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ABSTRACT
Gradient Boosted Regression Stumps (GBRS) is the current
state-of-the-art learning paradigm for machine learned web-
search ranking — a domain notorious for very large data
sets. In this paper, we propose a novel method for paral-
lelizing the training of GBRS. Our technique parallelizes the
construction of the individual decision stumps and works us-
ing the master-worker paradigm as follows. The data is par-
titioned among the workers. At each iteration, the worker
summarizes its data-partition using histograms. The master
processor uses these to build one layer of a decision stump,
and then sends this layer to the workers, allowing the work-
ers to build histograms for the next layer. Our algorithm
carefully orchestrates overlap between communication and
computation in order to get good performance.

Since this approach is based on data partitioning, and re-
quires a small amount of communication, it generalizes to
distributed and shared memory machines, as well as clouds.
We present experimental results on both shared memory
machines and clusters for two large scale web search ranking
data sets. We demonstrate that the loss in accuracy induced
due to the approximation in the regression stump creation
can be compensated for through slightly deeper trees. As
a result, we see no significant loss in accuracy on the Ya-
hoo data sets and a very small reduction in accuracy for
the Microsoft LETOR data. In addition, on shared memory
machines, we obtain almost perfect linear speed-up with up
to about 48 cores on the large data sets. On distributed
memory machines, we get a speedup of 24 with 32 proces-
sors. Due to data partitioning our approach can scale to
even larger data sets, on which one can reasonably expect
even higher speedups.
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1. INTRODUCTION
The last two decades have witnessed the rise of the world

wide web from an initial experiment at CERN to a global
phenomenon. In this time, web search engines have come to
play an important role in how users access the internet, and
have seen tremendous advances. A crucial part of a search
engine is the ranking function, which orders the retrieved
documents according to decreasing relevance to the query.

Recently, web search ranking has been recognized as a
supervised machine learning problem [7, 31], where each
query-document pair is represented by a high-dimensional
feature vector and its label indicates the document’s degree
of relevance to the query. During the past few years — fu-
eled through the publication of real-world data sets from
large corporate search engines [20, 28] — machine learned
web search ranking has become one of the great success sto-
ries of machine learning.

Researchers around the world have explored many differ-
ent learning paradigms for web-search ranking data, includ-
ing Neural Networks [7], Support Vector Machines [17], Ran-
dom Forests [4, 21] and gradient boosted regression trees [31].
Amongst these various approaches, gradient boosted regres-
sion trees (or stumps) (GBRS) arguably define the current
state-of-the-art: In the Yahoo Labs1 Learning to Rank Chal-
lenge 2010, the largest web-search ranking competition to
date, all eight winning teams (out of a total of 1055) used ap-
proaches that incorporated GBRS. GBRS work by building
an ensemble of regression stumps (trees of limited depth).
During each iteration a new stump is added to the ensemble,
minimizing a pre-defined cost function.

Due to the increasing amount of available data and the
ubiquity of multicores and clouds, there is increasing inter-
est in parallelizing machine learning algorithms. Most prior
work on parallelizing boosting [18, 29] is agnostic to the
choice of the weak learner. In this paper, we take the oppo-
site approach and parallelize the construction of individual
weak learners, i.e., the stumps. Our algorithm is inspired
by Ben-Haim and Tom-Tov’s work on parallel construction
of decision trees for classification [2].

1http://learningtorankchallenge.yahoo.com/



In our approach, the algorithm works step by step con-
structing one layer of the decision stump at a time. One
processor is designated the master processor and the others
are the workers. The data is partitioned among the work-
ers. At each step, the workers compress their portion of
the data into small histograms and send these histograms
to the master. The master approximates the splits using
these histograms and computes the next layer in the deci-
sion stump. It then communicates this layer to the workers,
which allows them to compute the histograms for the sub-
sequent layer construction. The construction stops when a
predefined depth is reached.

This master-worker approach with bounded communica-
tion has several advantages. First, it can be generalized to
multicores, shared memory machines, clusters and clouds
with relatively little effort. Second, the data is partitioned
among workers and each worker only accesses its own parti-
tion of the data. As the size of the data sets increases, it will
become impossible for a single worker to hold all of the data
in its memory. Therefore, data partitioning is imperative
for performance, especially on clusters and clouds.

While adapted from [2], where they use a similar approach
for classification trees, this approach is a natural fit for gra-
dient boosting for two reasons. First, the communication
between processors at each step is proportional to the num-
ber of leaves in the current layer. Therefore, it grows ex-
ponentially with the tree depth, which can be a significant
drawback for full decision trees. However, since regression
stumps used for boosting are naturally very small, this ap-
proach works well. Second, the small inaccuracies caused
by the tree approximations can be compensated for through
marginally deeper stumps (which are still much too small
for inter-processor communication to have a noticeable ef-
fect) or a relatively small increase in the number of boosting
iterations.

In this paper we make several novel contributions: 1. We
adapt the histogram algorithms from Ben-Haim and Tom-
tov [2] from their original classification settings to squared-
loss regression; 2. We incorporate this histogram-based fea-
ture compression into gradient boosted regression trees and
derive a novel parallel boosting algorithm; 3. We demon-
strate on real-world web-search ranking data that our par-
allelized framework leads to linear speed-up with increasing
number of processors. Our experiments show no significant
decrease in accuracy for the Yahoo Learning to rank compe-
tition (2010). In particular, on Set 1 (the larger data set),
our parallel algorithm, within a matter of hours, achieves
Expected Reciprocal Rank results that are within 1.4% of
the best known results [6]. On the Microsoft LETOR data
set, we see a small decrease in accuracy, but the speedups
are even more impressive on this data.

To our knowledge, we are the first paper to explicitly
parallelize CART [5] stump construction for the purpose
of gradient boosting. In addition, most previous work on
tree parallelization, which parallelizes tree construction by
features or by sub-trees [25], shows speedup of about 4 or
8. In contrast, our approach provides speed-up (on limited
depth stumps) of up to 40 on shared memory machines and
up to 25 on distributed memory machines. Moreover, our
approach is scalable to larger data sets and we expect even
better speedups as the data set size increases.

This paper is organized as follows. In section 2, we intro-
duce necessary notation and explain the general setup of ma-

chine learned web search ranking. Section 3 reviews gradi-
ent boosted regression trees and the greedy CART algorithm
for tree construction. Section 4 shows that histograms can
be used to approximate the exact splits of regression trees
and introduces our parallel version of gradient boosted re-
gression stumps. Section 5 provides the empirical results for
speedup and accuracy of our algorithm on several real-world
web search ranking data sets. We relate our contribution to
previous work in section 6 and conclude in section 7.

2. WEB SEARCH RANKING
Web ranking data consists of a set of web documents and

queries. Each query-document pair is represented with a set
of features which are generated using properties of both the
query and the document. In addition, each pair is labeled,
which indicates how relevant the document is to the query.
Using this data, the goal is to learn a regressor so that given
a new query, we can return the most relevant documents in
decreasing order to relevance. In this paper, our algorithmic
setup is not affected by the number of queries. Therefore, to
simplify notation, we assume that all documents belong to a
single query throughout the following sections. However, the
techniques work for sets with multiple queries, and in fact
the data we use for experiments does contain many queries.

More formally, we assume that the data is in the form of
instances D = {(xi, yi)} consisting of documents xi ∈ Rf

and labels yi ∈ {0, 1, 2, 3, 4}. A label indicates how relevant
document xi is to its query, ranging from “irrelevant” (if
yi = 0) to “perfect match” (if yi = 4). A document is
represented by an f dimensional vector consisting of features
that are computed from the document and the query. Our
goal is to learn a regressor h : Rf → R such that h(xi) ≈
yi. At test time, the search engine ranks the documents
{xj}mj=1 of a new query in decreasing order of their predicted
relevance {h(xj)}mj=1.

The quality of a particular predictor h(·) is measured by
specialized ranking metrics. Most commonly used metrics
are Expected Reciprocal Rank (ERR) [9], which is meant
to mimic user behavior, and Normalized Discounted Cumu-
lative Gain (NDCG) [16], which emphasizes leading results
(NDCG). However, these metrics can be non convex, non-
differentiable or even non-continuous. Although some recent
work [30, 26, 10] has focused on optimizing these ranking
metrics directly, the more common approach is to optimize
a well-behaved surrogate cost function C(h) instead, assum-
ing that this cost function mimics the behavior of these other
metrics.

In general, the cost functions C can be put into three
categories of ranking: pointwise [13], pairwise [15, 31] and
listwise [8]. In pointwise settings the regressor attempts
to approximate the label yi of a document xi directly, i.e.
h(xi) ≈ yi. A typical loss function is the squared-loss

C(h) =

nX
i=1

(h(xi)− yi)
2. (1)

The pairwise setting is a relaxation of pointwise fucntions,
where pairs of points are considered. It is no longer impor-
tant to approximate each relevance score exactly, rather the
partial order of any two documents should be preserved. An
example is the cost function of GBRANK [31],

C(h) =
X

(i,j)∈P

max(0, 1− (h(xi)− h(xj)))
2, (2)



where P is the preference set of all document pairs (i, j)
belonging to the same query, where i should be preferred
over j. Listwise approaches [8] are similar to the pairwise
approach, but focus on all the documents that belong to a
particular query and tend to have slightly more complicated
cost functions. Recent research [19] also focussed on break-
ing the ranking problem into multiple binary classification
tasks.

In this paper, we do not restrict ourselves to any particular
cost function. Instead we assume that we are provided with
a generic cost function C(·), which is continuous, convex and
at least once differentiable.

3. BACKGROUND
In this section we first review Gradient Boosting [13] as a

general meta-learning algorithm for function approximation
and then remind the reader of regression trees [5].

Gradient Boosting

Gradient Boosting [13] is an iterative algorithm to find an
additive predictor h(·) ∈ H, that minimizes C(h). At each
iteration t, a new function gt(·) is added to current predictor

ht(·), such that after T iterations, hT (·) = α
PT

t=1 gt(·),
where α > 0 is some non-negative learning rate. At each
iteration t, gt(·) is chosen as an approximate of the negative
derivative in function space, gt(·) ≈ − ∂C

∂ht(·) .

In order to find an appropriate function gt(·) in each iter-
ation t, we assume the existence of an oracle O. For a given
function class H and a set {(xi, ri)} of document and tar-
get pairs, this oracle returns the function g ∈ H, that best
approximates the response values according to the squared
loss (up to some small ε > 0):

O({(xi, ri)}) ≈ argmin
g∈H

X
i

(g(xi)− ri)
2. (3)

In iteration t, gradient boosting attempts to find the func-
tion g(·) such that C(ht + g) is minimized. Let us approxi-
mate the inner-product between two functions 〈f(·), g(·)〉 asPn

i=1 f(xi)g(xi). By the first-order Taylor Expansion, we
obtain

g ≈ argmin
g∈H

"
C(h) +

nX
i=1

∂C

∂ht(xi)
g(xi)

#
. (4)

If we assume that the norm of g ∈ H is constant,2 i.e.,
〈g, g〉 = c, the solution of the minimization (4) becomes
O({(xi, ri)}), where ri = − ∂C

ht(xi)
. (This follows from a

simple binomial expansion of (3), where the two quadratic
terms are constants and therefore independent of g.) In the
case where is the squared-loss from eq. (1), the assignment
becomes the current residual ri = yi − ht(i). Algorithm 1
summarizes gradient boosted regression in pseudo-code.

In web-search ranking, and other domains, the most suc-
cessful choice for the oracle in (3) is the greedy Classifica-
tion and Regression Tree (CART) algorithm [5] with lim-
ited depth size d between 4 and 5. Due to their small size,
these limited-depth trees are usually referred to as regression

2We can avoid this restriction on the function class H with
a second-order Taylor expansion in eq. (4). We omit the
details of this slightly more involved derivation in this paper,
as it does not affect our algorithmic setup. However, we do
refer the interested reader to [31].

Algorithm 1 Gradient Boosted Regression Trees

Input: data set D = {(xi, yi)}ni=1, Parameters: α, m, d
Initialization: ri = yi, ∀i
C(·) = 0
for t = 1 to m do

gt ← O({(xi, ri})
C(·)← C(·) + αgt(·)
for i = 1 to n do

ri ← − ∂C
ht(xi)

end for
end for

stumps. This paper focusses exclusively on the paralleliza-
tion of Gradient Boosted Regression Stumps (GBRS). We
review the basic CART algorithm in the following section.

Regression Stumps

Regression stump construction in CART [5] proceeds by re-
peated greedy expansion of nodes until a stopping criterion,
e.g. tree depth, is met. Initially, all data points are assigned
to a single node, the root of the tree. To simplify notation,
we explain the algorithm for data with one single feature
only and drop the feature indices (i.e. xi is the feature
value for input i). In practice, the same steps are performed
for all features, and the feature that leads to the split with
the maximum reduction in cost is chosen.

At every node, with data S ⊆ D, the prediction made
by the classifier is the average label in S. Let denote this
predictor as ȳS = 1

|L|
P

(xi,yi)∈S yi. It is straight-forward to

show that yS minimizes the loss of a constant predictor over
a set S:

ȳS = argmin
p

X
i∈S

(yi − p)2. (5)

At each step, the data S ⊆ D assigned to each leaf node
node is partitioned into two subsets L, R ⊂ S by splitting on
a feature value s. We define the two subsets Ls = {(xi, yi) ∈
S | xi < s} and Rs = S −Ls. Let j1, . . . , j|S| be the indices
of the ordered set S such that yji ≤ yji+1 . Therefore, we
have |S| potential split points, one between each consecutive
elements. The optimal value s∗ is found by iterating over all
these possible split values P and evaluating the accumulative
squared loss on both sides of the tree:

s∗ = argmin
s∈P

X
i∈Ls

(yi − ȳs
L) +

X
i∈Rs

(yi − ȳs
R) (6)

where: P =


yji+1 − yji

2
|1 ≤ i < |S|

ff
Eq. (6) can be solved in O(n) time through dynamic pro-
gramming [5]. However, the dynamic programming approach
requires the samples to be sorted, which in itself requires
O(n log(n)) operations.

4. PARALLEL IMPLEMENTATION
In this section, we describe our approach for parallelizing

the construction of gradient boosted regression stumps. In
this approach, the boosting still occurs sequentially, as we
parallelize the construction of individual tree stumps. Two
key insights enable our parallelization. First, in order to
evaluate a potential split point during stump construction
we only need cumulative statistics about all data left and
right of the split, but not these data themselves. Second,



Algorithm 2 Parallel CART Master

Parameter: maximum depth
tree ← unlabeled node
while tree depth < maximum depth do

for each feature do
instantiate an empty histogram at each leaf
for each worker do

initiate non-blocking receive for worker’s his-
tograms

end for
while ∃ non-completed receives do

wait for some receive to complete
merge received histograms with histograms at
leaves

end while
update best splits for each leaf

end for
send next layer of leaves to each worker

end while

Algorithm 3 Parallel CART Worker

Input: data set D = {(xi, ri)}ni=1
Parameter: maximum depth
tree ← unlabeled node
while tree depth < maximum depth do

navigate training data D to leaf nodes v
for each feature f do

instantiate an empty histogram hv for each leaf v
for (xi, ri) ∈ D at leaf vi do

merge(hvi , ([xi]f , 1, ri))
end for
initiate non-blocking send for histograms from all
leaves

end for
receive next layer of leaves from master

end while

boosting does not require the weak learners to be partic-
ularly accurate. A small reduction in accuracy of the de-
cision stumps can potentially be compensated for by using
more decision stumps without affecting the accuracy of the
boosted classifier.

In our algorithm, we have a master processor and P work-
ers. We assume that the data are divided into P disjoint
subsets stored in different physical locations and each worker
can access one of these locations. Let Dp be the set of data

instances stored at site p, so that
SP

p=1 Dp = D, Dp∩Dq = ∅
for p 6= q and |Dp| ≈ |D|/P . The master processor builds
the decision stumps layer by layer. At each iteration, a new
layer is constructed as follows: Each worker compresses its
share of the data feature-wise using histograms (as in [2])
and sends them to a master processor. The master merges
the histograms and uses them to approximate the best splits
for each leaf node, thereby constructing a new layer. Then
the master sends this new layer to each worker, and the
workers construct histograms for this new layer. Therefore,
the communication consists entirely of the workers sending
histograms to the master and the master sending a new layer
of the tree to the workers. Since the depth of the decision
stumps is small, the amount of communication is small.

We now explain this algorithm using three steps: First,
we identify cumulative statistics that are sufficient to train
a regression stump over a data set. Second, we describe how
we can construct histograms with a single pass over the data
and use them to approximate the cumulative statistics and

the best split. Finally, we describe the algorithms that run
on the master and workers and how we overlap computation
and communication to achieve good parallel performance.

Cumulative statistics

We wish to evaluate (6) with cumulative statistics about the
data set. Consider the setting from Section 3. A data set
S is split along a feature value s into Ls, Rs ⊆ S. Let `s

denote the sum of all labels and ms the number of inputs
within Ls:

`s =
X

i,xi∈Ls

yi and ms = |Ls|. (7)

With this notation, the predictors ȳs
L, ȳs

R for the left and
right subset can be expressed as

ȳs
L =

`s

ms
and: ȳs

R =
`∞ − `s

m∞ −ms
. (8)

Expanding the squares in (6) and substituting into it the
definitions from (7) and (8) allows us to write the optimiza-
tion to find the best splitting value s∗ entirely in terms of
the cumulative statistics `s and ms:

s∗ = argmin
s∈P

− `2s
ms
− (`∞ − `s)

2

m∞ −ms
. (9)

Since `∞ and m∞ are constants, in order to evaluate a split
point s, we only require the values of `s and ms.

Histograms

The traditional GBRS algorithm, as described in Section 3,
spends the majority of its computation time evaluating split
points during the creation of regression stumps. We speed
up and parallelize this process by summarizing label and
feature-value distributions using histograms. Here we de-
scribe how a single split, evaluated on the data that reaches
that particular node, is computed using these histograms.

Ben-Haim and Tom-Tov [2] introduced a parallel histogram
based decision tree algorithm for classification. A histogram
h, over a data set S, is a set of tuples h={(p1, m1), ..., (pb, mb)},
where each tuple (pj , mj) summarizes a bin Bj ⊆ S contain-
ing mj = |Bj | inputs around a center pj = 1

mj

P
xi∈Bj

xi. In

the original algorithm, as described in [2], each processor
summarizes its data by generating one histogram per label.

We lack discrete labels since we are working in a regres-
sion setting, so we cannot have different histograms for each
label. Instead, our histograms contain triples, (pj , mj , rj),
where rj =

P
i,xi∈Bj

yi is the cumulative document rele-

vance of the jth bin. Recall that for simplicity in expla-
nation, we are assuming that there is a single feature in
the data. In reality, both classification and regression ap-
proaches generate different histograms for each feature.

Construction: A histogram h can be built over a data
set S in a single pass. For each input (xi, yi) ∈ S, a new
bin (xi, 1, yi) is added to the histogram. If the size of the
histogram exceeds a predefined maximum value b∗ then the
two nearest bins are merged. The nearest bins

i, j = argmin
i′,j′

|xi′ − xj′ | (10)

are replaced by a single bin:„
mipi + mjpj

mi + mj
, mi + mj , ri + rj

«
. (11)



Once the workers send all their respective histograms to the
master, the master merges them by applying the same merg-
ing rule, i.e., merging bins of one histogram into another one
by one.

Interpolation: Given the compressed information from
the merged histogram h={(pj , mj , rj)}bj=1, we need to ap-
proximate the values of ms and `s to find the best split
point s∗, as defined in (9). Let us first consider the case
where s = pj for some 1 ≤ j ≤ b, i.e., we are evaluating
a split exactly at a centroid of a bin. To approximate the
values of mpj and `pj , we assume that the number of points
and relevances are evenly distributed around the mean pj .
In other words, half of the points mj and half of the total
relevance rj lies on the left side of pj . The approximations
then become:

mpj ≈
j−1X
k=1

mk +
mj

2
and `pj ≈

j−1X
k=1

rk +
rj

2
. (12)

If a potential splitting point s is not at the center of a bin,
i.e. pi < s < pi+1, we interpolate the values of ms and `s.

Let us consider `s first. As we already have `pi , all we
need to compute is the remaining relevance ∆ = `s − `pi =P

pi≤xi<s ri, such that `s = `pi + ∆. If we follow our as-
sumption that the points around bins i and i + 1 are evenly

distributed, then there is a total relevance of R =
ri+ri+1

2
within the bin centers pi and pi+1. We assume that this to-
tal relevance is evenly distributed within the area under the
histogram curve between [pi, pi+1]. Let a(s) =

R s

pi
h(x)∂x,

be the area under the curve within [pi, s]. The sum of rele-
vance within [pi, s] is then proportional to a(s)/a(pi+1). We
use the trapezoid method to approximate the integral a(s)
and interpolate `s with

`s = `pi +
ar(s)

ar(pi+1)
R,

where:

ar(s) ≈ (ri + rs)(s− pi)

2
and

rs = ri +
ri+1 − ri

pi+1 − pi
(s− pi).

The interpolation of ms is analogous to (13), except that all
rx are substituted for mx.

Now that we can interpolate cumulative statistics `s and
ms from histograms for arbitrary split points s, there are
potentially infinite number of candidate split points. We
select the set of candidate split points {si} positioned uni-
formly on the distribution of xi ∈ S. These uniformly dis-
tributed points may be estimated by the Uniform procedure
described in [2].

The use of histograms (even on a single cpu) speeds up the
GBRS training time significantly, as it alleviates the need
to sort the features to identify all possible split points. The
time complexity for tree construction reduces from O(n log(n))
to O(n log(b)), where b� n.

Distributed GBRS
In addition to an inherent speedup in tree construction, his-
tograms allow the construction of regression stumps to pro-
ceed in parallel. Worker nodes compress distributed subsets
of the data into small histograms. These, when merged, rep-
resent an approximate, compressed view of an entire data
set, and can be used to compute the split points. We now

explain our distributed algorithm in more detail. We also
no longer assume that there is a single feature in order to
explain the algorithm more completely.

A layout in pseudo-code for the master and worker are de-
picted in Algorithms 2 and 3. As mentioned above, the data
is partitioned into P sets, one for each worker. The workers
are responsible for constructing histograms and the master
is responsible for merging the histograms from all workers
and finding the best split points. At each step, the master
finds the best split for all the current leaf nodes, generating a
new layer of leaves, and sends this new layer to the workers.
The workers first evaluate each data point in their partition
and navigate it to the correct leaf node. They then create an
empty histogram per feature per leaf. They summarize their
respective data partition in these histograms (using the his-
togram construction algorithm described above) and send
them to the master. The master merges these histograms to
split the leaves again. Initially, the tree consists of a single
root node.

The number of histograms generated per iteration is pro-
portional to the number of features times the number of
leaves O(f × 2d) (where d is the current depth of the tree).
As d increases, this communication requirement may become
significant and overwhelm the gains made from paralleliza-
tion. However, for small depth stumps and sufficiently large
data sets, we achieve drastic speedups since the majority of
computation time is spent by the workers in compressing the
data. In addition, notice that the the number of histograms
does not depend on the size of the data set, and therefore,
the algorithm is scalable as the size of the data increases.
Further, communication volume is tunable by the compres-
sion parameter b which sets the maximum number of bins in
each histogram. At a possible sacrifice of accuracy, smaller
histograms may be used to limit communication.

When using such master/worker message passing algo-
rithms, it is important to consider two objectives in or-
der to get good performance. First, the computation and
communication should be overlapped so processors don’t
block on communication. Second, the number of messages
sent should not be excessive since initializing communica-
tion carries some fixed cost. Our algorithm is designed to
carefully balance these two objectives. In order to overlap
communication and computation, the workers compute the
histograms feature by feature and send these histograms to
the master while they move on to the next feature. In or-
der to allow this with just one pass over the data, we store
our data feature wise, that is, the values of a particular
feature for all instances are stored contiguously. To avoid
generating unnecessarily small messages, all the histograms
corresponding to a particular feature, across all leaves, are
sent as a single message. That is, instead of sending one
message per histogram, the worker generates one message
per feature. Therefore, the number of messages does not in-
crease with the depth even though the size of messages does
increase.

5. EXPERIMENTAL RESULTS
In this section, we describe the empirical evaluation of

our algorithm using several publicly available web search
ranking data compilations. We see impressive speedups on
both shared memory and distributed memory machines. In
addition, we found that, while individual decision stumps
are weaker using our approximate parallel algorithm (as ex-



Yahoo LTRC MSLR MQ2008 Folds
TRAIN Set 1 Set 2 F1 F2 F3 F4 F5

# Features 700 700 136 136 136 136 136
# Documents 473134 34815 723412 716683 719111 718768 722602

# Queries 19944 1266 6000 6000 6000 6000 6000
Avg # Doc per Query 22.723 26.5 119.569 118.447 118.852 118.795 119.434
% Features Missing 0.68178 0.67399 0.37228 0.37331 0.37263 0.37163 0.37282

TEST Set 1 Set 2 F1 F2 F3 F4 F5
# Documents 165660 103174 241521 241988 239093 242331 235259

# Queries 6983 3798 6000 6000 6000 6000 6000
Avg # Doc per Query 22.723 26.165 119.761 119.994 118.547 120.167 116.6295
% Features Missing 0.68113 0.67378 0.37368 0.36901 0.37578 0.37204 0.37215

Table 1: Statistics of the Yahoo Competition and Microsoft Learning to Rank data sets.

pected), with appropriate parameter settings, the final re-
gressor didn’t lose much accuracy. In some cases, our paral-
lel implementation generates a regressor that is just as good
as the sequential implementation, while in others, it was
very slightly less accurate.

Features: For web data, each query-document pair is
represented by a vector of features. This vector typically
consists of three parts:

Query-feature vector, consists of features that depend only
on the query q and have the same value across all the
documents d in the document set. Examples of such
features are the number of terms in the query, whether
or not the query is a person name, etc.

Document-feature vector, consists of features that depend
only on the document d and have the same value across
all the queries q in the query set. Examples are the
number of inbound links pointing to the document, the
amount of anchor-texts (in bytes) for the document,
and the language identity of the document, etc.

Query-document feature vector, consists of features that
depend on the relationship between the query q and
the document d. Examples are the number of times
each term in the query q appears in the document d,
the number of times each term in the query q appears
in the anchor-texts of the document d, etc.

Data Sets: For our empirical evaluation, we use the two
data sets from Yahoo! Inc.’s Learning to Rank Challenge
2010 [28], and the five folds of Microsoft’s LETOR [20]
dataset. Each of these sets come with predefined training,
validation and test sets. Table 1 summarizes the statistics
of these data sets.

Experimental Setup: We conducted experiments on a
parallel shared memory machine and a distributed memory
cluster. The shared memory machines is an AMD Opteron
1U-A1403 48-core SMP machine with four sockets contain-
ing AMD Opteron 6168 Magny-Cours processors. The dis-
tributed memory cluster consists of 8-core, Nehalem based
computing nodes running at 2.73GHz. They each have 24GB
of RAM each. For our experiments, we used 6 of these nodes
(with a total of 48 cores). On both machines, we used the
same implementation of the algorithm, which uses MPI [24].
We will make the code available under an open source li-
cense. We compare against the exact GBRS implementa-
tion3 described in [21], which to our knowledge is currently

3http://research.engineering.wustl.edu/∼amohan/

the only large-scale open-source GBRS implementation. Ta-
ble 1 summarizes statistics about all data set collections.

For all experiments, for simplicity, we used the squared-
loss as our cost-function C(·). Our algorithm has four pa-
rameters: The depth of the decision stumps d, the number
of boosting iterations m, the step-size α and the number of
bins b in the histograms. We perform most experiments on
the sensitivity of these parameters only on the Yahoo Set 1
and 2, as these span two different ranges of data set sizes
(Set 1 is almost one order of magnitude larger than Set 2).

Prediction Accuracy: As a first step, we investigate
how much the ranking performance, measured in NDCG [16]
and ERR [9], is impacted by the approximated construction
of the regression stumps.

Figure 1 shows the NDCG and ERR of the parallel imple-
mentation “pGBRS” and of the exact algorithm “GBRS” as
a function of the number of boosting iterations on the Ya-
hoo Set 1 and 2 under varying tree depths. For the parallel
implementation, we used b = 25 bins for Set 2 and b = 50
for the much larger Set 1. The step-size was set to α = 0.06
in both cases.

As expected, the histogram approximation reduces the ac-
curacy of the weak learners. Consequently, with equal depth
and iterations, pGBRS has lower ERR and NDCG than the
exact GBRS. However, we can compensate for this effect by
either running additional iterations or increasing the depth
of the decision stumps. In fact, it is remarkable that on Set
1 (Figure 1) the NDCG curves of pGBRS with d = 6 and
d = 5 align almost perfectly with the curves of GBRS with
d = 5 and d = 4. For Set 2 the lines are mostly shifted by
approximately 200 iterations. The additional computation
required by either of these approaches (increasing d or m) is
more than compensated for by the better performance of the
histogram method since it does not require feature sorting.
(For small d ≤ 10 – while the computation is dominated by
computation – the running time increases roughly linearly
with increasing d. On the Yahoo Set 1, training pGBRS
with m = 6000 trees on 16 cpus and depth d = 5 was only
a factor 1.34 slower than d = 4 and a depth of d = 6 slowed
the training time down by a factor of 1.75. )

Table 2 shows the test result on all data sets of GBRS
with d = 4 and pGBRS for d = 4, 5, 6 (the number of trees
m was picked with the help of the corresponding validation
data sets). As the table shows, for all data sets, the differ-
ence between pGBRS with d = 6 and GBRS with d = 4 is
in the last (third) significant digit for all data sets. For the
two Yahoo data sets, pGBRS provides slightly better accu-
racy, while for the Microsoft data sets, the exact algorithm
is slightly better. The Microsoft data sets were run with



0.447	  

0.449	  

0.451	  

0.453	  

0.455	  

0.457	  

0.459	  

0.461	  

0.463	  

0	   500	   1000	   1500	   2000	  

ER
R	  

Itera)ons	  

GBRS	  [d=4]	   GBRS	  [d=5]	  
pGBRS	  [d=4]	   pGBRS	  [d=5]	  
pGBRS	  [d=6]	  

0.752	  

0.76	  

0.768	  

0.776	  

0.784	  

0.792	  

0	   500	   1000	   1500	   2000	  

N
D
CG

	  

Itera+ons	  

GBRS	  [d=4]	   GBRS	  [d=5]	  

pGBRS	  [d=4]	   pGBRS	  [d=5]	  

pGBRS	  [d=6]	  

0.453	  

0.454	  

0.455	  

0.456	  

0.457	  

0.458	  

0.459	  

0.46	  

0	   500	   1000	   1500	   2000	  

ER
R	  

Itera)ons	  

GBRS	  [d=4]	   GBRS	  [d=5]	  

pGBRS	  [d=4]	   pGBRS	  [d=5]	  
0.76	  

0.764	  

0.768	  

0.772	  

0.776	  

0.78	  

0	   500	   1000	   1500	   2000	  

N
D
CG

	  

Itera+ons	  

GBRS	  [d=4]	   GBRS	  [d=5]	  

pGBRS	  [d=4]	   pGBRS	  [d=5]	  

Figure 1: ERR and NDCG for Yahoo Set 1 (top) and Yahoo Set 2 (bottom) on parallel (pGBRS) and exact
(GBRS) implementations with various stump depths d. The NDCG plot for Set 1 (top right) shows nicely
that pGBRS with a stump depth of d + 1 leads to results similar to the exact algorithm with depth d.

parameters (α = 0.1, b = 100, m ≤ 5000). We increased the
number of bins since the data set is larger.

We also evaluated the sensitivity of the algorithm to the
number of histogram bins b and the number of processors.
Figure 2 shows several runs (α = 0.05, d = 5) with vary-
ing numbers of histogram bins assessed by quality measures
which have been scaled by the best observed accuracy for
each measure. For each run we report the best result (in
terms of iterations m) based on the validation data set. We
see that while the prediction accuracy increases slightly as
the number of bins increases, it converges quickly at about
15 bins, and the differences thereafter are insignificant. In
a similar experiment (not shown) we measured prediction
accuracy while varying the number of processors. Despite
more histograms being inexactly merged with each addi-
tional processor, we did not observe any noticeable drop in
accuracy as the number of processors increased.

To demonstrate that our algorithm is competitive with the
state-of-the-art, we selected the parameters m, d, b by cross-
validation on the validation sets of both Yahoo data sets
(for simplicity we fixed α = 0.06 – as GBRS is known to be
relatively insensitive to the step-size). This yielded test set
ERR of 0.4614 on Set 1 (step-size m = 3926, d = 7, b = 100)
and 0.4596 on Set 2 (m = 3000,d = 5,b = 50). The ERR
score of Set 1 would have placed us 15th (and 14th for Set
2) on the leaderboard of the 2010 Yahoo Learning to Rank
Challenge4 out of a total of 1055 competing teams. This

4http://learningtorankchallenge.yahoo.com/
leaderboard.php

result – despite our simple squared-loss function – is only
1.4% below the top scoring team, which used an ensemble
of specialized predictors and fine-tuned cost functions that
explicitly approximate the ERR metric [6]. We assume that
better scores could be achieved with our parallel algorithm
as well by using more specialized loss functions C(·) – how-
ever this is beyond the scope of this paper.

Performance and Speedup: For performance measure-
ments, we trained pGBRS for m = 250 trees of depth d = 5
using histograms with b = 25 bins. Figure 3 shows the
speedup of our pGBRS algorithm on both the Yahoo and
the LETOR Fold 1 while running on the shared memory ma-
chine. For the smaller data set (Set 2), we achieve speedup
of up to 10 on 13 cores. For the larger data set (Set 1), we
achieve much higher speedups, up to 33 on 41 processors,
reducing the training time on Set 1 from over 11 hours to
merely 21 minutes. On the Microsoft data (almost twice as
many samples as Yahoo Set 1), we see the speedup of up to
42 on 48 cores, and there is potential for more speedup on
more cores since the line hasn’t plateaued yet. We see more
speedup on the Microsoft data since it has fewer features (re-
quires less communication) and more documents (increases
the fraction of time spent on tree construction). While Set
1 and LETOR are among the largest publicly available data
sets, proprietary data sets are potentially much larger, and
we expect further speedup on those.

Figure 4 shows the speedup of our parallel GBRS on both
the Yahoo and the LETOR datasets while running on the
cluster. As expected, due to the communication latency, the
speedup is smaller, and flattens out after 32 cores. How-
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Figure 2: Ranking performance of pGBRS on the
Yahoo Set 1 and 2 as a function of varying number of
histogram bins b. Already with b ≥ 20 the reduction
in both metrics is less than a factor 0.004 away from
the best value.

ever, we still see the speedup of about 20 on Yahoo Set 1
and about 25 on the LETOR data.5 This result demon-
strates the generality of our parallelization methods in that
the same strategy (and even the same code) can provide
impressive speedups on a wide variety of parallel machines.

All speed-up results are reported relative to the sequential
pGBRS version (1 helper cpu). We do not report speedup
compared to the exact algorithm, since this codebase uses
different data structures and timing results might not be
representative. In general, however, the speed-up with re-
spect to the 1-cpu pGBRS runs understate the speedup over
the exact algorithm, since the exact algorithm available to
us is considerably slower than pGBRS, even on a single pro-
cessor. Just for comparison, sequentially (1 helper cpu), our
parallel algorithm completes execution in 3, 178s on Yahoo
Set 2 and 43, 189s on Set 1, both with depth 5. Even with
a smaller depth 4, the exact GBRS implementation takes
5, 940s on Set 2 and 259, 613s on Set 1. Particularly for
Set 1, the exact algorithm is about 6 times slower than the
approximate algorithm even when running with a smaller
depth.6

6. RELATED WORK
In this section, we present a sample of previous work on

parallel machine learning most related to our work. The re-
lated work falls into three categories: parallel decision trees,
parallelization of boosting, and parallelization of web search
ranking using other approaches like bagging.

Parallel decision tree algorithms have been studied for

5We see some performance irregularities (in the form of
zigzags) for the LETOR data set. We are investigating these
irregularities and suspect that they are due to caching and
memory bandwidth effects.
6Exact implementations with clever bookkeeping [14] may
be faster – however, to our knowledge, no large-scale im-
plementations are openly available. We expect, nonetheless,
that our algorithm can be optimized to perform, on a single
cpu, comparably or faster than optimized exact implemen-
tations, since it doesn’t require feature sorting.

0	  

10	  

20	  

30	  

40	  

0	   10	   20	   30	   40	   50	  

Sp
ee
du

p	  

Number	  of	  Processors	  

Fold	  1	  [n=723K]	  

Set	  1	  [n=473K]	  

Set	  2	  [n=35K]	  

Perfect	  

Figure 3: The speedups of pGBRS on a multicore
shared memory machine as a function of cpu cores.
The speedup increases with data set size and is al-
most perfectly linear for Yahoo Set 1 and the Mi-
crosoft LETOR data set. Latter could potentially
obtain even higher speedup with more cores.
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Figure 4: The speedups of pGBRS on the cluster
as a function of cpu cores. We observe up to 25
fold speedups in this distributed setting for the Mi-
crosoft LETOR data set.

many years, and can be grouped into two main categories:
task-parallelism and data-parallelism. Algorithms in the
first category [11, 25] divide the tree into sub-trees, which
are constructed on different workers, e.g. after the first node
is split, the two remaining sub-trees are constructed on sep-
arate workers. There are two downsides of this approach.
First, each worker should either have a full copy of the data
or large amount of data has to be communicated to workers
after each split. Therefore, for large data sets, especially if
the entire data set doesn’t fit in each workers memory, this
scheme would likely provide slowdown rather than speedup.
Second, small stumps are unlikely to get much speedup,
since they cannot utilize all the available workers. Our al-
gorithm falls into the second approach [1], data-parallelism,
where the training data is divided among the different work-
ers. The data can either be divided up by features [12], or
by samples [23]. Dividing by feature requires the workers
to coordinate which input falls into which tree-node, as the
individual workers do not have enough information to com-



ERR Yahoo LTRC MSLR MQ2008 Folds
method Set 1 Set 2 F1 F2 F3 F4 F5

GBRS (d=4) 0.461 0.458 0.361 0.358 0.355 0.367 0.373
pGBRS (d=4) 0.458 0.459 0.346 0.341 0.342 0.343 0.357
pGBRS (d=5) 0.460 0.460 0.355 0.348 0.355 0.353 0.367
pGBRS (d=6) 0.461 0.460 0.355 0.354 0.357 0.363 0.367

NDCG Yahoo LTRC MSLR MQ2008 Folds
method Set 1 Set 2 F1 F2 F3 F4 F5

GBRS (d=4) 0.789 0.765 0.495 0.493 0.484 0.498 0.500
pGBRS (d=4) 0.782 0.743 0.474 0.469 0.466 0.473 0.479
pGBRS (d=5) 0.785 0.754 0.483 0.479 0.479 0.484 0.491
pGBRS (d=6) 0.785 0.760 0.486 0.484 0.482 0.491 0.495

Table 2: Results in ERR and NDCG on the Yahoo and Microsoft data sets. The number of boosting iterations
is selected with the validation data set. On both Yahoo data set, pGBRS matches the result of GBRS with
d = 4 when the stump depth is increased. For the Microsoft data sets the ranking results tend to be slightly
lower.

pute it locally. This requires O(n) communication, which
we try to avoid as we scale to very large data sets. Dividing
the data by samples [23] avoids this problem. However, in
order to obtain the exact solution, all nodes are required to
evaluate the potential split points found by all other nodes.
Our approach splits the data by samples, and deliberately
only approximates the exact split, making the communica-
tion requirement independent of the data set size.

Our algorithm is most similar to Ben-Haim and Tom-
Tov’s work on parallel approximate construction of deci-
sion trees for classification [2]. Our histogram methods were
largely inspired by their publication. However, our approach
differs in several ways. First, we use regression trees instead
of classification – requiring us to interpolate relevance scores
within histogram bins instead of computing one histogram
per label. Further, our method explicitly parallelizes gradi-
ent boosted regression stumps, using trees with a fixed small
depth. The communication required for workers to exchange
the feature-histograms grows exponentially with the depth
of the tree. In our experiments, for trees with depth d ≥ 15
(consisting of over 65, 535 tree nodes), we saw a slowdown
(instead of speedup) due to increased communication. This
drastically reduces the benefit of parallelization of full deci-
sion or regression trees on large data sets, since the required
tree depth grows with increasing data set size. In contrast,
our framework deliberately fixes the tree-depth to a small
value (e.g. d between 4 and 6 with 63 to 255 tree-nodes).
Instead of deeper trees, larger data sets require more boost-
ing iterations, which is not a problem for us. As we show
in Section 5 (Figure 3), our pGBRS algorithm obtains more
speed-up on larger data sets, as the parallel scan of the data
to construct histograms takes up a larger fraction of the
overall running time.

Most of the previous work on parallelizing boosting fo-
cusses on the original AdaBoost algorithm [18] instead of
gradient boosting. MultiBoost [27] combines wagging with
Adaboost, which can be performed in parallel, but inherits
AdaBoost’s sensitivity to noise.

Finally, there have been multiple approaches to apply bag-
ging [3] for web-search ranking. Recent work by Pavlov and
Brunk [22] uses bagged boosted regression trees. Bagging
is inherently parallel but requires additional computation
time as it is averaged over many independent runs (the so-
lution of Pavlov and Brunk for the Yahoo Learning to rank
Challenge required a total of M = 300, 000 trees of depth

d = 12). Usually, the choice between Bagging and Boost-
ing is more a decision based on different learning paradigms
rather than computational resources.

7. CONCLUSIONS
We have presented a parallel algorithm for training gra-

dient boosted regression stumps. To our knowledge, this is
the first work that explicitly parallelizes the construction of
decision stumps for the purpose of boosting. Our approach
utilizes the facts that gradient boosting is known to be ro-
bust to the classification accuracy of the weak learners and
that regression stumps are of strictly limited depth. We
have shown that our approach provides impressive (almost
linear) speedups on several large-scale web-search data sets
without any significant sacrifice in accuracy.

Our method applies to multicore shared-memory systems
as well as to distributed setups in clusters and clouds (e.g.
Amazon EC2). The distributed setup makes our method
particularly attractive to real-world settings with very large
data sets. Since each processor only needs enough physical
memory for its partition, and the communication is strictly
bounded, this allows the training of machine-learned rankers
on web-scale data sets even with standard off-the-shelf com-
puter hardware. Given the current trend towards multicore
processors, parallel computing and larger data sets, we ex-
pect our algorithm to increase in both relevance and utility
in the foreseeable future.

We are planning to extend this work in several directions.
First, we think we can further increase the efficiency and per-
formance by eliminating the master and merging histograms
pairwise among workers. In addition to freeing the mas-
ter processor for useful work, this approach would further
overlap computation and communication. Second, we are
planning to run experiments with more workers on clouds
to guage the efficacy of this approach on non-dedicated ma-
chines. Third, we are planning to investigate adding even
more inaccuracy in the computation of the splits. For exam-
ple, each worker can construct the histograms for only some
of the features (instead of all the features as in the current
algorithm). This approach should reduce both the commu-
nication requirement and the amount of work done by each
worker on each step. If we assume that the data on each
processor is a uniformly sampled from the complete data
set, then this approach should still allow the master to com-
pute split points with reasonable accuracy. Since features



have different prediction quality, however, this approach re-
quires careful tuning of how the workers choose the sample
of features they construct histograms for.
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