Practice Problems:
1. Prove for integers \(n \geq 0, 3|n^3 + 2n \)

2. Prove Bernoulli’s inequality:
 \[(1 + x)^n \geq 1 + nx\]
 for all non-negative integers \(n \), when \(x \) is a real number greater than -1.

3. Prove that \(\log_{\sqrt{5}}16 \) is irrational.

Problems to turn in:
1. For all integers \(k \), prove that if \(k^2 \) is a multiple of 3 then \(k \) is a multiple of 3.

 We prove the contrapositive: If \(k \) is not a multiple of 3 then \(k^2 \) is not a multiple of 3.

 If \(k \) is not a multiple of 3, then there is some integer \(m \) such that we can write \(k = 3m + 1 \) or \(k = 3m + 2 \).

 Case 1: \(k = 3m + 1 \)
 \[k^2 = (3m + 1)^2 \]
 \[= 9m^2 + 6m + 1 \]
 \[= 3(3m^2 + 2m) + 1 \]

 so \(k^2 = 3(integer) + 1 \), so \(k^2 \) is not a multiple of 3.

 Case 2: \(k = 3m + 2 \)
 \[k^2 = (3m + 2)^2 \]
 \[= 9m^2 + 12m + 4 \]
 \[= 3(3m^2 + 2m + 1) + 1 \]

 so \(k^2 = 3(integer) + 1 \), so \(k^2 \) is not a multiple of 3.

 Since both cases show that \(k^2 \) is not a multiple of 3, and since those are the only possibilities for \(k \) not itself a multiple of 3, we have shown:

 If \(k \) is not a multiple of 3 then \(k^2 \) is not a multiple of 3.

 and therefore also have shown:

 if \(k^2 \) is a multiple of 3 then \(k \) is a multiple of 3.

2. Prove that \(\sqrt{3} \) is irrational using a method similar to the one we used in class (about \(\sqrt{2} \)). (You may use the property from the previous question, whether or not you successfully proved it).

 Suppose, for contradiction, that \(\sqrt{3} \) is rational.

 Then, \(\sqrt{3} = \frac{a}{b} \) for integers \(a, b \) that are relatively prime.

 Then, \(3 = \frac{a^2}{b^2} \).

 Then, \(3b^2 = a^2 \).

 So \(a^2 \) is a multiple of 3

 So \(a \) is a multiple of 3 by problem 1.

 So \(a = 3k \) for some \(k \).

 So \(3b^2 = (3k)^2 \)
So $3b^2 = 9k^2$
So $b^2 = k^2$
So b^2 is a multiple of 3.
So b is a multiple of 3.
So a, b are both multiples of 3, which contradicts that a, b are relatively prime.

3. Prove, by induction on n, that the following equation holds (as long as a is not exactly 1):

$$\sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a - 1}$$

Base case: $n = 0$ (Could also use $n = 1$, it is my fault that I didn’t specify a starting condition).

$P(n)$: $\sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a - 1}$

$P(0)$: $\sum_{i=0}^{0} a^i = \frac{a^{0+1} - 1}{a - 1}$

$$\sum_{i=0}^{0} a^i = a^0 = 1 = \frac{a-1}{a-1}$$

Induction Hypothesis Assume $P(k)$: $\sum_{i=0}^{k} a^i = \frac{a^{k+1} - 1}{a - 1}$

Prove $P(k+1)$: $\sum_{i=0}^{k+1} a^i = \frac{a^{k+2} - 1}{a - 1}$

$$\sum_{i=0}^{k+1} a^i = \sum_{i=0}^{k} a^i + a^{k+1} = \frac{a^{k+1} - 1}{a - 1} + a^{k+1}, \text{ By the induction hypothesis}$$

$$= \frac{a^{k+1} - 1 + (a-1)a^{k+1}}{a - 1}$$

$$= \frac{a^{k+2} - 1}{a - 1}$$

$$= \frac{a^{k+2} - 1 + a^{k+1} - a^{k+1}}{a - 1}$$

$$= \frac{a^{k+2} - 1}{a - 1}$$

$$= \frac{a^{k+2} - 1}{a - 1}$$