Welcome to CSE 438S
Mobile Application Development
“iPhone Class”

Course Information

- **Instructor**
 - Todd Sproull
 - todd@wustl.edu
 - Jolley 536
 - Office Hours by Appointment

- **Classrooms**
 - None...Online only this semester
 - I will host Zoom meeting during class time

- **Time**
 - Tuesdays and Thursdays. 3 – 5:30 PM

- **Course Website**
 - http://research.engineering.wustl.edu/~todd/cse438/
 - Also available on Canvas

- **Head TA**
 - Michael Ginn
 - michael.ginn@wustl.edu

- **We will use Piazza to answer questions**
 - Please sign up, I emailed everyone an invite
Requirements

• CSE 247

• Access to an Intel-based Macintosh
 – Running macOS 10.15 or later
 – iPhone SDK Xcode 11.5 and iOS 13
 • We will use Xcode 11.5 the entire semester, do not upgrade to a newer version of the software

• Textbook
 – None, we will use lecture slides and the developer.apple.com website

• Owning an iPhone or iPod Touch not required
 – We will use the simulator throughout the semester
 – Final projects may target an iPhone or iPod Touch

Stanford CS193p

• This course is based on cs193p taught at Stanford by Evan Doll and Alan Cannistraro
 – Lectures and slides available on iTunes

• Many of the lectures and programming assignments come from this class
 – Initial assignments are identical
 – Later assignments somewhat different

• Consider taking the iTunes course if that suits your personality
Copyrights, Patents, Fair Use...

- Everything discussed in this class and on the website is completely OPEN and FREE
 - Do whatever you want with it

- The goal of this class is to share as much information as possible
 - Open discussion of topics and ideas

- If you have a great idea and do not want others to implement it and sell it DO NOT discuss it here
 - If you choose to discuss it, we can probably improve it

- You are free to become an Apple Developer ($99/yr) and sell anything you create in this class
 - Or implement another student’s great idea and sell it

What is this class all about?

- Building applications on iOS Devices
 - iPhone, iPad, iPod Touch, Apple Watch, Apple TV
- Learn new programming languages
 - Swift
 - Objective-C
Cocoa Touch and iPhone SDK

- Based on Cocoa
 - API used to develop software on Mac

- Provides rich starting point for exploring app design

- Shows real-world implementations of OO design patterns

- Designs learned on iPhone translate directly to Mac OS X

Swift

- Apple’s latest programming language to develop OS X and iOS applications

- New language only a few years

- Combines many of the latest programming techniques in an easy to learn language
Grading

• 4 lab assignments during the semester
 – 70% of your final grade

• Final Project
 – Work on something that can make a difference
 • Start thinking about your project today!
 – 30% of your final grade

Questions?
iPhone OS Overview

iPhone
iPhone / iPad

• Core OS
 – OS X Kernel
 – BSD
 – Sockets
 – Security
 – Power Mgmt
 – Keychain
 – File System
- **Core Services**
 - Collections
 - Networking
 - SQLite
 - Net Services
 - Threading
 - Preferences

- **Media**
 - Core Audio
 - Audio Mixing
 - Audio Recording
 - Video Playback
 - JPG, PNG, TIFF
 - PDF
 - Quartz (2D)
 - Core Animation
 - OpenGL ES
• **Cocoa Touch**
 - Multi-Touch Events
 - Multi-Touch Controls
 - Accelerometer
 - Localization
 - Alerts
 - Web Views

Development

• **Tools**
 - Xcode
 - Storyboard (formerly Interface Builder)

• **Frameworks**
 - Foundations
 - UIKit

• **Languages and Runtimes**
 - Swift
 - Objective C
Cocoa Touch Architecture

Cocoa Touch

UIKit
- User interface elements
- Application runtime
- Event handling
- Hardware APIs

Foundation
- Utility classes
- Collection classes
- Object wrappers for system services
- Subset of Foundation in Cocoa

Object Oriented Programming
Object

Thing

Behavior

Thing

behavior
doSomething
Message

```

“doSomething”

| doSomething |
```

State

```

state

| count |

flag

| doSomething |
```
Other Objects as State

- **state**
 - count
 - flag
 - helper
- **behavior**
 - helper
 - doSomething

otherThing

Outlets

- **Controller**
 - slider
 - label
 - updateLabel

Value: 100
Target/Action

Controller

slider label

updateLabel

target

action - ‘updateLabel’

Value: 100

Demo
Recap

- Keep logic separate from interface elements
- Outlets connect controllers to views
- Use target/action to customize behavior