003 Raj Jain

Distance

Bit

rate

Four-Wave Mixing

☐ If two signals travel in the same phase for a long time, new signals are generated.

Globecom 2003

Core Optical Networks

- □ Higher Speed: 10 Gbps to 40 Gbps to 160 Gbps
- Longer Distances: 600 km to 6000 km
- More Wavelengths: 16λ 's to 160λ 's
- All-optical Switching: OOO vs OEO Switching

Optical Transport Products

Product	λ's	Gb/s	km	Avail-
				ability
Siemens/Optisphere TransXpress	80	40	250	2001
\checkmark	160	10	250	2001
Alcatel 1640 OADM ✓	160	2.5	2300	2001
· ·	80	10	330	2001
Corvis Optical Network Gateway	160	2.5	3200	2000
	40	10	3200	2000
Ciena Multiwave CoreStream √	160	10	1600	2001
Nortel Optera LH4000	56	10	4000	2000
Optera LH 5000	104	40	1200	2002
Sycamore SN10000 X	160	10	800	2001
	40	10	4000	2001
Cisco ONS 15800 ✓	160	10	2000	2002

NRef Multra everything," Telephony October 16, 2000

OEO vs **OOO** Switches

- OEO:
 - □ Requires knowing data rate and format, e.g., 10 Gbps SONET
 - □ Can multiplex lower rate signals
 - □ Cost/space/power increases linearly with data rate
- **OOO**:
 - □ Data rate and format independent
 - ⇒ Data rate easily upgraded
 - □ Sub-wavelength mux/demux difficult
 - □ Cost/space/power relatively independent of rate
 - □ Can switch multiple ckts per port (waveband)
 - □ Issues: Wavelength conversion, monitoring

Splitter Delay lines Modulators Combiner

- □ 16 streams of 10 Gbps = 160 Gbps on one wavelength
- A laser produces short pulses.

Pulse stream divided in to 16 substreams

Each substream modulated by different source. Combined.

Globecom 2003

OTDM Switching

- □ A laser interacts with the stream every 16th bit
- □ Four-Wave Multiplexing (FWM) converts the bit to another wavelength
- □ The bit (wavelength) is filtered out
- Another bit is added in its place.
- Ref: Siemens Claims 160-Gbit/s Milestone, Lightreading, November 28, 2003, http://www.lightreading.com/document.asp?doc_id=44067

SONET

- Synchronous optical network
- Standard for digital optical transmission
- □ Developed originally by Bellcore to allow mid-span meet between carriers: MCI and AT&T.
 Standardized by ANSI and then by ITU
 ⇒ Synchronous Digital Hierarchy (SDH)
- You can lease a SONET connection from carriers

Globecom 2003

SONET Functions

- Protection: Allows redundant Line or paths
- □ Fast Restoration: 50ms using rings
- Sophisticated OAM&P
- □ Ideal for Voice: No queues. Guaranteed delay
- □ Fixed Payload Rates: 51M, 155M, 622M, 2.4G, 9.5G Rates do not match data rates of 10M, 100M, 1G, 10G
- Static rates not suitable for bursty traffic
- One Payload per Stream
- High Cost

Optical Transport Network (OTN)

- □ G.709 Digital Wrapper designed for WDM networks
- □ OTNn.k = n wavelengths at k^{th} rate, 2.5, 10, 40 Gbps plus one Optical Supervisory Channel (OSC)
- \bigcirc OTNnr.k = Reduced OTNn.k \Rightarrow Without OSC

Globecom 2003

OTN Layers and Frame Format

SONET/SDH

Optical Channel (Och)

Optical Multiplex Section (OMSn)

Optical Transmission Section (OTSn)

OCh Payload Unit (OPUk)

OCh Data Unit (ODUk)

OCh Transmission Unit (OTUk)

□ OTU1 Frame Format: 4×4080 Octets/125 ms Forward Error Correction (FEC) increases distance by 2x to 4x. Frame Alignment (FA).

Globecom 2003

Summary

- □ DWDM systems use 1550 nm band due to EDFA
- O/O/O switches are bit rate and data format independent
- SONET/SDH have ring based protection
- OTN uses FEC digital wrapper and allows WDM

Globecom 2003

Metro Optical Networks

Raj Jain

CTO and Co-founder

Nayna Networks, Inc.

180 Rose Orchard Way, San Jose, CA 95134

Email: jain@acm.org

www.nayna.com and http://www.cis.ohio-state.edu/~jain/

- □ Gigabit Ethernet
- □ 10 G Ethernet
- Resilient Packet Rings
- □ Next Generation SONET: VCAT, GFP, LCAS

Globecom 2003

LAN to WAN Convergence

- □ Past: Shared media in LANs. Point to point in WANs.
- □ Today: No media sharing in LANs
 - □ Datalink protocols limited to frame formats
 - □ No distance limitations due to MAC. Only Phy.
- □ 10 GbE over 40 km without repeaters
- Ethernet End-to-end.
- Ethernet carrier access service:\$1000/mo 100Mbps

1 GbE: Key Design Decisions

- □ P802.3z ⇒ Update to 802.3
 Compatible with 802.3 frame format, services, management
- □ 1000 Mb vs. 800 Mb Vs 622 Mbps Single data rate
- □ LAN distances only
- No Full-duplex only ⇒ Shared Mode
 Allows both hub and switch based networks
 No one makes or uses GbE Hubs
- □ Same min and max frame size as 10/100 Mbps
 - ⇒ Changes to **CSMA/CD** protocol Transmit longer if short packets

10 GbE: Key Design Decisions

- □ P802.3ae ⇒ Update to 802.3 Compatible with 802.3 frame format, services, management
- □ 10 Gbps vs. 9.5 Gbps. Both rates.
- □ LAN and MAN distances
- □ Full-duplex only ⇒ No Shared Mode
 Only switch based networks. No Hubs.
- □ Same min and max frame size as 10/100/1000 Mbps Point-to-point ⇒ No CSMA/CD protocol
- □ 10.000 Gbps at MAC interface⇒ Flow Control between MAC and PHY
- □ Clock jitter: 20 or 100 ppm for 10GbE

 Incompatible with 4.6 ppm for SONET

10 GbE PMD Types

PMD	Description	MMF	SMF
10GBASE-R:			
10GBASE-SR	850nm Serial LAN	300 m	N/A
10GBASE-LR	1310nm Serial LAN	N/A	10 km
10GBASE-ER	1550nm Serial LAN	N/A	40 km
10GBASE-X:			
10GBASE-LX4	1310nm WWDM LAN	300 m	10 km
10GBASE-W:			
10GBASE-SW	850nm Serial WAN	300 m	N/A
10GBASE-LW	1310nm Serial WAN	N/A	10 km
10GBASE-EW	1550nm Serial WAN	N/A	40 km
10GBASE-LW4	1310nm WWDM WAN	300 m	10 km

- □ S = Short Wave, L=Long Wave, E=Extra Long Wave
- □ R = Regular reach (64b/66b), W=WAN (64b/66b + SONET Encapsulation), X = 8b/10b □ $4 = 4 \lambda$'s

Globecom 2003

10GBASE-CX4

- □ Twinax cable with 8 pairs
- Based on Infiniband 4X copper phy. IB4X connectors.
- □ For data center applications (Not for horizontal wiring):
 - □ Switch-to-switch links
 - □ Switch-to-server links
 - External backplanes for stackables
- □ Standard: Start: Dec 2002 End: Dec 2003
- □ IEEE 802.3ak, http://www.ieee802.org/3/ak

Globecom 2003

10GBASE-T

- New PHY for data center and horizontal wiring
- □ Compatible with existing 802.3ae MAC, XGMII, XAUI
- □ Standard: Start: Nov 2003 Finish: Jul 2006
- □ 100 m on Cat-7 and 55+ m on Cat-6
- Cost 0.6 of optical PHY. Greater reach than CX4
- □ 10-level coded PAM signaling with 3 bits/symbol 833 MBaud/pair => 450 MHz bandwidth w FEXT cancellation (1GBASE-T uses 5-level PAM with 2 bits/symbol, 125 MBaud/pair, 80 MHz w/o FEXT)
- □ Full-duplex only. 1000BASE-T line code and FEC designed for half-duplex.
- □ http://www.ieee802.org/3/10GBT

10 GbE over Dark Fiber

Need only LAN PMD up to 40 km.No SONET overhead. No protection.

Globecom 2003

10 GbE over SONET/SDH

Metro Ethernet Services

- of \$11.2B Ethernet.
- Transparent LAN service

Globecom 2003

Virtual Private LAN Services (VPLS)

□ Ethernet Internet Access

□ Ethernet Virtual Private Line

□ Ethernet Virtual Private LAN

©2003 Raj Jain

Globecom 2003

Metro Ethernet Services

- □ User-to-network Interface (UNI) = RJ45
- Ethernet Virtual Connection (EVC) = Flows
- □ Ethernet Line Service (ELS) = Point-to-point
- □ Ethernet LAN Service (E-LAN) = multipoint-to-multipoint

42

SONET vs Ethernet

Feature	SONET	Ethernet
Payload Rates	51M, 155M,	10M, 100M, 1G,
	622M, 2.4G,	10G
	9.5G	
Payload Rate	Fixed	\sqrt{Any}
Granularity		
Bursty Payload	No	√Yes
Payload Count	One	√Multiple
Protection	√Ring	Mesh
OAM&P	√Yes	No
Synchronous	√Yes	No
Traffic		
Restoration	$\sqrt{50}$ ms	Minutes
Cost	High	√Low
Used in	Telecom	Enterprise

SONET vs Ethernet: Remedies

Feature	SONET	Ethernet	Remedy
Payload Rates	51M, 155M,	10M, 100M, 1G,	10GE at 9.5G
	622M, 2.4G,	10G	
	9.5G		
Payload Rate	Fixed	\sqrt{Any}	Virtual
Granularity			Concatenation
Bursty Payload	No	\sqrt{Yes}	Link Capacity
			Adjustment Scheme
Payload Count	One	√Multiple	Packet GFP
Protection	\sqrt{Ring}	Mesh	Resilient Packet
	_		Ring (RPR)
OAM&P	\sqrt{Yes}	No	In RPR
Synchronous	√Yes	No	MPLS + RPR
Traffic			
Restoration	$\sqrt{50}$ ms	Minutes	Rapid Spanning Tree
Cost	High	√Low	Converging
Used in	Telecom	Enterprise	

Enterprise vs Carrier Ethernet

Enterprise

- □ Distance: up to 2km
- □ Scale:
 - □ Few K MAC addresses
 - □ 4096 VLANs
- Protection: Spanning tree
- Path determined by spanning tree
- Simple service
- ightharpoonup Priority \Rightarrow Aggregate QoS
- No performance/Error monitoring (OAM)

Carrier

- □ Up to 100 km
- Millions of MAC Addresses
- Millions of VLANsQ-in-Q
- Rapid spanning tree (Gives 1s, need 50ms)
- Traffic engineered path
- SLA
- Need per-flow QoS
- Need performance/BER

Globecom 2003

Networking and Religion

Both are based on a set of beliefs

RPR: Key Features

- Dual Ring topology
- Supports broadcast and multicast
- □ Packet based ⇒ Continuous bandwidth granularity
- □ Max 256 nodes per ring
- MAN distances: Several hundred kilometers.
- ☐ Gbps speeds: Up to 10 Gbps

RPR Features (Cont)

- Both rings are used (unlike SONET)
- Normal transmission on the shortest path
- Destination stripping ⇒ Spatial reuse
 Multicast packets are source stripped
- Several Classes of traffic: A0, A1, B-CIR, B-EIR, C
- Too many features and alternatives too soon (756 pages)

Networking: Failures vs Successes

- □ 1980: Broadband (vs baseband)
- □ 1984: ISDN (vs Modems)
- 1986: MAP/TOP (vs Ethernet)
- □ 1988: OSI (vs TCP/IP)
- □ 1991: DQDB
- □ 1994: CMIP (vs SNMP)
- □ 1995: FDDI (vs Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs Ethernet)
- □ 1997: ATM to Desktop (vs Ethernet)
- □ 1998: Integrated Services (vs MPLS)
- □ 1999: Token Rings (vs Ethernet)

Requirements for Success

- □ Low Cost: Low startup cost ⇒ Evolution
- High Performance
- Killer Applications
- □ Timely completion
- Manageability
- Interoperability
- Coexistence with legacy LANs
 Existing infrastructure is more important than new technology

SONET Virtual Concatenation

- □ VCAT: Bandwidth in increments of VT1.5 or STS-1
- □ For example: 10 Mbps Ethernet in 7 T1's = VT1.5-7v 100 Mbps Ethernet in 2 OC-1 = STS-1-2v, 1GE in 7 STS-3c = STS-3c-7v
- □ The concatenated channels can travel different paths
 ⇒ Need buffering at the ends to equalize delay
- □ All channels are administered together. Common processing only at end-points.

SONET LCAS

- Link Capacity Adjustment Scheme for Virtual Concatenation
- Allows hitless addition or deletion of channels from virtually concatenated SONET/SDH connections
- Control messages are exchanged between end-points to accomplish the change

LCAS (Cont)

 Provides enhanced reliability. If some channels fail, the remaining channels can be recombined to produce a lower speed stream

Generic Framing Procedure (GFP)

■ Allows multiple payload types to be aggregated in one SONET path and delivered separately at destination

Transparent GFP

□ Allows LAN/SAN PHY extension over SONET links Control codes carried as if it were a dark fiber.

- □ Problem: 8b/10b results in 1.25 Gb stream for 1 GbE
- □ Solution: Compress 80 PHY bits to 65 bits
 - ⇒ 1.02 Gbps SONET payload per GbE

Summary

- 10 GbE does not support CSMA/CD.

 Two speeds: 10,000 Mbps and 9,584.640 Mbps
- □ RPR to provide carrier grade reliability

Summary (Cont)

- Virtual concatenation allows a carrier to use any arbitrary number of STS-1's or T1's for a given connection. These STS-1's can take different paths.
- □ LCAS allows the number of STS-1's to be dynamically changed
- □ Frame-based GFP allows multiple packet types to share a connection
- □ Transparent GFP allows 8b/10 coded LANs/SANs to use PHY layer connectivity at lower bandwidth.

Optical Access Networks

Raj Jain

CTO and Co-founder

Nayna Networks, Inc.

180 Rose Orchard Way, San Jose, CA 95134

Email: jain@acm.org

www.nayna.com and http://www.cis.ohio-state.edu/~jain/

Globecom 2003

- □ Fiber to the x (FTTx)
- Passive Optical Networks: What? How? Where? Why?
- Recent Developments

Access: Fiber To The X (FTTx) Operation System Passive **FTTP** Optical **Service Node** Splitter Internet ONT **FTTH** Optical Fiber **Leased Line FTTB VOIP OLT FTTC PSTN** Twisted Pair ONU • Video **FTTCab** NT *xDSL* PON System FTTH: Fiber To The Home FTTC:Fiber To The Curb FTTB: Fiber To The Building FTTCab: Fiber To The Cabinet

Ethernet in the First Mile

- □ IEEE 802.3 Study Group started November 2000
- Originally called Ethernet in the Last Mile
- □ EFM Goals: Media: Phone wire, Fiber
 - Speed: 125 kbps to 1 Gbps
 - □ Distance: 1500 ft, 18000 ft, 1 km 40 km
 - □ Both point-to-point and point-to-multipoint
- □ EPON = point-to-multipoint fiber
- □ Ref: http://www.ieee802.org/3/efm/public/index.htm

EFM PHYs

□ 2BASE-TL Baseband PHY based on SHDSL, $L \Rightarrow 2.7$ km

10PASS-TS Duplex on a single voice UTP pair using VDSL

QAM or DMT, S⇒0.7km. Pass⇒Voice+Data

-O = Central Office, -R = CPE

□ 100BASE-LX10 Duplex Fiber PHY w 10km 1310nm laser

□ 100BASE-BX10-D Bidirectional 1550nm downstream laser

□ 100BASE-BX10-U Bidirectional 1310nm upstream laser

□ 1000BASE-LX10 Extended (10km) 1310nm long-wavelength laser

□ 1000BASE-BX10-D Bidirectional 1490nm downstream laser

□ 1000BASE-BX10-U Bidirectional 1310nm upstream laser

□ 1000BASE-PX10-D PON 1490nm downstream laser 10 km

□ 1000BASE-PX10-U PON 1310nm upstream laser 10 km

□ 1000BASE-PX20-D PON 1490nm downstream laser 20 km

□ 1000BASE-PX20-U PON 1310nm upstream laser 20 km

Passive Optical Networks

- □ A single fiber is used to support multiple customers
- \square No active equipment in the path \Rightarrow Highly reliable
- Both upstream and downstream traffic on ONE fiber (1490nm down, 1310nm up). OLT assigned time slots upstream.
- Optical Line Terminal (OLT) in central office
- Optical Network Terminal (ONT) on customer premises
 Optical Network Unit (ONU) at intermediate points w xDSL

Broadcast Video Over PON

□ Analog or Digital Video on 1550 nm

PON Applications

Why PONs?

- **Reduced OpEx**: Passive network
 - \Box High reliability \Rightarrow Reduced truck rolls
 - □ Reduced power expenses
 - □ Shorter installation times
- □ Reduced CapEx:
 - □ 16 -128 customers per fiber
 - □ 1 Fiber +1+N transceivers vs N Fibers + 2N transceivers
- **□** Increased Revenue Opportunities:
 - Multi-service: Data, E1/T1, Voice, Video
- **□** Scalable:
 - \square CO Equipment Shared \Rightarrow New customers can be added easily
 - □ Bandwidth is Shared ⇒ Customer bandwidth can be changed

Types of PONs

- APON: Initial name for ATM based PON spec.
 Designed by Full Service Access Network (FSAN) group
- **BPON**: Broadband PON standard specified in ITU G.983.1 thru G.893.7 = APON renamed
 - □ 155 or 622 Mbps downstream, 155 upstream
- **EPON**: Ethernet based PON draft being designed by IEEE 802.3ah.
 - □ 1000 Mbps down and 1000 Mbps up.
- □ **GPON**: Gigabit PON standard specified in ITU G.984.1 and G.984.2
 - □ 1244 and 2488 Mbps Down, 155/622/1244/2488 up

PON Developments

- GPON recommendations G.984.x are out. EPON draft is progressing fast.
- □ FCC removed fibers from unbundling
- □ SBC, Verizon, Bellsouth issued an RFP in USA
 - □ Carriers in Japan and Europe are seriously investigating FTTH
 - □ Most big telecom vendors in US were caught off-guard with no PON equipment
- Most action in Access than in Core or Metro
- Venture Financing for PON is up
 - □ Several PON companies received funding this year
- Over 800 Communities in USA are investigating fibers to home using PONs
- □ Fiber-to-the-Home Installations Expected to Reach Approximately One Million by 2004 [FTTH Council]

Conclusion: 2004 will be the year of PON

Summary

- 1. 2004 will be the year of PONs
- 2. PONs reduce OpEx and CapEx for carriers and increase carrier revenue opportunities with value-added services
- 3. Multi-service support in next-generation EPON products is a key differentiator.
- 4. EPON products need to offer quad-play: Data, voice, video, and TDM to be effective

IP Over DWDM

Raj Jain

CTO and Co-founder

Nayna Networks, Inc.

180 Rose Orchard Way, San Jose, CA 95134

Email: jain@acm.org

www.nayna.com and http://www.cis.ohio-state.edu/~jain/

- □ IP over DWDM
- UNI
- □ ASTN/ASON
- MPLS, MPλS, GMPLS

IP over DWDM (Past)

IP over DWDM (Future)

Telecom vs Data Networks

	Telecom Networks	Data Networks
Topology Discovery	Manual	Automatic
Path Determination	Manual	Automatic
Circuit Provisioning	Manual	No Circuits
Transport & Control Planes	Separate	Mixed
User and Provider Trust	No	Yes
Protection	Static using Rings	No Protection

Globecom 2003

IP over DWDM Issues

- 1. Data and Control plane separation
- 2. Circuits
- 3. Signaling
- 4. Addressing
- 5. Protection and Restoration

Control and Data Plane Separation

- Separate control and data channels
- □ IP routing protocols (OSPF and IS-IS) are being extended Routing

Messages Today:

Tomorrow:

Multiprotocol Label Switching (MPLS)

- □ Allows virtual circuits in IP Networks (May 1996)
- Each packet has a virtual circuit number called 'label'
- □ Label determines the packet's queuing and forwarding
- □ Circuits are called Label Switched Paths (LSPs)
- □ LSP's have to be set up before use
- Allows traffic engineering

Globecom 2003

IP-Based Control Plane

Control is by IP packets (electronic).
 Data can be any kind of packets (IPX, ATM cells).

PSC = Packet Switch Capable Nodes

Globecom 2003

MP\(\lambda\)S

- □ Control is by IP packets (electronic).
 Data plane consists of wavelength circuits
 ⇒ Multiprotocol Lambda Switching (October 1999)
- □ Ref: Hassan and Jain, "High-Performance TCP/IP" Prentice Hall 2003.

LSC = Lambda Switch Capable Nodes

= Optical Cross Connects = OXC

Globecom 2003

GMPLS

- □ Data Plane = Wavelengths, Fibers, SONET Frames, Packets (October 2000)
- □ Two separate routes: Data route and control route

NAYNA Networks

Globecom 2003

GMPLS: Hierarchical View

- □ Packets over SONET over Wavelengths over Fibers
- Packet switching regions, TDM regions, Wavelength switching regions, fiber switching regions
- Allows data plane connections between SONET ADMs, PXCs. FSCs, in addition to routers

MPLS vs GMPLS

Issue	MPLS	GMPLS
Data & Control Plane	Same channel	Separate
Types of Nodes	Packet	PSC, TDM, LSC, FSC,
and labels	Switching	
Bandwidth	Continuous	Discrete: OC-n, λ's,
# of Parallel Links	Small	100-1000's
Port IP Address	One per port	Unnumbered
Fault Detection	In-band	Out-of-band or In-Band

Fiber Access Thru Sewer Tubes (FAST)

- □ Right of ways is difficult in dense urban areas
- Sewer Network: Completely connected system of pipes connecting every home and office
- Municipal Governments find it easier and more profitable to let you use sewer than dig street
- □ Installed in Zurich, Omaha, Albuquerque, Indianapolis, Vienna, Ft Worth, Scottsdale, ...
- □ Corrosion resistant inner ducts containing up to 216 fibers are mounted within sewer pipe using a robot called Sewer Access Module (SAM)
- □ Ref: http://www.citynettelecom.com, NFOEC 2001, pp. 331

FAST Installation

- 1. Robots map the pipe
- 2. Install rings
- 3. Install ducts
- 4. Thread fibers

Fast Restoration: Broken sewer pipes replaced with minimal disruption

NAYNA Networks

Globecom 2003

Summary

- 1. High speed routers
 - \Rightarrow IP directly over DWDM
- 2. Separation of control and data plane
 - ⇒ IP-Based control plane
- 3. Transport Plane = Packets \Rightarrow MPLS
 - Transport Plane = Wavelengths
 - \Rightarrow MP λ S
 - Transport Plane = λ , SONET, Packets
 - \Rightarrow GMPLS
- 4. UNI allows users to setup paths on demand

Summary: Key Points

- 1. ILEC vs CLECs \Rightarrow Evolution vs Revolution
- 2. Core market is stagnant⇒ No OOO Switching and Long Haul Transport
- 3. Metro Ethernet ⇒ Ethernet Service vs Transport ⇒ Next-Gen SONET vs Ethernet with RPR
- 4. PONs provide a scalable, upgradeable, cost effective solution.
- 5. IP over DWDM: MPλS, GMPLS, PWE3

Globecom 2003 ©2003 Raj Jain

Standards Organizations

- □ IETF: <u>www.ietf.org</u>
 - □ Multiprotocol Label Switching (MPLS)
 - □ IP over Optical (IPO)
 - □ Traffic Engineering (TE)
 - □ Common Control and Management Plane (CCAMP)
- Optical Internetworking Forum (OIF):
 - www.oiforum.com
- □ ANSI T1X1.5: http://www.t1.org/t1x1/_x15-hm.htm
- □ ITU, <u>www.itu.ch</u>, Study Group 15 Question 14 and Question 12
- Optical Domain Service Interface (ODSI)
 - Completed December 2000

References

- Detailed references in http://www.cis.ohio-state.edu/~jain/refs/opt_refs.htm
- □ Recommended books on optical networking, http://www.cis.ohio-state.edu/~jain/refs/opt_book.htm
- Optical Networking and DWDM,
 http://www.cis.ohio-state.edu/~jain/cis788-99/dwdm/index.html
- □ IP over Optical: A summary of issues, (internet draft) http://www.cis.ohio-state.edu/~jain/ietf/issues.html
- □ Lightreading, http://www.lightreading.com

