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ABSTRACT

Software-based Network Intrusion Detection Systems (NIDS)
often fail to keep up with high-speed network links. In this
paper an FPGA-based pre-filter is presented that reduces the
amount of traffic sent to a software-based NIDS for inspec-
tion. Simulations using real network traces and the Snort
rule set show that a pre-filter can reduce up to 90% of net-
work traffic that would have otherwise been processed by
Snort software. The projected performance enables a com-
puter to perform real-time intrusion detection of malicious
content passing over a 10Gbps network using FPGA hard-
ware that operates with 10 Gbps of throughput and software
that needs only to operate with 1 Gbps of throughput.

1. INTRODUCTION

Network Intrusion Detection Systems (NIDS) perform deep-
packet inspection on packet payloads to identify, prevent,
and inhibit malicious attacks over the Internet. Tradition-
ally these systems are implemented in software. However,
experiments show that even on moderate-speed networks,
software alone is unable to process all traffic at the full link
rate [1, 2]. Without scanning all traffic, some attacks will
not be detected.

Snort [3] is an open source NIDS that uses signatures to
detect abnormal network activities. With rules contributed
by the network security community, the database of signa-
tures is large and continues to grow. The latest version of
Snort, version 2.3.2, contains over 2,600 rules. In Snort,
more than 80% of the rules contain signatures and more than
80% of the CPU time for Snort is consumed by the string
matching task alone [4]. As network traffic speeds increase,
PC-based solutions cannot continue to process all traffic in
real time.

Several attempts have been made to improve the sys-
tem performance by migrating functionality from software
to hardware. Though software is relatively slow, it is well
suited to perform lightweight processing on low volumes of
network data. On the other hand, fast hardware is best suited
for computationally intensive processing on network traffic

and can sustain much higher network throughput. To lever-
age the hardware’s performance and the software’s flexibil-
ity, a hybrid architecture is highly desired. The key observa-
tion is that the malicious packets typically count only a small
portion of the background “normal” traffic, yet they need
enormous efforts to figure out. By relaxing the screening cri-
teria at the cost of moderately increasing the false alarm rate,
a hardware plug-in or pre-processor can effectively filter out
benign network traffic and only pass suspicious packets to a
software system for complete inspection. This division be-
tween the software and hardware allows hardware to offload
processing to match malicious packets that do not require
complex inspection in software. The hardware requirements
can be made sufficiently small to allow implementation on a
moderate sized FPGA.

We have developed a hybrid system that can successful
monitor an OC-48 link without any packet loss using a Xil-
inx VirtexE FPGA and a low-end PC running Linux. By
using the latest Virtex4 FPGAs, the system is scalable to op-
erate on 10 Gbps networks. The system can be implemented
in a stand-alone box or in the network interface card (NIC).

2. RELATED WORK

Several approaches to improve the performance of NIDS
have been proposed. Some software-based solutions use hy-
brid algorithms to perform rule matching [5, 6, 4, 7]. How-
ever, the performance of these algorithms is still insuffi-
cient for deployment in high-speed networks. To achieve
higher processing throughput, computer clusters have been
proposed to offload the workload of a single computer [8, 9].
The cost of the cluster remains high, however, because it
requires multiple processors, a distribution network and a
clustered management system.

Recently, there has been an increasing interest in imple-
menting NIDS completely in hardware. Researchers have
focused primarily on the computationally-intensive task of
string matching [10, 11, 12, 13]. These efforts take ad-
vantage of the reconfigurability, parallelism, and advanced
memory technology available in FPGA hardware to pro-



vide very high-speed string matching. Efficient circuits have
been implemented in reconfigurable hardware that perform
packet header classification [14]. Nonetheless, complete sys-
tems that provides fullstateful inspection of traffic flows re-
main to be seen. The diversity of rules makes the problem
difficult for a pure hardware implementation.

An attempt has been made to combine the network pro-
cessor with reconfigurable hardware to leverage the software
and hardware [15]. A dedicated NIDS card was shown to
handle intrusion detection without involving extra comput-
ers with a throughput of about 100 Mbps.

In this paper, a hybrid intrusion detection system is ex-
amined. A reconfigurable hardware module offloads most
of the processing from a software-based NIDS, allowing the
system to scale to higher network link rates.

3. ARCHITECTURE

The overall design principle for this architecture is the use of
packet filtering techniques. It is typically easier to identify a
packet that does not match any rule than to ensure it matches
at least one. Therefore, the pre-filter is used as a mechanism
to quickly check for a necessary (but not sufficient) condi-
tion for an approximate match to occur. If the packet does
not satisfy the necessary condition, it is no longer processed,
leaving more time for the expensive algorithms in software
to process packets that match the filter. The amount of the
traffic that needs to be processed by software can be sig-
nificantly reduced by our hardware filter. Moreover, the re-
maining software component that runs on a microprocessor
could also be migrated into an embedded processor, such as
the Power PC in the Xilinx V2Pro or Virtex4. The high-level
architecture for our system is shown in Figure 1.
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Fig. 1. System Architecture

The FPGA-based NIDS Offload Engine sits between the
internal network and external network to monitor all pass-
through traffic. The control center dynamically reconfigures
the hardware through the network to update the filter set.

The active filter sits on the data path and is used to block
some flows based on the packet header. The passive filter
monitors both the packet header and payload and passes the
suspect packets to software. The software generates alert
messages to the control center once any rule is matched. The
hardware is also responsible for header-only rule matching
and sends corresponding alerts directly to the control center.

The effectiveness of the passive filter can be measured
by the fraction of traffic filtered in hardware to the total
amount of traffic sent through the network. The amount of
traffic that does not have to be inspected by software should
be as large as possible. At the same time, it is critical that
any real attacks should be preserved by the filter. These op-
posing requirements form the major challenge faced in the
design of the system. First, pre-filtering packets based solely
on the packet header is not desirable because some wildcard
header rules match all packets. It is also not desirable to
solely examine the payload. The reasons are two-fold: some
rules contain only a header specification and some strings
are so common that they appear in benign packets. There-
fore, it is necessary to process both the header information
while also scanning the payload of the packet.

The hardware filter is targeted to operate in a Xilinx
XCV2000E. The design runs faster and occupies less space
on the newer FPGA devices, such as the Virtex4. This de-
sign leverages previous work, as described below, and adds
many new features. The hardware architecture has the fol-
lowing key components:

Layered Protocol Wrappers The TCP processor wrappers
handle the TCP/IP packet header processing and main-
tain the flow states [16, 17]. The wrapper guaran-
tees correct packet forwarding and provides flow-level
monitoring.

Packet Header ClassificationA high performance embed-
ded packet classification circuit implemented in re-
configurable hardware was presented in [14]. Anal-
ysis of the Snort rules showed that there are less than
300 header rules if only the standard 5-tuple header
fields (i.e. source IP address, destination IP address,
protocol, source port and destination port) are used.
This system adds support for matching other header
fields like TCP flags in order to reduce the number of
packets that are processed in software. Experiments
show this is crucial since some rules largely depend
on these header bits to identify intrusions while other
specifications are quite general. Our system classi-
fies packets based on the 5-tuple header fields and
then matches other header fields using combinational
logic. The classification results are a set of matched
header rule IDs.

Among 300 unique header rules in Snort v2.3.2, 144
are header-only rules. If a packet matches one of these



rules, the packet can be processed entirely in hard-
ware. Alerts are sent directly to a control center. Hence
we can delete these rules from the software rule set.
This step off-loads both the input traffic and the num-
ber of rules that must be processed by software.

Two-level Bloom Filters Bloom filters are used to pre-filter
the packet payload. The use of Bloom filters for string
matching was first proposed in [12]. In this system,
the front-end Bloom filters are used without the exact
match hash table. Thus, there is no need to use any
off-chip memory. Besides programming the string it-
self, the Bloom filters used in this system also hash
over a meta-string that combines the corresponding
header rule ID with the string. Since the number of
unique header rules is less than 256, the meta-string is
only one byte longer than the original string.

Active Packet Filter For active dropping or bypassing of
packets from some flows, the control center sends di-
rectives to the hardware. The directives specify the
flow using the 5-tuple IP header fields.

to software
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Fig. 2. Hardware Modules and Organization

Figure 2 displays the block diagram of the FPGA hard-
ware. The packets that pass the active filter are sent out. At
the same time, the header and payload of the packets are in-
spected. Suspect packets are sent to the software NIDS for
complete inspection.

The packet header classification module and 2-level Bloom
Filters module work in parallel. Initially, the packet payload
is scanned by the first level Bloom filter only. When the
Bloom filter reports a possible match, the string is extracted
and combined with each of the header rule IDs from the
header classification module. Using this meta-string, a sec-
ond level Bloom filter is probed. If the second level Bloom
filter reports a match, the packet is forwarded to software
and no additional hardware scan is needed for this packet.
Otherwise, content scanning is continued until all header
rule IDs are checked and no meta-string match is found.

The approach works well for the following reasons:

1. Typically a packet will match no more than 5 header
rules. In the worst case, only 5 meta-string queries
are needed once the first level Bloom Filter reports a
“match”.

2. By checking both the string and the meta-string, the
false positive rate of Bloom Filters is lowered and the
amount of traffic forwarded to software is reduced.

3. Once a possible match is found, the hardware does
not need to perform further inspection. The packet is
forwarded to software.

4. Malicious or identified benign flows which cause ex-
cessive true matches or false matches can slow the
system. This effect is reduced by configuring the ac-
tive filter to either drop or bypass packets belonging
to these flows.

3.1. Case Insensitive Strings

Approximately half of the strings in Snort rules are case in-
sensitive. It is not efficient to program all possible stringpat-
terns in the Bloom filters. For example, if a string contains
k case insensitive characters,2k distinct strings are needed
to represent it. In our system, only lower-case strings are
programmed into the Bloom filters. Before querying the
Bloom filter using the content string, all ASCII characters
are normalized to lower case. We have found that the case-
insensitive only slightly increases the amount of traffic sent
to software.

3.2. String Truncating and Grouping

In our system, signatures are grouped based on length, and a
group is assigned to a Bloom filter. In the default configura-
tion of Snort v2.3.2, there are 57 distinct lengths distributed
from 1 byte to 107 bytes. For each length, there could be as
many as 374 strings or as few as only 1 string. When com-
paring only the longest string for each rule (emulating the
behavior of the 2 Level Bloom Filter) the lengths vary from
1 to 277 bytes. Figure 3 shows the string length distribution
in Snort rules using the longest rule per string.

To make efficient use of Bloom filters, strings are clus-
tered with different lengths in a group, and strings are trun-
cated to the length of the shortest string in the group. Trun-
cated strings are programmed into a single Bloom filter ded-
icated to this group. Using this method, only a few Bloom
filters are needed to handle all the strings in the Snort rule
set.

For example, when the string length threshold is set to
(t1, t2, ...tk), all strings with length≥ ti and< ti+1 are
clustered into the group with threshold lengthti, and all
strings in this group are truncated to have the same length of
ti. The string truncation can be as simple as cutting off the
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Fig. 3. String Length Distribution in Snort V2.3.2 using the
longest string per rule

tail. Alternatively, analysis can be performed to select the
most unique sub string to improve the system performance.

Through analysis of the rule set, we find that the aver-
age length of all the strings in Snort is less than 13. We also
find that in order to make the pre-filter effective, searches
for strings of length 1 and 2 must be included. The other
thresholds are determined through simulation by consider-
ing performance and resource usage. A finer granularity can
be achieved to lower the false positive rate. Note that the ac-
tual number of strings in each Bloom filter is equal to twice
the number of signatures because of the use of meta-strings.
The Bloom filter can be configured to have an extremely
low false positive rate by using more block RAMs. For the
strings of 1-byte long, no Bloom filter is used. Instead, a
256-entry look-up table is maintained to directly map the
string. In this case, the meta-strings are 2-bytes long and
programmed into a Bloom filter.

4. EVALUATION

In order to evaluate the effectiveness of hardware pre-filtering,
a modified Snort rule set was generated. This circuit per-
formed header processing and fixed-length content inspec-
tion in an FPGA. The modified rule set did not include regu-
lar expressions and did not allow multiple content strings per
rule. For rules containing multiple strings, the longest string
is used. Besides the header rule and truncated string, the
modified rule also includes two header options: “ipproto”
and “flags”. The ipproto option checks the IP protocol field
and the flags option checks for the presence of specific TCP
flag bits.

Header-only rules are matched entirely in hardware, al-
lowing for the immediate generation of alert packets. Only
144 Snort rules consist of header processing alone, making
the resource requirements fairly small.

To evaluate the system with real traffic, Internet traf-
fic from the Washington University campus was captured

and processed by Snort. We analyzed all of the traffic on
the 10,000+ user Washington University network, varied in
bandwidth typically between 100 and 350 Mbits/sec depend-
ing on the time of day. One minute and 30 second Inter-
net traces were collected throughout one entire day to ob-
serve variations in traffic load and types of traffic patterns.
The data was sent to Snort for processing and generation of
alerts.

% of Traffic Traffic # of
Forwarded Bandwidth BRAMs
to Software (Mbits/sec)

Original rule set 0.18 0.28 -
All string lengths 12.56 21.44 880
1,2,4,8,12,16 12.96 22.19 80
1,2,4,8,12 12.96 22.19 64
1,2,4,8 13.0 22.24 48
1,2,4 13.1 22.48 32
1,2 40.0 68.42 16

Table 1. Test Results on WashU Campus Network for vari-
ous String Thresholds

The first test performed evaluates the effects of differ-
ent string length thresholds versus block RAM utilization,
which is the critical resource of the implementation. Table1
indicates the amount of traffic forwarded to software for dif-
ferent Bloom Filter string length thresholds. The rightmost
column of the table indicates the number of 4K-bits block
RAMs required for each test. The first row of the table indi-
cates how the full Snort rule set would perform when imple-
mented entirely in software and is provided for reference.
The results show that by using a subset of string lengths
with header rules, only a slight increase in the amount of
traffic sent to software occurs while a significant savings
in resource usage is achieved. However, if the number of
thresholds is reduced too aggressively, such as using thresh-
old 1 and 2 only, up to 40% of traffic has to be sent to
software. The XCV2000E FPGA has a total of 160 block
RAMs, thus motivating the decision to find a solution us-
ing the least amount while not introducing a considerable
amount of traffic to the software. As a tradeoff, the thresh-
old of size 1, 2, and 4 is used.

Using the threshold 1, 2, and 4, campus traffic was sam-
pled throughout the day to demonstrate the potential savings
of bandwidth sent to Snort running on a PC. Figure 4 shows
the amount of traffic processed by the FPGA and the amount
forwarded to software. On average, traffic is reduced by
87%. The bandwidth of traffic forwarded to software var-
ied over the course of the day, as both the total amount of
traffic varied throughout the day. We found that the largest
reduction of traffic occurred at 2:00pm. Test results show
that the hardware offload of Snort rule processing offers a
great benefit. It allows low cost PC’s to perform NIDS on
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5. IMPLEMENTATION

The entire system that processes OC-48 traffic fits into Vir-
tex 2000E FPGA on the FPX platform. Table 2 projects how
well this solution will scale for some popular network link
speeds. Of the logic used in the system, the BV-TCAM of
[14] required less than 10% of the logic slices in the FPGA.

Gigabit Ethernet OC-48 OC-192

Incoming 1 Gbps 2.4 Gbps 10 Gbps
Bandwidth
Outgoing 131 Mbps 315 Mbps 1.3 Gbps
Bandwidth

Table 2. Projected Throughput of Hardware Offload Engine

To process the data at the full line-rate, parallel copies
of Bloom filters are used. The Bloom filters were config-
ured to use 8 hashes to index a 16 Kbit vector. The hash is
computed in 2 cycles, and the subsequent query requires 3
clock cycles. Queries can be pipelined to increase system
throughput.

Each signature group Bloom filter uses 16 block RAMs
and requires about 10% of the logic slices in a Xilinx Vir-
tex 2000E. The majority of the logic is found in the hash
circuitry. The largest false positive probability occurs for
string group 4 with a value of10−7 [12]. By using two-
level Bloom filters, the false positive probability furtherde-

creases. Simulation found that the extra amount of traffic
due to a Bloom filter false positive is negligible.

Since newer FPGAs have multiple embedded micropro-
cessors, transplanting the software into the embedded pro-
cessor eliminates the need for external PCs.

6. CONCLUSION

As the rule set size of network intrusion detection and pre-
vention systems grows and as network link speeds increase,
the need for hardware accelerated network processing grows.

In this paper, a hybrid architecture is described that uti-
lizes software’s flexibility and hardware’s high throughput.
The hardware circuit acts as a pre-filter to reduce the traffic
volume sent to the software. The hardware ensures that be-
nign traffic passes through the system without the need for
software processing. The reconfigurable hardware filter can
be built in a stand-alone chassis or in a NIC mounted within
a PC running the software NIDS. It is also possible to run
the software in the embedded microprocessor of an FPGA.

The use of field programmable hardware enables a PC
to effectively achieve an order of magnitude improvement
in performance for the processing of Snort rules. Using cur-
rent FPGA and PC technology, it is quite feasible to process
10 Gbps of data throughput using a single FPGA and one
microprocessor.

By analyzing the output of hardware, most of the suspect
packets are due to very few pre-filter rules, not real attacks.
Thus, the number of packets sent to software is actually tens
to hundreds of times greater than the number of harmful
packets identified by software. This implies that there are
still great opportunities to improve the filtering techniques.
As future work, the hardware pre-filter can be enhanced fur-
ther to achieve processing of data with even higher through-
put and a more significant traffic reduction effect.
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