Control and Configuration Software for a
Reconfigurable Networking Hardware Platform

Todd S. Sproull, John W. Lockwood , David E. Taylor
Applied Research Laboratory
Washington University
Saint Louis, MO 63130
Web:http://ww. arl . wust| . edu/arl/ projects/fpx/

Abstract—A suite of tools called NCHARGE (Networked Config- Field Programmable [-0
(=

urable Hardware Administrator for Reconfiguration and Govern- Port Extender —=
ing via End-systems) has been developed to simplify the co-design
of hardware and software components that process packets within a
network of Field Programmable Gate Arrays (FPGAs). A key fea-
ture of NCHARGE is that it provides a high-performance packet in-
terface to hardware and standard Application Programming Inter-
face (API) between software and reprogrammable hardware mod-
ules. Using this API, multiple software processes can communicate
to one or more hardware modules using standard TCP/IP sockets. End-system Web Interface
NCHARGE also provides a Web-Based User Interface to simplify

the configuration and control of an entire network switch that con- Internet
tains several software and hardware modules.
NCHARGE on
R Control Processo
|. INTRODUCTION End-system Automated Software

An experimental platform called the Field Pro-Fig. 1. Overview of system architecture: NCHARGE runs on the con-
grammable Port Extender (FPX) has been developedt{@J processor of a gigabit switc_h equipped with FPX (econfigurable
. . t}ardware modules and communicates to end-systems via the Internet.
enable the rapid deployment of hardware modules in net-
works [1] [2]. In this system, data are processed by recon-
flgurabll(e hardware, er"le control andfconﬁguranon (I)f thlﬁﬁ FPGA hardware and manages the data structures for a
network system is implemented in software. Control ce Iﬁ)rwarding table in software.

are used to communicate between the hardware and SOftNCHARGE also provides a web-based user interface

: -systems. Through the web in-
network of reconfigurable hardware on the FPX callefl t1ce users can reprogram the FPGASs on the FPX, up-

NCHARGE (Networked Configurable Hardware Admin-,se remote memory attached to the FPGAs, check the

istrator for Reconfiguration and Governing via Endpa s status, or issue custom commands to their specific

systems). NCHARGE enables new hardware modulesga,yare module. In a fraction of a second, NCHARGE
be dynamically deployed onto the Field Programmablg jpe to program the FPX to act as an IP router from

Gate Array (FPGA) logic of the FPX over a networky e hrowser. With a few additional button clicks the
Once the hardware module is installed, NCHARGE COf, tor can be reconfigured. If the need arises, a new mod-

trols the operation of each FPX by issuing customlzelgi)e can be loaded onto the FPX to perform, encryption,
control cells to control each hardware module.

; e run length encoding, compression, and other customized
NCHARGE provides a standard Application Programacket processing functions. The features of NCHARGE

ming Interface (API) for software applications that comsjy exploit the flexibility of the reconfigurable hardware.
municate with hardware. NCHARGE uses TCP/IP to

communicate reliably with hosts on the Internet. It also
implements a reliable protocol to transmit and receive ||
messages between hardware and software, as shown in
Figure 1. Software applications, in turn, connect to Reprogrammable hardware has proven to be effective
NCHARGE via TCP/IP to issue commands to the remo®f accelerating functions within a network [3] [4]. The
hardware modules. One application that uses this s@bility to easily reprogram hardware via the Internet al-
vice is an Internet routing module that forwards packetews networking features to be deployed without physi-
cal access to the hardware [5]. The (FPX) is a network-
This research is supported by NSF: ANI-0096052 and Xilinx Corp. ing hardware platform that has been built to perform data

REPROGRAMMABLE HARDWARE PLATFORM

processing for cells and packets in a high-speed netwaule to determine if the control cell should be processed.
switch [6]. If the control cell is addressed to the hardware module,
The FPX provides an open platform for the rapid protothe module processes the cell, builds a response cell, and
type and deployment of networking functions in hardwareends the response cell back to NCHARGE. If the control
[7]. Components of the FPX include two FPGAs, fivecell is not addressed to the hardware module, the module
banks of memory, and two high-speed network interfacesmply passes the cell to its cell output interface, as the
[2]. Networking interfaces on the FPX were optimized teell may be addressed to a subsequent module in the sys-
enable the simultaneous arrival and departure of data celsn or may be a response cell from a previous module in
at SONET OC48 rates. This is the equivalent bandwidthe system.
of multiple channels of Gigabit Ethernet.
The FPX integrates with another open hardware plat- Control Cell Processor (CCP)

form, the Washington University Gigabit Switch (WUGS) The Control Cell Processors (CCPs) are entities im-
[8]. By inserting FPX modules at each port of the switchglemented in FPGA hardware on the NID and RAD that
parallel FPX units can be used to simultaneously proceggocess control cells sent by NCHARGE. Control cells
packets on all ports of the network switch. addressed to a CCP cause the hardware to perform an
In a single rack mount cabinet, a system has be@peration and generate a return message. Several types
demonstrated that can hold 8 * 2 * 2 = 32 Xilinx VirteX of control cells are used to perform the memory transac-
FPGA devices connected via a 20 Gbps network switcions. State machines within the CCPs read and write the
Hardware resources on the FPX have been designedpiiysical memory at addresses specified in control cells.
such a way as to promote ease of application develophe CCPs perform memory transactions consisting of any
ment. Hardware modules use a standard interface to gmbination of reads and writes to either of the SRAM
quest access to memory and execute memory transgevices or SODRAM devices [11].
tions. The interfaces abstract application developers from|n order to perform the reliable transmission protocol
device Specific timing constraints, insulating hal’dwal’ﬂith the Software, the CCP formats a response cell con-
modules from changes in memory device technology. taining the data written to and read from the addresses in
) the designated memory device. The CCP also computes
A. Network Interface Device (NID) checksums to ensure the integrity of the messages. If a

The FPX includes a statically-programmed FPGA th&ontrol cell is dropped or corrupted, another will be re-
is called the Network Interface Device (NID). It controlstransmitted by NCHARGE to the CCP.
how packet flows are routed to and from modules. The))
NID contains a per-flow switching module to selectively- Reconfiguration Control (RC)
forward traffic between networking ports of the RAD, the The Reconfiguration Control (RC) module prevents
switch, and an optical line card. The NID also providegata and state loss when reconfiguring hardware modules
mechanisms to dynamically load hardware modules ovigr the RAD FPGA. In order to reconfigure a hardware
the network and into the router. The combination of thes@odule in the RAD FPGA, configuration data is sent to
features allows data processing modules to be dynargie NID where it is stored in an off-chip SRAM. When
cally loaded and unloaded without affecting the procesatl configuration data has been received for the new mod-

ing of packets by the other modules in the system. ule, the NID initiates a reconfiguration handshake with
o _ the RC in the RAD FPGA, designating the ModulelD of
B. Reprogrammable Application Device (RAD) the module which is to be reconfigured.

The FPX also includes a dynamically-programmed
FPGA that s called the Reprogrammable Application De-
vice (RAD). The RAD enables application-specific func- NCHARGE is the software component that controls re-
tions to be implemented as dynamic hardware plug-pprogrammable hardware on a switch. Figure 2 shows the
(DHP) modules [9]. A DHP consists of a region of FPGAole of NCHARGE in conjunction with multiple FPX de-
gates and internal memory, bounded by the well-definedces within a switch. The software provides connectiv-
interface. A standard interface has been implemented isp between each FPX and multiple remote software pro-
that modules can transmit and receive packet data acesses via TCP sockets that listens on a well-defined port.
communication with off-chip memories [10]. Through this port, other software components are able to

Each hardware module has a unique identificatiocommunicate to the FPX using its specified API. Because
number (ModulelD) that is used for application-specifieach FPX is controlled by an independent NCHARGE
communication. When a control cell arrives at the inpugoftware process, distributed management of entire sys-
of a hardware module, it compares the ModulelD field items can be performed by collecting data from multiple
the control cell to the ModulelD stored within the mod-NCHARGE elements [12].

IIl. SOFTWARE COMPONENTS

Web
Applications

NCHARGE

0.0

Remote
Applications

OC-3 Link
(up to 32 VCls)

Washington University
Gigabit Switch [‘

Fig. 2. Detail of the hardware and software components that compri
the FPX system. Each FPX is controlled by an NCHARGE softwar
process. The contents of the memories on the FPX modules can k&
modified by remote processes via the software API to NCHARGE.

NCHARGE

A. NCHARGE Features 0.0

NCHARGE provides an API for debugging, program-
ming, and configuring an FPX. Specifically the API in-
cludes commands to: check the status of an FPX, co
figure routing on the NID, perform memory updatesgy 3.
and perform full and partial reprogramming of the RADNCHARGE
NCHARGE also provides a mechanism for applications

to define their own custom control interface. loading the NID memory with the design and then issuing
Control cells are transmitted by NCHARGE and pro: other control cell for the NID to program the RAD. The

cessed by CCPs on the RAD or the NID. To update a@(gntent of memory can be a complete bitfile or a partial
configure routes for traffic flows, NCHARGE writes com- itfile, as would be produced by a tool like PARBIT[13].

mands to modify routing entries on the gigabit switch o .
on the NID. To check the status of the FPX, NCHARG CHARGE allqws for a user to program a section of the
AD or the entire FPGA.

sends a control cell to the NID or RAD and waits for
response. _ B. NCHARGE AP

To modify the content of memories attached to the])]
FPX, NCHARGE supports several commands to perform NCHARGE communicates with a wide range of soft-
memory updates. Applications can read or write words are through the use of sockets. The API defines a set
the SRAM and SDRAM memory modules. These menff text strings that comprise of NCHARGE commands.
ory updates are packed into control cells and sent to tk¥ce the command is sent to NCHARGE over its TCP
FPX. The number of updates that fit into a single contr@ocket the user will then receive a response control cell
cell depends on the number of consecutive updates ayVih any relevant return information as well as the indica-
particular location in memory and the size of the memfion of & successful transmission.
ory update. The size of the control word allows for up tg
eight 32-bit address/data pairs to be specified in a singq:e
message. For full-width, 36-bit memory words in SRAM, All of the functionality of NCHARGE is brought to
up to six words can be specified in a single control celthe web to allow a simple straight forward interface. The
For the 64-bit words in SDRAM, up to four words can beveb interface also provides switch level configuration and
updated at once. maintenance.

Sending designs to an FPX via control cells is done by A screen shot of the web page is shown in Figure 4.

Example of software applications communicating with

Web Communication

inix
File Edt View Favorites Tools Help ‘
GBack + = - @[3 & | Doearch GiFavortes @veda (3 | By S @] - 5
Address I@ http:/{Fpx2.arl wostl edu j PGU

[w4

Fig. 4. Screen shot from the FPX Web Interface

This is the main page of the NCHARGE web interface.

From here users select which commands to iSSUE t0 ar e oo o S G 958 L E 8 s

F PX. - FPX CELL LOGS -
The mechanism for handling the web-based commands or Mo St O

is through the use of CGI scripts. Forms are processed by —— B

scripts, which in turn send commands to the NCHARGE %{ﬁmjx

software. The communication between NCHARGE and - NI VS, OUT o e

the web interface is done using a TCP socket program DISABLEL0GS

called ‘basicsend’. Basicsend is discussed in more de- ety

tail in the next section. L o s

D. Cell Logging e Dockot Operation | Se | Lastbd

nid_log_00in.txt [Edit). [Upload], [Delete] (239 Sat Sep 29 12:56:57 2001

NCHARGE can log control cells sent from and re- e

ceived by the control software. Logging can be en- g = e —

abled, disabled through the web or command line inter-
face. Futher, the contents of the logs can be viewed
the web. Each log is a text file that contains the content 0
the cell and time the cell was transmitted. Figure 5 shows
how logging can be enabled for cells transmitted to and
from the NID and/or the RAD.
NCHARGE and the web interface look for files in a

particular directory, for all references made to loading

files or read from files. A user may upload or edit fileslocuments. The user has the ability to modify, upload or

over the network by using the web interface to access thelete any file in NCHARGE public directory.

\}fg 5. Screen shot from of the FPX Web Interface showing the cell
logging functions

E. Socket API

Bsearch (A Fovorites Grede G| B-5 -EHMA
NCHARGE monitors a well-known TCP port, then ac- : Ll
cepts control connections via TCP/IP sockets. The soft- TAD MERORY TEDATES
ware multiplexes control of the hardware among multi- e P
ple software clients. One mechanism for issuing single O RendRAD many
commands is through a ‘bassend’ application. This I —
program accepts control commands and returns the resul e B B i b el
via a remote control cell. These commands are the same _Eaoie ammend_|
as those that would be entered manually at a console ol
through a telnet session. Figure 3 illustrates how different ““I’;““,;mm,__l
applications can compose layered modules to communi- e sl
cate with NCHARGE through sockets. B —
o O ReadSwing Address| |
F. VCI Updates and Satus | Secsooman_|
[[ens 7

NCHARGE allows user to issue a read status command ™
to the NID to display the current state of the NID FPGAFig. 6. Screen shot from of the FPX Web Interface showing memory
Fields are set to display the current state of the FPX and@gates and string updates
few special purpose fields such as the RAD Programming
byte count and the TYPE LINK. The RAD Programming
Byte Count lists the number of bytes that the NID hathe RAD using the NID’s contents. When issuing the par-
programmed on the RAD. The TYPE LINK specifies theial or full reprogram of the NID a user may also specify
type of link connected to the FPX, which includes OC3the offset in memory where the RAD to stored the bitfile.

OC48, GLink, and Gigabit Ethernet. Loading a RAD design is done with the command Load
. RAD Memory radio button as shown in Figure 8, where

G. Read and Write Memory filename is the bitfile to send to the FPX. Partial and Full

The SRAM and SDRAM memory on the RAD can beprogramming are issued from the web page as well, here
updated by issuing memory reads and writes. NCHARG{zord_offset is the location in the NID memory to start
includes a web-based interface to issue these updat@ading data from and byte count indicates the number of
which is shown in Figure 6 .The user SDECiﬁeS the tyWes that should be read to program the RAD. To per-
of memory operation (Read or Write) the memory widthorm both the loading of a bitfile and the programming of
(32, 36, or 64bits), the number of consecutive updateghe RAD, the Complete Configuration option was added.
(depends on the width, max of 8 for 32 bit, 2 for 36 bit;This allows a user to simply click here and load their hard-
and 4 for 64 bit values), the memory bank (0 or 1), thyare module. This performs the load command and the
Module number (default is O for the SRAM and SDRAM)Fu” Programming command.
as well as a starting address. The 32 and 36 bit memory,

. . . Using a Pentium Il 500MHz PC running NetBSD,
operations are for SRAM while the 64 bit memory OPeThenchmarks were performed to determine the actual time

ations are for SDRAM. By default, data is specified bYt takes to issue a Complete Configuration. For an

the APl in hex. Data can also be specified as strings gBOKByte bitfile, a complete configuration takes 4.5 sec-

AS.C” as shown in Figure 6. .A read string option is aIS%nds. The limited rate of reconfiguration is caused by the
available to let users read strings out of text.

:) use of the Stop and Wait protocol to issue program cells.
o o B o SOV h Stopand Wl and launching ol

9 y: (1) , : as fast as possible that time drops to 2.8 seconds. Re-
the network, (2) the time to transfer the configurationdata . h heck bri h | fi .
into the FPGA. moving the CRC check brings the complete configuration

time down to 1.9 seconds.
H. Configuration Memory Updates

When programming the RAD with modules the user. Batch Mode
first must load the compiled FPGA bitfile onto the recon-
figurable memory attached to the NID, as shown in Fig- NCHARGE can be used to issue a group of commands
ure 7. Once it is loaded a separate command is issuebe executed consecutively. The user specifies the com-
to program the RAD, or a portion of the RAD. The Loadnands in a text file using the command line format and
RAD Memory command reads a file from the FPX switclenters the filename on the web page as shown in Figure 9.
controller and places it in the NID's SRAM. Once loadedNCHARGE then executes the sequence of commands by
in the NID, a user may issue a partial or full reprogram ofending and receiving control cells to and from the NID.

NCHARGE runs
on Switch
Controller

Control cells sent
between NCHARGE
and FPX hardware

(1) NCHARGE receives
commands via the
Internet

2) NCHARGE Sends Control

Cells to write content of
Reconfiguration Memory

Gigabit Switch
Interconnects
FPX modules

Reconfiguration
Memory

(3) NCHARGE Issues
command to reconfigure

(4) NID Reads Memory
and reprograms RAD FPGA

Fig. 7. Diagram of control cells being sent from NCHARGE over a gigabit switch to program an FPX

| address [hetp:fifoxe.arwustl edu -] P \
CONFIGURATION MEMORY UPDATES
Post Number: [4 7] Stack Levet: [0
+ O Load RAD Memory Filename
+ CFull RAD Configuration Word_offset Byte_count
o C Patiel RAD Configavation Word_offset Byte_count
o @ Complete Configuration Flename [ipl bit
s O Display Configuration Offset.
Execute Command
Eome T e y.

aaaaaaa Qe 3RS0 -ER
CREATE RAW ATM CELLS I
Select Cell Type
o € Raw
o O Pad Pad Words: [|
o O Frame VCE [
o O Cell Block VCI [LastCell: [|
o Ot TPAddess [| Protocot | | TIL [|
VCL [
o Oy TPAddess [| TIL [ve [
« @ UDP IP Address: [152168101 | Dest.Port [5000 | Sre. Port: [5000 |
TIL: [55 VCL [faa
« O Control Opeode: [| Module ID: [
VCL [
Tnsert Cell Payload
(8 hex characters per line)
= Create Cell =
[@oome [g memer 7

Fig. 8. Screen shot from of the FPX Web Interface that allows a user to
load NID configuration and program the RAD

3 hun fipr2.arlwustl.edu - Microsoft Internet Explorer

i Hel
ok - = - @ [A | Qe th okes Gieds (B |- &

B
Address [[#] hitp:/ fipn2.arlwwastl edu =l es ‘
= BATCH FILES
Port Number. [4 7] Stack Level [0
+ © LoadBawhFile Fle Name [sorptioat |
Execute Command
@7v [T T weemer %

Fig. 10. Screen shot from of the FPX Web Interface showing the Create
and Cells page

J. NCHRARGE Library calls

The NCHARGE tools include a C application program-
ming interface library that allows communication with the
FPX without explicit use of sockets. Functions defined in
this API can be used to perform most types of FPX oper-
ations.

K. Test Cell Generation

NCHARGE includes software to send and receive raw
ATM cells to the FPX. This feature is handled through
the web interface to allow a user to specify a payload and
the type format. Cells maybe formatted as AALO/AALS
Frames, IP packets, or UDP datagrams. Cells are sent,

Fig. 9. Screen shot from of the FPX Web Interface that allows a useCHARGE waiits for a response on a specified VCI and
issue a set of commands to the FPX

reports a timeout if no cells were returned to the switch
controller.

[-[OIx]

= dresses. This module is used to implement Internet Rout-
ow] ing on the FPX. [14]

The Fast IP Lookup (FIPL) memory manager is a stand
alone application that accepts commands to add, delete,
and update routes. The program maintains a trie data
structure in memory on the processor and then pushes up-
dates to the SRAM on the FPX.

The Fast IP Lookup (FIPL) application is loaded as a
module on the FPX. A few other software components in-
D stmonicats | terconnect the FIPL memory manager with remote hosts
and the NCHARGE software. The first piece of soft-
ware is ‘writefip’, this accepts FIPL memory manager
commands on a specified TCP port from the httpd web
server that processed the commands. It then forwards the
T — [v commands to the FIPL memory manager. These com-
mands are of the form ‘Add routé.A,.A3.A,/netmask

Fig. 11. Second Page after creating cells and waiting to send cells
9 g g g nexthop’, ‘Delete Routed;.A5.A5.A4/netmask’. FIPL

S92 70 27 26 25 21 25 22 24 20 19 18 17 1615141812 11105 8 T 6 5 4 3 2 1 0 memory manager processes these route updates and out-
HDR NN ‘P‘T" ‘ puts memory update commands suited for NCHARGE.
HEC HEC PAD These memory updates are then piped to another applica-
opCode [e tion which reads in multiple memory updates and issues
ModiD OpCode ModulelD PAD

T T Y O O O them to NCHARGE over a TCP socket. NCHARGE then
PLL Ly ommesebamer packs the memory updates into as few cells as possible
PL2 1P Flow 1 P Flow 2 and sends them to the FPX attached to the switch. The

T B overall flow of data with FIPL and NCHARGE is shown
PL3 Control Cell VCI . .

O T O 0 O BB in Figure 13.
P L The format of control cells sent between hardware and
PLs software is broken down into fields, as shown in Fig-
ol e ure 14. These fields are defined in an XML style format.

T Y B B R The first field is the module name. This is a simple string
PL7 L identifier that displays to the user which modules are cur-
PLs rently installed on NCHARGE. This field identifies the
oo e module name as well as version number. The second field

T R B R AR enumerates the input opcodes. In the example shown, the
e user is specifying several different fields, called the ‘Root
L1 Sequence # CRC Node Pointer’, ‘IP Flows 1 and 2’, as well as the ‘Control

Y Ce”VCIa
Fig. 12. Layout of a software plug-in module inside a control cell Inside the input opcodes field, the first line declares the
Root Node Pointer variable. This variable will be used
as a parameter for opcode 0x10. The next XML field de-
L. Extendable Modules fines the output opcodes. These fields define the return
NCHARGE allows unique control cells to be definedells sent from FPX as decoded by NCHARGE. The out-
for customized communication between hardware armt code lists the opcode, the number of variables to read,
software. These custom control cells give a user completee output syntax, as well as the specified variables. Here
control over the payload (12 words) of a cell. Figure 12he Root Node Pointer has one variable to read for its re-
shows a sample control cell that has been customizedsjponse.
communicate parameters for the Fast IP Lookup Module. The next XML field is the fields section. This area de-
clares all variables used by the custom control software
as well as its location in the control cell. The parameters
M. Example: Fast IP Lookup Memory Manager here are the variable name, start word in the data, most
The Fast Internet Protocol Lookup (FIPL) engine, designificant bit of the control cell, stop word in the data,
veloped at Washington University in St. Louis, is a highand the least significant bit.
performance, solution to perform IP address lookups. It The final field is the help section. This is a string
performs alongest prefix match over 32 bit destination adield that gives the user the keyboard arguments associ-

FIPL Memory Manager

— —. | Software Proces$ _..
write_fip

SDRAM

NID
Software Proces$. — |s B FPGA
read_fip — |2
&y [RAD
-

FPGA
FPX

[—T

FPX Control Processor

Remote Host

Fig. 13. Example of data flow from Web Interface to FPX

ated with each command. This is useful for the commarrdnning at 200 MHz, both machines communicated with
line mode of the control software to provide a summary ahe WUGS via a Gigabit link interface card. The perfor-
the plug-in modules features. This field is not necessamyance was evaluated both with and without the use of the
in a web implementation of a module. Stop and Wait error control protocol. The Stop and Wait
To use the customized control cells, a module is firgtrotocol is not needed if the network connection between
loaded into NCHARGE. From the web page, the moduleardware and software is error-free (i.e., cells are never
to load is selected as well as the ID used to reference teopped or corrupted). Lastly, the performance was mea-
module. After loading the module the probe commangured for both local and remote applications. For local ap-
can be issued to verify the module was loaded and litications, a procedure to send control messages was run
other models loaded into NCHARGE. To use a modulglirectly on the local FPX control processor, while for re-
commands can be issued from the generic model inténote applications, all transactions were conducted though
face on the web or through a custom web page for thean additional TCP/IP socket.
specific module. When a user wishes to finish using the The best performance of 200,000 updates per second,
module they may unload it by issuing the Unload Modulevas obtained for local applications transmitting messages

Command specifying the module id. without stop and wait on the fast processor . Disabling
the Stop and Wait protocol on the fast processor increases
IV. PERFORMANCE performance significantly because the throughput is lim-

ited only by the rate at which the processor can issue com-

For applications like FIPL, the rate at which memorynands. The performance is degraded by approximately
can be updated is a major factor in the overall perfopso, for applications that use the TCP/IP socket interface.
mance of the application. In order to gain insight into thghe performance is degraded further when NCHARGE
performance of NCHARGE, several experiments welgins over an unreliable link using the Stop and Wait pro-

conducted to measure the memory throughput as a fuRgeol. For the slow processor, the performance does not

tion of word width and number of updates packed into gary as much with the changes in protocols because the

transaction. Figure 15 shows how the memory throughpftware is limited by the performance of the processor.
put increases for larger numbers of updates for each of

the three types of memory operations supported on the
FPX (32-bit, 36-bit, and 64-bit). The discontinuity of the
performance is due to the number of address/data mem-There are other systems that perform reconfigurable
ory update pairs that fit into a single message. For 32-lmbmputing on FPGAs. SPLASH 2 [15] was an early im-
data operations, the number of updates is limited to eigliementation of reconfigurable computing that led to the
Thus, when a transaction includes a 9th memory updatgmmercial developement of the Wildforce, Wildstar, and
two messages must be transmitted from software to haidldfire [16] boards from AnnapolisMicro. The Wildstar
ware. Similar jumps are visible for the 36-bit and 64-bitontains a Virtex FPGA and is attached to the PCI bus
updates, occurring at six and four updates per messagéa host machine. The control of the Wildstart products
respectively. is via the Wild Application Programming Interface (Wild
Figure 16 shows how the memory throughput ofAPI). The device also allows for ‘Internet Reconfigura-
NCHARGE is affected by the processor performance, tH®n’. This is made possible through the use of the JBits
error control protocol, and the application type. Two prolnterface software [17].
cessors were used to evaluate the performance: an AMDSome of the applications developed for the FPX have
Athlon running at 1100 MHz and an Intel Pentium Prdbeen previously implemented on an FPGA. Specifically,

V. RELATED WORK

250000

T T
Case 1 Local , Without S&W, Athlon-1100 e
<module> Case 2 Remote (TCP), Without S&W, Athlon-1100 x

Case 3 Local, With S&W, Athlon-1100 —%—

Case 4 Remote (TCP), With S&W, Athlon-1100 ---g@-e-
FaSt I P LOOkUp Example MOdUIe 1 0 Case 5 Local, Without S&W, PentiumPro 200 - .

| Case 6 Remote (TCP), Without S&W, PentiumPro 200 © P
</m0du|e> 200000 Case 7 Local, With S&W, PentiumPro 200 —— A
. Case 8 Remote (TCP), With S&W, PentiumPro 200 4 A */‘“
<inputopcodes e
. -
"

0x10,R,1,RoaNodePntr, A
0x12,1,1,IPFlow_1, ooy
0x14,F,1,IPFlow_2,
0x16,B,2,IPFlow_1,IP_Flow_2,
0x18,C,1,ContralCell VCI,
<linputopcodes
<outputopcodes 50000
0x11,1,Root node pntr is,Radtode Pntr,
0x13,1,IP Flow 1 updated to ,IPlow_1,

100000

Updates per Second

0x15,1,IP Flow 2 updated to ,IPlow_2, o : - - - -
0x17,2,2 IP Flows updated to ,IFow_1,IPFlow 2, Number of Updates

0x19,1,New Control Cell VCl is ,ContraCell_VCI,

</outputopcodes Fig. 16. Memory throughput as a function of processor (AMD Athlon

. 1100 vs. Pentium Pro 200), error control mechanism (Stop and Wait vs.
<fields> none), and application type (local application vs. remote TCP socket)
RootNodePntr,x,1,31,1,13,

IP_Flow_1,x,2,31,2,16,

IP_Flow_2,x,2,15,2,0, N
ControlCell.VCI x,3,31 3,16, circuits which provide IP routing have been implemented.

The previous work, however, does not scale, update, or

</fields> .

<help> route as fast as FIPL [18]. An API for reconfigurable
R Root Node Pointer address update: R address (Hexf°MPuting has also been developed to control and com-
| Update IP Flow 1: | address (hex) Mmunicate with an arbitrary device. NCHARGE sets it-
F Update IP Flow 2 F address (hex) self apart from these solutions in that it has the ability to
B Update IP Flows 1 and 2: b address1 address2 (hexgrogram an FPGA over the Internet, perform partial pro-
C Update Control Cell VCI: C VCI (hex) gramming of an FPGA, and can deliver customized con-
</help> ' trol interfaces to software applications.

Fig. 14. Fast IP Lookup Software Plug-in Module
VI. CONCLUSION

A suite of tools called NCHARGE has been developed
to manage the reconfigurable hardware within an Internet
1 router or firewall. NCHARGE provides an efficient mech-
anism to monitor the status of remote hardware, configure
1 network traffic flows, reprogram hardware, and perform
x updates to memory. The rate at which NCHARGE can
update remote memory has been measured to be 200,000
updates per second. NCHARGE is able to load a bitfile
to the NID program memory in 1.8 seconds. The time to
| program the RAD from the NID is 16 milliseconds. A
standard API has been defined in NCHARGE to commu-
1 nhicate between software applications and hardware mod-
ules. NCHARGE supports an XML-like language to de-
fine an API and control message format for customized

, 1 1 1 1 hardware modules. This feature was used to implement
0 5 10 15 2 s the communication interface between the hardware and
Number o Updates software components of the Fast IP Lookup (FIPL) al-
Fig. 15. Memory throughput as a function of 32-bit, 36-bit, and 64-bg@orithm. Lastly, a web-based interface has been imple-
memory sizes and number of updates mented to provide an intuitive interface to the hardware
of the Field Programmable Port Extender.

80000 T
Write 32 —+—
Write 36 -
Write 64 ---%---

70000

60000

o
=}
S
S
IS}
T

pdates per Second
S
o
(=3
(=3
o
T

S 30000 |

20000

10000 -

(1

(2]

(3]

(4]

(3]

(6]

(71

(8]
9]

[20]

(1]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

REFERENCES

John W. Lockwood, Naji Naufel, Jon S. Turner, and David E. Tay-
lor, “Reprogrammable Network Packet Processing on the Field
Programmable Port Extender (FPX),” ACM International Sym-
posium on Field Programmable Gate Arrays (FPGA' 2001), Mon-
terey, CA, USA, Feb. 2001, pp. 87-93.

John W. Lockwood, Jon S. Turner, and David E. Taylor, “Field
programmable port extender (FPX) for distributed routing and
queuing,” in ACM International Symposium on Field Pro-
grammable Gate Arrays (FPGA' 2000), Monterey, CA, USA, Feb.
2000, pp. 137-144.

Toshiaki Miyazaki, Kazuhiro Shirakawa, Masaru Katayama,
Takahiro Murooka, and Atsushi Takahara, “A transmutable tele-
com system,” inProceedings of Field-Programmable Logic and
Applications, Tallinn, Estonia, Aug. 1998, pp. 366—-375.

J. W. Lockwood, S. M. Kang, S. G. Bishop, H. Duan, and A. Hos-
sain, “Development of the iPOINT testbed for optoelectronic
asynchronous transfer mode networking,” International Con-
ference on Information Infrastructure, Beijing, China, Apr. 1996,
pp. 509-513.

Hamish Fallside and Michael J. S. Smith, “Internet connected
FPL,” in Proceedings of Field-Programmable Logic and Applica-
tions, Villach, Austria, Aug. 2000, pp. 48-57.

Sumi Choi, John Dehart, Ralph Keller, John Lockwood, Jonathan
Turner, and Tilman Wolf, “Design of a flexible open platform
for high performance active networks,” #lerton Conference,
Champaign, IL, 1999.

John W Lockwood, “An open platform for development of net-
work processing modules in reprogrammable hardware JE®D
DesignCon’'01, Santa Clara, CA, Jan. 2001, pp. WB-19.

Jon S. Turner, Tom Chaney, Andy Fingerhut, and Margaret Flucke,
“Design of a Gigabit ATM switch,” inNFOCOM’ 97, 1997.

David E. Taylor, Jon S. Turner, and John W. Lockwood, “Dynamic
hardware plugins (DHP): Exploiting reconfigurable hardware for
high-performance programmable routers,” | EEE OPENARCH
2001: 4th IEEE Conference on Open Architectures and Network
Programming, Anchorage, AK, Apr. 2001.

David E. Taylor, John W. Lockwood, and Sarang Dharma-
purikar, “Generalized RAD Module Interface Specification
on the Field Programmable Port Extender (FPX)t't p://
www. ar | . wust | . edu/arl/ projects/fpx/references,
Jan. 2001.

David E. Taylor, John W. Lockwood, and Naji Naufel, “Rad
module infrastructure of the field programmable port extender
(fpx),” http://ww. arl . wustl . edu/arl/projects-

| f px/ references/,Jan. 2001.

James M. Anderson, Mohammad llyas, and Sam Hsu, “Dis-
tributed network management in an internet environment,” in
Globecom'97, Pheonix, AZ, Nov. 1997, vol. 1, pp. 180-184.
Edson Horta and John W. Lockwood, “PARBIT: a tool to trans-
form bitfiles to implement partial reconfiguration of field pro-
grammable gate arrays (FPGAs),” Tech. Rep. WUCS-01-13,
Washington University in Saint Louis, Department of Computer
Science, July 6, 2001.

David E. Taylor, John W. Lockwood, Todd Sproull, and David B.
Parlour, “Scalable IP Lookup for Programmable Routers
http://ww.cs.wistl.edu/cs/techreports-

/ 2001/ wucs- 01- 33. pdf, Oct. 2001.

Duncan A. Buell, Jeffrey M. Arnold, and Walter J. Kleinfelder,
“Splash 2: Fpgas in a custom computing machine,” IEEE Com-
puter Society Press, 1996.

Bradley K. Fross, Dennis M. Hawver, and James B. Peterson,
“Wildfire heterogeneous adaptive parallel processing systems,”
http://ww. annapni cro. com

Steven A. Guccione, Delon Levi, and Prasanna Sundarara-
jin, “Jbits: A java-based interface for reconfigurable comput-
ing,” in 2nd Annual Military and Aerospace Applications of

Programmable Devices and Technologies Conference (MAPLD),
1999.

Jason Hess, David Lee, Scott Harper, Mark Jones, and Peter
Athanas, “Implementation and evaluation of a prototype reconfig-
urable router,” inlEEE Symposium on FPGAs for Custom Com-

puting Machines, Kenneth L. Pocek and Jeffrey Arnold, Eds., Los
Alamitos, CA, 1999, pp. 44-50, IEEE Computer Society Press.

