
1

Control and Configuration Software for a
Reconfigurable Networking Hardware Platform

Todd S. Sproull, John W. Lockwood , David E. Taylor
Applied Research Laboratory

Washington University
Saint Louis, MO 63130

Web:http://www.arl.wustl.edu/arl/projects/fpx/

Abstract—A suite of tools called NCHARGE (Networked Config-
urable Hardware Administrator for Reconfiguration and Govern-
ing via End-systems) has been developed to simplify the co-design
of hardware and software components that process packets within a
network of Field Programmable Gate Arrays (FPGAs). A key fea-
ture of NCHARGE is that it provides a high-performance packet in-
terface to hardware and standard Application Programming Inter-
face (API) between software and reprogrammable hardware mod-
ules. Using this API, multiple software processes can communicate
to one or more hardware modules using standard TCP/IP sockets.
NCHARGE also provides a Web-Based User Interface to simplify
the configuration and control of an entire network switch that con-
tains several software and hardware modules.

I. I NTRODUCTION

An experimental platform called the Field Pro-
grammable Port Extender (FPX) has been developed to
enable the rapid deployment of hardware modules in net-
works [1] [2]. In this system, data are processed by recon-
figurable hardware, while control and configuration of the
network system is implemented in software. Control cells
are used to communicate between the hardware and soft-
ware.

A suite of tools has been developed to manage the
network of reconfigurable hardware on the FPX called
NCHARGE (Networked Configurable Hardware Admin-
istrator for Reconfiguration and Governing via End-
systems). NCHARGE enables new hardware modules to
be dynamically deployed onto the Field Programmable
Gate Array (FPGA) logic of the FPX over a network.
Once the hardware module is installed, NCHARGE con-
trols the operation of each FPX by issuing customized
control cells to control each hardware module.

NCHARGE provides a standard Application Program-
ming Interface (API) for software applications that com-
municate with hardware. NCHARGE uses TCP/IP to
communicate reliably with hosts on the Internet. It also
implements a reliable protocol to transmit and receive
messages between hardware and software, as shown in
Figure 1. Software applications, in turn, connect to
NCHARGE via TCP/IP to issue commands to the remote
hardware modules. One application that uses this ser-
vice is an Internet routing module that forwards packets

This research is supported by NSF: ANI-0096052 and Xilinx Corp.

Control Processor

FPX

NCHARGE on

Internet

Port Extender
Field Programmable

������

����
����
����

����
����
����

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

NID

FPX

FPXFPX

FPX

FPX

FPX FPX

RAD

Gigabit Switch

End−system Web Interface

FPX

End−system Automated Software

Fig. 1. Overview of system architecture: NCHARGE runs on the con-
trol processor of a gigabit switch equipped with FPX reconfigurable
hardware modules and communicates to end-systems via the Internet.

in FPGA hardware and manages the data structures for a
forwarding table in software.

NCHARGE also provides a web-based user interface
so that remote users can perform remote operations on
the FPX from distant end-systems. Through the web in-
terface, users can reprogram the FPGAs on the FPX, up-
date remote memory attached to the FPGAs, check the
board’s status, or issue custom commands to their specific
hardware module. In a fraction of a second, NCHARGE
is able to program the FPX to act as an IP router from
a web browser. With a few additional button clicks the
router can be reconfigured. If the need arises, a new mod-
ule can be loaded onto the FPX to perform, encryption,
run length encoding, compression, and other customized
packet processing functions. The features of NCHARGE
fully exploit the flexibility of the reconfigurable hardware.

II. REPROGRAMMABLE HARDWARE PLATFORM

Reprogrammable hardware has proven to be effective
at accelerating functions within a network [3] [4]. The
ability to easily reprogram hardware via the Internet al-
lows networking features to be deployed without physi-
cal access to the hardware [5]. The (FPX) is a network-
ing hardware platform that has been built to perform data

processing for cells and packets in a high-speed network
switch [6].

The FPX provides an open platform for the rapid proto-
type and deployment of networking functions in hardware
[7]. Components of the FPX include two FPGAs, five
banks of memory, and two high-speed network interfaces
[2]. Networking interfaces on the FPX were optimized to
enable the simultaneous arrival and departure of data cells
at SONET OC48 rates. This is the equivalent bandwidth
of multiple channels of Gigabit Ethernet.

The FPX integrates with another open hardware plat-
form, the Washington University Gigabit Switch (WUGS)
[8]. By inserting FPX modules at each port of the switch,
parallel FPX units can be used to simultaneously process
packets on all ports of the network switch.

In a single rack mount cabinet, a system has been
demonstrated that can hold 8 * 2 * 2 = 32 Xilinx Virtex
FPGA devices connected via a 20 Gbps network switch.
Hardware resources on the FPX have been designed in
such a way as to promote ease of application develop-
ment. Hardware modules use a standard interface to re-
quest access to memory and execute memory transac-
tions. The interfaces abstract application developers from
device specific timing constraints, insulating hardware
modules from changes in memory device technology.

A. Network Interface Device (NID)

The FPX includes a statically-programmed FPGA that
is called the Network Interface Device (NID). It controls
how packet flows are routed to and from modules. The
NID contains a per-flow switching module to selectively
forward traffic between networking ports of the RAD, the
switch, and an optical line card. The NID also provides
mechanisms to dynamically load hardware modules over
the network and into the router. The combination of these
features allows data processing modules to be dynami-
cally loaded and unloaded without affecting the process-
ing of packets by the other modules in the system.

B. Reprogrammable Application Device (RAD)

The FPX also includes a dynamically-programmed
FPGA that is called the Reprogrammable Application De-
vice (RAD). The RAD enables application-specific func-
tions to be implemented as dynamic hardware plug-in
(DHP) modules [9]. A DHP consists of a region of FPGA
gates and internal memory, bounded by the well-defined
interface. A standard interface has been implemented so
that modules can transmit and receive packet data and
communication with off-chip memories [10].

Each hardware module has a unique identification
number (ModuleID) that is used for application-specific
communication. When a control cell arrives at the input
of a hardware module, it compares the ModuleID field in
the control cell to the ModuleID stored within the mod-

ule to determine if the control cell should be processed.
If the control cell is addressed to the hardware module,
the module processes the cell, builds a response cell, and
sends the response cell back to NCHARGE. If the control
cell is not addressed to the hardware module, the module
simply passes the cell to its cell output interface, as the
cell may be addressed to a subsequent module in the sys-
tem or may be a response cell from a previous module in
the system.

C. Control Cell Processor (CCP)

The Control Cell Processors (CCPs) are entities im-
plemented in FPGA hardware on the NID and RAD that
process control cells sent by NCHARGE. Control cells
addressed to a CCP cause the hardware to perform an
operation and generate a return message. Several types
of control cells are used to perform the memory transac-
tions. State machines within the CCPs read and write the
physical memory at addresses specified in control cells.
The CCPs perform memory transactions consisting of any
combination of reads and writes to either of the SRAM
devices or SDRAM devices [11].

In order to perform the reliable transmission protocol
with the software, the CCP formats a response cell con-
taining the data written to and read from the addresses in
the designated memory device. The CCP also computes
checksums to ensure the integrity of the messages. If a
control cell is dropped or corrupted, another will be re-
transmitted by NCHARGE to the CCP.

D. Reconfiguration Control (RC)

The Reconfiguration Control (RC) module prevents
data and state loss when reconfiguring hardware modules
in the RAD FPGA. In order to reconfigure a hardware
module in the RAD FPGA, configuration data is sent to
the NID where it is stored in an off-chip SRAM. When
all configuration data has been received for the new mod-
ule, the NID initiates a reconfiguration handshake with
the RC in the RAD FPGA, designating the ModuleID of
the module which is to be reconfigured.

III. SOFTWARE COMPONENTS

NCHARGE is the software component that controls re-
programmable hardware on a switch. Figure 2 shows the
role of NCHARGE in conjunction with multiple FPX de-
vices within a switch. The software provides connectiv-
ity between each FPX and multiple remote software pro-
cesses via TCP sockets that listens on a well-defined port.
Through this port, other software components are able to
communicate to the FPX using its specified API. Because
each FPX is controlled by an independent NCHARGE
software process, distributed management of entire sys-
tems can be performed by collecting data from multiple
NCHARGE elements [12].

NCHARGE
 0.0

FPGA
RAD

NID

FPGA

NID
FPGA

Gigabit Switch

FPGA

RAD

Washington University

Controller
Software

 7.1

S
D

R
A

M

S
R

A
M

FPX

S
D

R
A

M

OC−3 Link

VCI 76 (NID), VCI 100 (RAD)

VCI 115 (NID), VCI 123 (RAD)

(up to 32 VCIs)

NCHARGE

FPX

S
R

A
M

Fig. 2. Detail of the hardware and software components that comprise
the FPX system. Each FPX is controlled by an NCHARGE software
process. The contents of the memories on the FPX modules can be
modified by remote processes via the software API to NCHARGE.

A. NCHARGE Features

NCHARGE provides an API for debugging, program-
ming, and configuring an FPX. Specifically the API in-
cludes commands to: check the status of an FPX, con-
figure routing on the NID, perform memory updates,
and perform full and partial reprogramming of the RAD.
NCHARGE also provides a mechanism for applications
to define their own custom control interface.

Control cells are transmitted by NCHARGE and pro-
cessed by CCPs on the RAD or the NID. To update and
configure routes for traffic flows, NCHARGE writes com-
mands to modify routing entries on the gigabit switch or
on the NID. To check the status of the FPX, NCHARGE
sends a control cell to the NID or RAD and waits for a
response.

To modify the content of memories attached to the
FPX, NCHARGE supports several commands to perform
memory updates. Applications can read or write words to
the SRAM and SDRAM memory modules. These mem-
ory updates are packed into control cells and sent to the
FPX. The number of updates that fit into a single control
cell depends on the number of consecutive updates at a
particular location in memory and the size of the mem-
ory update. The size of the control word allows for up to
eight 32-bit address/data pairs to be specified in a single
message. For full-width, 36-bit memory words in SRAM,
up to six words can be specified in a single control cell.
For the 64-bit words in SDRAM, up to four words can be
updated at once.

Sending designs to an FPX via control cells is done by

Send

Basic

TelnetBasic
Send

Software
Controller

Applications
Web

 7.1

Applications
Remote

NCHARGE
 0.0

NCHARGE

Fip Memory

Manager

Fip
Read

FIPL

CGI

CGI

FIP

Write

Fip Memory

Manager

Write

FIP

Read
Fip

NCHARGE

Send

Basic

httpd

Fig. 3. Example of software applications communicating with
NCHARGE

loading the NID memory with the design and then issuing
another control cell for the NID to program the RAD. The
content of memory can be a complete bitfile or a partial
bitfile, as would be produced by a tool like PARBIT[13].
NCHARGE allows for a user to program a section of the
RAD or the entire FPGA.

B. NCHARGE API

NCHARGE communicates with a wide range of soft-
ware through the use of sockets. The API defines a set
of text strings that comprise of NCHARGE commands.
Once the command is sent to NCHARGE over its TCP
socket the user will then receive a response control cell
with any relevant return information as well as the indica-
tion of a successful transmission.

C. Web Communication

All of the functionality of NCHARGE is brought to
the web to allow a simple straight forward interface. The
web interface also provides switch level configuration and
maintenance.

A screen shot of the web page is shown in Figure 4.

Fig. 4. Screen shot from the FPX Web Interface

This is the main page of the NCHARGE web interface.
From here users select which commands to issue to an
FPX.

The mechanism for handling the web-based commands
is through the use of CGI scripts. Forms are processed by
scripts, which in turn send commands to the NCHARGE
software. The communication between NCHARGE and
the web interface is done using a TCP socket program
called ‘basicsend’. Basicsend is discussed in more de-
tail in the next section.

D. Cell Logging

NCHARGE can log control cells sent from and re-
ceived by the control software. Logging can be en-
abled, disabled through the web or command line inter-
face. Futher, the contents of the logs can be viewed via
the web. Each log is a text file that contains the content of
the cell and time the cell was transmitted. Figure 5 shows
how logging can be enabled for cells transmitted to and
from the NID and/or the RAD.

NCHARGE and the web interface look for files in a
particular directory, for all references made to loading
files or read from files. A user may upload or edit files
over the network by using the web interface to access the

Fig. 5. Screen shot from of the FPX Web Interface showing the cell
logging functions

documents. The user has the ability to modify, upload or
delete any file in NCHARGE public directory.

E. Socket API

NCHARGE monitors a well-known TCP port, then ac-
cepts control connections via TCP/IP sockets. The soft-
ware multiplexes control of the hardware among multi-
ple software clients. One mechanism for issuing single
commands is through a ‘basicsend’ application. This
program accepts control commands and returns the result
via a remote control cell. These commands are the same
as those that would be entered manually at a console or
through a telnet session. Figure 3 illustrates how different
applications can compose layered modules to communi-
cate with NCHARGE through sockets.

F. VCI Updates and Status

NCHARGE allows user to issue a read status command
to the NID to display the current state of the NID FPGA.
Fields are set to display the current state of the FPX and a
few special purpose fields such as the RAD Programming
byte count and the TYPE LINK. The RAD Programming
Byte Count lists the number of bytes that the NID has
programmed on the RAD. The TYPE LINK specifies the
type of link connected to the FPX, which includes OC3,
OC48, GLink, and Gigabit Ethernet.

G. Read and Write Memory

The SRAM and SDRAM memory on the RAD can be
updated by issuing memory reads and writes. NCHARGE
includes a web-based interface to issue these updates,
which is shown in Figure 6 .The user specifies the type
of memory operation (Read or Write) the memory width
(32, 36, or 64bits), the number of consecutive updates,
(depends on the width, max of 8 for 32 bit, 2 for 36 bit,
and 4 for 64 bit values), the memory bank (0 or 1), the
Module number (default is 0 for the SRAM and SDRAM)
as well as a starting address. The 32 and 36 bit memory
operations are for SRAM while the 64 bit memory oper-
ations are for SDRAM. By default, data is specified by
the API in hex. Data can also be specified as strings of
ASCII as shown in Figure 6. A read string option is also
available to let users read strings out of text.

The time required to reprogram the RAD over the net-
work is governed by: (1) the time to send the bitfile over
the network, (2) the time to transfer the configuration data
into the FPGA.

H. Configuration Memory Updates

When programming the RAD with modules the user
first must load the compiled FPGA bitfile onto the recon-
figurable memory attached to the NID, as shown in Fig-
ure 7. Once it is loaded a separate command is issued
to program the RAD, or a portion of the RAD. The Load
RAD Memory command reads a file from the FPX switch
controller and places it in the NID’s SRAM. Once loaded
in the NID, a user may issue a partial or full reprogram of

Fig. 6. Screen shot from of the FPX Web Interface showing memory
updates and string updates

the RAD using the NID’s contents. When issuing the par-
tial or full reprogram of the NID a user may also specify
the offset in memory where the RAD to stored the bitfile.

Loading a RAD design is done with the command Load
RAD Memory radio button as shown in Figure 8, where
filename is the bitfile to send to the FPX. Partial and Full
Programming are issued from the web page as well, here
word offset is the location in the NID memory to start
reading data from and byte count indicates the number of
bytes that should be read to program the RAD. To per-
form both the loading of a bitfile and the programming of
the RAD, the Complete Configuration option was added.
This allows a user to simply click here and load their hard-
ware module. This performs the load command and the
Full Programming command.

Using a Pentium III 500MHz PC running NetBSD,
benchmarks were performed to determine the actual time
it takes to issue a Complete Configuration. For an
800KByte bitfile, a complete configuration takes 4.5 sec-
onds. The limited rate of reconfiguration is caused by the
use of the Stop and Wait protocol to issue program cells.
By removing the Stop and Wait and launching cells at it
as fast as possible that time drops to 2.8 seconds. Re-
moving the CRC check brings the complete configuration
time down to 1.9 seconds.

I. Batch Mode

NCHARGE can be used to issue a group of commands
to be executed consecutively. The user specifies the com-
mands in a text file using the command line format and
enters the filename on the web page as shown in Figure 9.
NCHARGE then executes the sequence of commands by
sending and receiving control cells to and from the NID.

Switch

Element

IPP

IPP

IPP

IPP

IPP

IPP

IPP

OPP

OPP

OPP

OPP

OPP

OPP

OPP

OPPIPP

Switch

Element

IPP

IPP

IPP

IPP

IPP

IPP

IPP

OPP

OPP

OPP

OPP

OPP

OPP

OPP

OPPIPP

VPI

PTI = 0 0

VCI = 0x34

HEC

Reserved

7 06 5 4 2 13

CRC
Sequence #

CMData

OPCODE

VPI

PTI = 0 0

VCI = 0x34

HEC

Reserved

7 06 5 4 2 13

CRC
Sequence #

CMData

OPCODE

RAD

FPGA
NID

FPGA

Reconfiguration

Memory

(3) NCHARGE Issues

command to reconfigure

2) NCHARGE Sends Control

Cells to write content of

Reconfiguration Memory

(4) NID Reads Memory

and reprograms RAD FPGA

(1) NCHARGE receives

commands via the

Internet

Gigabit Switch

Interconnects

FPX modules

Control cells sent

between NCHARGE

and FPX hardware

NCHARGE runs

on Switch

Controller

FPX

Fig. 7. Diagram of control cells being sent from NCHARGE over a gigabit switch to program an FPX

Fig. 8. Screen shot from of the FPX Web Interface that allows a user to
load NID configuration and program the RAD

Fig. 9. Screen shot from of the FPX Web Interface that allows a user to
issue a set of commands to the FPX

Fig. 10. Screen shot from of the FPX Web Interface showing the Create
and Cells page

J. NCHRARGE Library calls

The NCHARGE tools include a C application program-
ming interface library that allows communication with the
FPX without explicit use of sockets. Functions defined in
this API can be used to perform most types of FPX oper-
ations.

K. Test Cell Generation

NCHARGE includes software to send and receive raw
ATM cells to the FPX. This feature is handled through
the web interface to allow a user to specify a payload and
the type format. Cells maybe formatted as AAL0/AAL5
Frames, IP packets, or UDP datagrams. Cells are sent,
NCHARGE waits for a response on a specified VCI and
reports a timeout if no cells were returned to the switch
controller.

Fig. 11. Second Page after creating cells and waiting to send cells

IP Flow 2

Root Node Pointer

IP Flow 1

Control Cell VCI

PAD
ModID
OpCode OpCode ModuleID

PAD

VCI = 0x23

CM DATA

HEC

CRCSequence #

PTIGFC / VPI

HEC

HDR

PL2

PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

PL11

PL1

12345678910111213141516171819202122232425262728293031 0

Fig. 12. Layout of a software plug-in module inside a control cell

L. Extendable Modules

NCHARGE allows unique control cells to be defined
for customized communication between hardware and
software. These custom control cells give a user complete
control over the payload (12 words) of a cell. Figure 12
shows a sample control cell that has been customized to
communicate parameters for the Fast IP Lookup Module.

M. Example: Fast IP Lookup Memory Manager

The Fast Internet Protocol Lookup (FIPL) engine, de-
veloped at Washington University in St. Louis, is a high-
performance, solution to perform IP address lookups. It
performs a longest prefix match over 32 bit destination ad-

dresses. This module is used to implement Internet Rout-
ing on the FPX. [14]

The Fast IP Lookup (FIPL) memory manager is a stand
alone application that accepts commands to add, delete,
and update routes. The program maintains a trie data
structure in memory on the processor and then pushes up-
dates to the SRAM on the FPX.

The Fast IP Lookup (FIPL) application is loaded as a
module on the FPX. A few other software components in-
terconnect the FIPL memory manager with remote hosts
and the NCHARGE software. The first piece of soft-
ware is ‘writefip’, this accepts FIPL memory manager
commands on a specified TCP port from the httpd web
server that processed the commands. It then forwards the
commands to the FIPL memory manager. These com-
mands are of the form ‘Add route��.��.��.��/netmask
nexthop’, ‘Delete Route��.��.��.��/netmask’. FIPL
memory manager processes these route updates and out-
puts memory update commands suited for NCHARGE.
These memory updates are then piped to another applica-
tion which reads in multiple memory updates and issues
them to NCHARGE over a TCP socket. NCHARGE then
packs the memory updates into as few cells as possible
and sends them to the FPX attached to the switch. The
overall flow of data with FIPL and NCHARGE is shown
in Figure 13.

The format of control cells sent between hardware and
software is broken down into fields, as shown in Fig-
ure 14. These fields are defined in an XML style format.
The first field is the module name. This is a simple string
identifier that displays to the user which modules are cur-
rently installed on NCHARGE. This field identifies the
module name as well as version number. The second field
enumerates the input opcodes. In the example shown, the
user is specifying several different fields, called the ‘Root
Node Pointer‘, ‘IP Flows 1 and 2’, as well as the ‘Control
Cell VCI’.

Inside the input opcodes field, the first line declares the
Root Node Pointer variable. This variable will be used
as a parameter for opcode 0x10. The next XML field de-
fines the output opcodes. These fields define the return
cells sent from FPX as decoded by NCHARGE. The out-
put code lists the opcode, the number of variables to read,
the output syntax, as well as the specified variables. Here
the Root Node Pointer has one variable to read for its re-
sponse.

The next XML field is the fields section. This area de-
clares all variables used by the custom control software
as well as its location in the control cell. The parameters
here are the variable name, start word in the data, most
significant bit of the control cell, stop word in the data,
and the least significant bit.

The final field is the help section. This is a string
field that gives the user the keyboard arguments associ-

Software Process
write_fip read_fip

Software Process

S
D

R
A

M

S
R

A
M

FPX

FPGA
NID

RAD
FPGA

���
���
���

���
���
���

���
���
���
���

���
���
���
���

������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

FIPL Memory Manager

httpd

Remote Host
FPX Control Processor

NCHARGE

Fig. 13. Example of data flow from Web Interface to FPX

ated with each command. This is useful for the command
line mode of the control software to provide a summary of
the plug-in modules features. This field is not necessary
in a web implementation of a module.

To use the customized control cells, a module is first
loaded into NCHARGE. From the web page, the module
to load is selected as well as the ID used to reference the
module. After loading the module the probe command
can be issued to verify the module was loaded and list
other models loaded into NCHARGE. To use a module,
commands can be issued from the generic model inter-
face on the web or through a custom web page for their
specific module. When a user wishes to finish using the
module they may unload it by issuing the Unload Module
Command specifying the module id.

IV. PERFORMANCE

For applications like FIPL, the rate at which memory
can be updated is a major factor in the overall perfor-
mance of the application. In order to gain insight into the
performance of NCHARGE, several experiments were
conducted to measure the memory throughput as a func-
tion of word width and number of updates packed into a
transaction. Figure 15 shows how the memory through-
put increases for larger numbers of updates for each of
the three types of memory operations supported on the
FPX (32-bit, 36-bit, and 64-bit). The discontinuity of the
performance is due to the number of address/data mem-
ory update pairs that fit into a single message. For 32-bit
data operations, the number of updates is limited to eight.
Thus, when a transaction includes a 9th memory update,
two messages must be transmitted from software to hard-
ware. Similar jumps are visible for the 36-bit and 64-bit
updates, occurring at six and four updates per message,
respectively.

Figure 16 shows how the memory throughput of
NCHARGE is affected by the processor performance, the
error control protocol, and the application type. Two pro-
cessors were used to evaluate the performance: an AMD
Athlon running at 1100 MHz and an Intel Pentium Pro

running at 200 MHz, both machines communicated with
the WUGS via a Gigabit link interface card. The perfor-
mance was evaluated both with and without the use of the
Stop and Wait error control protocol. The Stop and Wait
protocol is not needed if the network connection between
hardware and software is error-free (i.e., cells are never
dropped or corrupted). Lastly, the performance was mea-
sured for both local and remote applications. For local ap-
plications, a procedure to send control messages was run
directly on the local FPX control processor, while for re-
mote applications, all transactions were conducted though
an additional TCP/IP socket.

The best performance of 200,000 updates per second,
was obtained for local applications transmitting messages
without stop and wait on the fast processor . Disabling
the Stop and Wait protocol on the fast processor increases
performance significantly because the throughput is lim-
ited only by the rate at which the processor can issue com-
mands. The performance is degraded by approximately
25% for applications that use the TCP/IP socket interface.
The performance is degraded further when NCHARGE
runs over an unreliable link using the Stop and Wait pro-
tocol. For the slow processor, the performance does not
vary as much with the changes in protocols because the
software is limited by the performance of the processor.

V. RELATED WORK

There are other systems that perform reconfigurable
computing on FPGAs. SPLASH 2 [15] was an early im-
plementation of reconfigurable computing that led to the
commercial developement of the Wildforce, Wildstar, and
Wildfire [16] boards from AnnapolisMicro. The Wildstar
contains a Virtex FPGA and is attached to the PCI bus
of a host machine. The control of the Wildstart products
is via the Wild Application Programming Interface (Wild
API). The device also allows for ‘Internet Reconfigura-
tion’. This is made possible through the use of the JBits
Interface software [17].

Some of the applications developed for the FPX have
been previously implemented on an FPGA. Specifically,

�module�
Fast IP Lookup Example Module 1.0
�/module�
�input opcodes�
0x10,R,1,RootNodePntr,
0x12,I,1,IPFlow 1,
0x14,F,1,IPFlow 2,
0x16,B,2,IPFlow 1,IP Flow 2,
0x18,C,1,ControlCell VCI,
�/input opcodes�
�outputopcodes�
0x11,1,Root node pntr is,RootNodePntr,
0x13,1,IP Flow 1 updated to ,IPFlow 1,
0x15,1,IP Flow 2 updated to ,IPFlow 2,
0x17,2,2 IP Flows updated to ,IPFlow 1,IP Flow 2,
0x19,1,New Control Cell VCI is ,ControlCell VCI,
�/outputopcodes�
�fields�
Root NodePntr,x,1,31,1,13,
IP Flow 1,x,2,31,2,16,
IP Flow 2,x,2,15,2,0,
Control Cell VCI,x,3,31,3,16,
�/fields�
�help�
R Root Node Pointer address update: R address (hex)
I Update IP Flow 1: I address (hex)
F Update IP Flow 2: F address (hex)
B Update IP Flows 1 and 2: b address1 address2 (hex)
C Update Control Cell VCI: C VCI (hex)
�/help�

Fig. 14. Fast IP Lookup Software Plug-in Module

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25

U
p

d
a

te
s

p
e

r
S

e
co

n
d

Number of Updates

Write 32
Write 36
Write 64

Fig. 15. Memory throughput as a function of 32-bit, 36-bit, and 64-bit
memory sizes and number of updates

0

50000

100000

150000

200000

250000

0 5 10 15 20 25

U
p

d
a

te
s

p
e

r
S

e
co

n
d

Number of Updates

Case 1 Local , Without S&W, Athlon-1100
Case 2 Remote (TCP), Without S&W, Athlon-1100
Case 3 Local, With S&W, Athlon-1100
Case 4 Remote (TCP), With S&W, Athlon-1100
Case 5 Local, Without S&W, PentiumPro 200
Case 6 Remote (TCP), Without S&W, PentiumPro 200
Case 7 Local, With S&W, PentiumPro 200
Case 8 Remote (TCP), With S&W, PentiumPro 200

Fig. 16. Memory throughput as a function of processor (AMD Athlon
1100 vs. Pentium Pro 200), error control mechanism (Stop and Wait vs.
none), and application type (local application vs. remote TCP socket)

circuits which provide IP routing have been implemented.
The previous work, however, does not scale, update, or
route as fast as FIPL [18]. An API for reconfigurable
computing has also been developed to control and com-
municate with an arbitrary device. NCHARGE sets it-
self apart from these solutions in that it has the ability to
program an FPGA over the Internet, perform partial pro-
gramming of an FPGA, and can deliver customized con-
trol interfaces to software applications.

VI. CONCLUSION

A suite of tools called NCHARGE has been developed
to manage the reconfigurable hardware within an Internet
router or firewall. NCHARGE provides an efficient mech-
anism to monitor the status of remote hardware, configure
network traffic flows, reprogram hardware, and perform
updates to memory. The rate at which NCHARGE can
update remote memory has been measured to be 200,000
updates per second. NCHARGE is able to load a bitfile
to the NID program memory in 1.8 seconds. The time to
program the RAD from the NID is 16 milliseconds. A
standard API has been defined in NCHARGE to commu-
nicate between software applications and hardware mod-
ules. NCHARGE supports an XML-like language to de-
fine an API and control message format for customized
hardware modules. This feature was used to implement
the communication interface between the hardware and
software components of the Fast IP Lookup (FIPL) al-
gorithm. Lastly, a web-based interface has been imple-
mented to provide an intuitive interface to the hardware
of the Field Programmable Port Extender.

REFERENCES

[1] John W. Lockwood, Naji Naufel, Jon S. Turner, and David E. Tay-
lor, “Reprogrammable Network Packet Processing on the Field
Programmable Port Extender (FPX),” inACM International Sym-
posium on Field Programmable Gate Arrays (FPGA’2001), Mon-
terey, CA, USA, Feb. 2001, pp. 87–93.

[2] John W. Lockwood, Jon S. Turner, and David E. Taylor, “Field
programmable port extender (FPX) for distributed routing and
queuing,” in ACM International Symposium on Field Pro-
grammable Gate Arrays (FPGA’2000), Monterey, CA, USA, Feb.
2000, pp. 137–144.

[3] Toshiaki Miyazaki, Kazuhiro Shirakawa, Masaru Katayama,
Takahiro Murooka, and Atsushi Takahara, “A transmutable tele-
com system,” inProceedings of Field-Programmable Logic and
Applications, Tallinn, Estonia, Aug. 1998, pp. 366–375.

[4] J. W. Lockwood, S. M. Kang, S. G. Bishop, H. Duan, and A. Hos-
sain, “Development of the iPOINT testbed for optoelectronic
asynchronous transfer mode networking,” inInternational Con-
ference on Information Infrastructure, Beijing, China, Apr. 1996,
pp. 509–513.

[5] Hamish Fallside and Michael J. S. Smith, “Internet connected
FPL,” in Proceedings of Field-Programmable Logic and Applica-
tions, Villach, Austria, Aug. 2000, pp. 48–57.

[6] Sumi Choi, John Dehart, Ralph Keller, John Lockwood, Jonathan
Turner, and Tilman Wolf, “Design of a flexible open platform
for high performance active networks,” inAllerton Conference,
Champaign, IL, 1999.

[7] John W Lockwood, “An open platform for development of net-
work processing modules in reprogrammable hardware,” inIEC
DesignCon’01, Santa Clara, CA, Jan. 2001, pp. WB–19.

[8] Jon S. Turner, Tom Chaney, Andy Fingerhut, and Margaret Flucke,
“Design of a Gigabit ATM switch,” inINFOCOM’97, 1997.

[9] David E. Taylor, Jon S. Turner, and John W. Lockwood, “Dynamic
hardware plugins (DHP): Exploiting reconfigurable hardware for
high-performance programmable routers,” inIEEE OPENARCH
2001: 4th IEEE Conference on Open Architectures and Network
Programming, Anchorage, AK, Apr. 2001.

[10] David E. Taylor, John W. Lockwood, and Sarang Dharma-
purikar, “Generalized RAD Module Interface Specification
on the Field Programmable Port Extender (FPX),”http://
www.arl.wustl.edu/arl/projects/fpx/references,
Jan. 2001.

[11] David E. Taylor, John W. Lockwood, and Naji Naufel, “Rad
module infrastructure of the field programmable port extender
(fpx),” http://www.arl.wustl.edu/arl/projects-
/fpx/references/, Jan. 2001.

[12] James M. Anderson, Mohammad Ilyas, and Sam Hsu, “Dis-
tributed network management in an internet environment,” in
Globecom’97, Pheonix, AZ, Nov. 1997, vol. 1, pp. 180–184.

[13] Edson Horta and John W. Lockwood, “PARBIT: a tool to trans-
form bitfiles to implement partial reconfiguration of field pro-
grammable gate arrays (FPGAs),” Tech. Rep. WUCS-01-13,
Washington University in Saint Louis, Department of Computer
Science, July 6, 2001.

[14] David E. Taylor, John W. Lockwood, Todd Sproull, and David B.
Parlour, “Scalable IP Lookup for Programmable Routers
,” http://www.cs.wustl.edu/cs/techreports-
/2001/wucs-01-33.pdf, Oct. 2001.

[15] Duncan A. Buell, Jeffrey M. Arnold, and Walter J. Kleinfelder,
“Splash 2: Fpgas in a custom computing machine,” IEEE Com-
puter Society Press, 1996.

[16] Bradley K. Fross, Dennis M. Hawver, and James B. Peterson,
“Wildfire heterogeneous adaptive parallel processing systems,”
http://www.annapmicro.com.

[17] Steven A. Guccione, Delon Levi, and Prasanna Sundarara-
jin, “Jbits: A java-based interface for reconfigurable comput-
ing,” in 2nd Annual Military and Aerospace Applications of
Programmable Devices and Technologies Conference (MAPLD),
1999.

[18] Jason Hess, David Lee, Scott Harper, Mark Jones, and Peter
Athanas, “Implementation and evaluation of a prototype reconfig-
urable router,” inIEEE Symposium on FPGAs for Custom Com-

puting Machines, Kenneth L. Pocek and Jeffrey Arnold, Eds., Los
Alamitos, CA, 1999, pp. 44–50, IEEE Computer Society Press.

