
MUTABLE CODESIGN FOR EMBEDDED PROTOCOL PROCESSING

Todd Sproull

Applied Research Laboratory
Washington University

St Louis, USA

Gordon Brebner, Christopher Neely

Xilinx Research Labs
Xilinx, Inc.

San Jose, USA

ABSTRACT

This paper addresses exploitation of the capabilities of plat-
form FPGAs to implement embedded networking for sys-
tems on chip. In particular, a methodology for exploring
trade-offs between the placement of protocol handling func-
tions in programmable logic and on an embedded proces-
sor is demonstrated. This is facilitated by two new design
tool capabilities: first, being able to describe programmable
logic based functions in a more software-like manner; and
second, being able automatically to generate efficient inter-
faces between a programmable logic fabric and an embed-
ded processor. The methodology is illustrated by an exam-
ple of a simple web server, targeted at Xilinx Virtex-II Pro or
Virtex-4 FX platform FPGAs. Trade-offs both of complete
protocol placement and of within-protocol placement are
systematically investigated in terms of resources used and
packet handling latency. This provides an excellent range
of service times, corresponding to differing logic fabric and
memory resource requirements. The work points the way
to highly fluid allocation of functions to implementations,
beyond conventional static codesign.

1. INTRODUCTION

Embedded networking is a technology of critical importance
to systems to be deployed in the future, where devices and
appliances have some level of networking capability to com-
municate with their environment and other systems within
it. The scale and complexity of such networking need not
necessarily be as great as seen in traditional telecommuni-
cations and computer networking, in particular because the
resources available and cost models for the networked sys-
tems do not allow it. Therefore, a technical challenge is to
provide design processes that support the cheap and simple
implementation of the communication protocols to be used.

In this paper, the capabilities of contemporary platform
FPGAs are exploited through new design tools, in order to
illustrate how highly mutable implementations of embedded
networking for systems on chip can be produced, and how
trade-offs between implementations can be rapidly investi-
gated. A particular focus for investigation is the use of an

embedded processor within the logic fabric of the FPGA.
Although hard processor blocks are studied here, the general
discussion is equally applicable to the use of soft processors
configured in the logic fabric.

In order to explore thoroughly trade-offs between imple-
mentation of functions in programmable logic and on an em-
bedded processor, it is necessary to adopt a very fluid notion
of hardware/software codesign. That is, the conventional
situation, where top-level system partitioning decisionsare
made on function placement, with a processor-centric fla-
vor to the system architecture, represents just one codesign
point. Here, the flavor of system architectures is very much
interface-centric, that is, driven by the required behavior of
the system’s interface to its environment. Mutable assign-
ments of functions to implementations can both be inves-
tigated at design time, and also be considered as dynamic
alternatives at run time.

Such an exploration requires appropriate design tool sup-
port, and the work here relies on two main tool advances re-
sulting from research within Xilinx Research Labs. The first
is a compiler for a description language for networking func-
tions expressed in a software-like form that is more abstract
and domain-specific than hardware description languages.
This has been described in detail in an earlier publication
[4]. The second is a mapper that automatically generates ex-
tremely efficient interfaces between the programmable logic
fabric and an embedded processor, something of particular
use for implementing trade-off points rapidly.

The general methodology is demonstrated through an
example of implementing a simple web server on a plat-
form FPGA. This server has a gigabit Ethernet connection
to its environment, and uses a tailored embedded network-
ing subset of the IP, TCP and HTTP protocols to communi-
cate. Eight different trade-offs in terms of allocating proto-
col functions to programmable logic or to the embedded pro-
cessor are shown, exhibiting a range of acceptable server re-
sponse times, at different latency, and logic and memory, re-
source points. Although only semi-automated at this stage,
the whole exercise was carried out by a non hardware expert
within a total of six weeks.



2. PLATFORM FPGAS AND MUTABLE CODESIGN

Platform FPGAs are exemplars of reconfigurable system-
on-chip platforms, with their programmable interconnect be-
ing an exemplar of a reconfigurable network on chip. They
present both unique design challenges and unique design op-
portunities. Unlike general system-on-chip design, of course,
the mix of on-chip resources is pre-determined by the FPGA
vendor rather than the designer, which places constraints on
the explorable design space. In this paper, the focus is on the
effective use of embedded processors, as a programmable
companion to programmable logic. Note that, although this
is the focus, it is not the intention to accord the processor
special status within the system on chip, as is often the case
in codesigned systems. Rather, it is regarded here as just one
particular function block, alongside the various other types
of block available in a platform FPGA.

The exact nature of the hard processor itself is not a ma-
jor concern here, but its interfacing to the logic fabric is
particularly important, when investigating implementation
trade-offs for functions. For example, in the case of the Xil-
inx Virtex-II Pro [1], the on-chip memory (OCM) interface
is available for use, alongside a soft instantiation of the IBM
CoreConnect bus architecture. In the case of the Virtex-
4 [1], the auxiliary processor unit (APU) interface is also
available. The best way of harnessing these options is influ-
enced by the use model for the embedded processor within
the overall system on chip.

Codesign methodologies seek to avoid inefficiencies as-
sociated with traditional system design that develop separate
hardware and software components. The inefficiencies arise
through a specification being developed and sent to hard-
ware and software engineers, with the hardware-software
partition decideda priori and adhered to as much as is pos-
sible, because any changes in this partition may necessitate
extensive redesign. Incompatibilities might arise acrossthe
hardware-software boundary, and sub-optimal systems may
arise as a result of the pre-defined partitioning of functions.
The work reported in this paper is concerned with enabling
very fluid codesign, specifically in the embedded network-
ing domain. The intent is to allow experimentation with
placement of functions at design time, and indeed to open
up the possibility of changing the placement of functions at
run time.

Two central requirements to achieving mutable codesign
are, first, that functions are described in representationsthat
are capable of efficient mapping to logic or processor or both
and, second, that efficient interfacing between logic and pro-
cessor can be easily constructed. It need not be the case that
there is a single representation for functions, for example, an
‘everything written in C’ approach. Rather, and as seen in
this work, the key is to have representations at a high enough
level of abstraction that producing different representations
of functions can be speedy.

In the embedded networking methodology described in
this paper, the overall system architecture is interface-centric,
with an embedded processor available to assist in handling
activities arising from the system’s environment. That is,
there is no main program running on the processor that acts
as a driving force for the system’s operation. Thus, the archi-
tecture is empathetic with the software decelerator (or, touse
more neutral terminology,software assistant) model [2, 3],
and indeed the practical experiments have benefited from
tool development arising from research into software decel-
erators. However, in order to allow for maximum fluidity in
codesign, there is no explicit use of either a software decel-
erator model or a hardware accelerator model. The hardware
and software components are viewed as co-workers.

To investigate trade-offs in a mutable codesign frame-
work, it is necessary to have apt measures that reflect the
operational requirements of the embedded networking sys-
tems. Here, two dimensions are considered. The first one is
area, measuring the programmable logic resource and em-
bedded processor resource required. The second one is time,
measuring the packet handling time for the embedded net-
working functions. For area measurement, the number of
lookup tables (LUTs) is used here as the measure of pro-
grammable logic resource. No charge is made for the sil-
icon area occupied by the embedded processor, since it is
assumed as a fixture present whether used or not. Instead,
the amount of instruction and data memory is used here as
the measure of embedded processor resource. To combine
these two area measures into a single figure, each 12 bytes of
embedded processor memory are counted as one LUT here.
This is motivated by an estimate that one Xilinx Virtex-II
LUT occupies approximately the same silicon area as 12
bytes of BlockRAM memory. For time measurement, the
latency between a request arriving from the network envi-
ronment and the completion of all resulting responses sent
back is used as the measure of time. This is an apt domain-
specific measure for embedded networking, rather than raw
clock frequencies, because the requirement is that clock fre-
quencies are sufficient to match external interface rates and
need not necessarily be higher.

3. CASE STUDY: A WEB SERVER ON CHIP

As a case study of the mutable codesign methodology, to-
gether with use of recent research tools, the implementa-
tion of a simple web server on a platform FPGA was in-
vestigated. The initial target FPGA was the Xilinx Virtex-II
Pro, with a migration path to the newer Virtex-4 FX. The
HAEC language [4], developed in Xilinx Research Labs as
part of research into network processing using platform FP-
GAs, was used for representing functions targeted at pro-
grammable logic. C was used for representing functions tar-
geted at the embedded PowerPC processor.



3.1. Web server functions

The web server responds to requests for web pages that are
sent to the platform FPGA over a gigabit Ethernet link. This
involves a stack of four communication protocols:

1. HTTP, for web requests and responses; over

2. TCP, for end-to-end data streaming; over

3. IP, for end-to-end packet transfer; over

4. Ethernet MAC, for Ethernet packet transfer.

There is an immediate possible processor-centric implemen-
tation point for this server, which would be to run Linux
(or some other OS) on the PowerPC and use its standard
TCP/IP networking facilities with standard web server soft-
ware. However, the case study here is concerned with em-
bedded networking, where an aim is to use minimal resources
to support necessary functionality and no more.

The nature of the web server implemented was that it
implements only the minimum protocol subsets required to
communicate — importantly though, always keeping within
the protocols. This aspect is seen particularly in the case of
the TCP protocol. First, only a single TCP connection (and
hence web request) is handled at a time, and it is always ini-
tiated by a client, by definition. The level of functionality
of the TCP responder is similar to that of [5], relying on the
client to handle retransmissions and timeouts if error recov-
ery is necessary. The responder thus handles only basic TCP
packet header processing, checksum calculations, as well as
the connection setup (SYN/ACK) and connection teardown
(FIN/ACK) subprotocols [6].

Once a connection is set up, the expectation is that the
TCP responder receives an HTTP request message within
a single TCP packet. It then immediately issues a TCP
ACK packet, followed by the requested web page data in an-
other TCP packet, and finally a teardown TCP FIN packet.
In principle, the three TCP packets sent back could be re-
duced to just two, or even one, while keeping within proto-
col. However, for the case study, this approach gave more
realism in terms of extrapolating the behavior to situations
where web page data spans multiple TCP packets.

Traditional approaches for performing TCP protocol pro-
cessing in hardware, whether by ASIC or FPGA, typically
involve the use of offload engines [7], following a hardware
acceleration model. These engines can perform a variety
of tasks, such as calculating checksums or handling seg-
mentation and reassembly [8, 9]. Earlier work has demon-
strated full implementation of TCP/IP on platform FPGA
based systems, including the use of offload engines com-
bined with use of the embedded processor.

The Gigabit System Reference Design (GSRD) [10] is
an example of providing TCP checksum offload capabili-
ties in programmable logic. Using the GSRD, [11] demon-
strates a full high performance TCP/IP implementation on

Version name Description
HTTP Programmable logic only,

PowerPC not in use
TCP Logic processes up to TCP and

PowerPC processes HTTP
TCP/DATA PowerPC processes TCP SYN/FIN

only and logic processes
remaining TCP functionality

TCP/SYN/FIN Logic processes TCP SYN/FIN and
checksums, and PowerPC processes
remaining functionality

TCP/CHKS Logic processes TCP checksums
and PowerPC processes remaining
TCP functionality

IP Logic processes up to IP and
PowerPC processes TCP and HTTP

ETH Logic processes only Ethernet MAC
PPC PowerPC only: web server protocol

stack exists entirely in software

Table 1. Web server codesign points

a Xilinx Virtex-II Pro FPGA. In [12], an implementation
of the lightweight Internet Protocol (lwIP) stack running a
TCP echo server is demonstrated. In [13], there is an exam-
ple of a web server running on the Virtex-II Pro. In all these
cases though, the TCP processing either exists entirely in the
PowerPC or with just the TCP checksum calculation placed
in programmable logic. Here, more general possibilities are
investigated.

3.2. Implementation trade-offs explored

To explore trade-offs between programmable logic and em-
bedded processor, eight different codesign points were se-
lected for the web server implementation. These involve
partitioning of the protocol stack along a protocol bound-
ary in some cases, and partitioning within the TCP protocol
in other cases. Table 1 provides a summary of each of the
eight codesign points explored.

Aside from the handling of the varous protocols, the only
other functionality present in each design was the physical
gigabit Ethernet interface. This was always implemented
by the standard Xilinx Gigabit MAC (GMAC) core imple-
mented in programmable logic.

At one extreme point, namedHTTP, all of the protocol
handling is implemented in programmable logic alone. At
the other extreme point, namedPPC, it is implemented on
the embedded processor alone. The latter corresponds to the
earlier example shown in [13]. These extreme cases serve
as benchmarks in terms of demonstrating the maximum and
minimum latency and resource utilization.



In between the two extreme codesign points, there are
six intermediate points. The first of these, namedTCP, in-
volves placing the simple HTTP processing into the Pow-
erPC — this involves accepting an HTTP request message,
and returning a fixed web page as an HTML-formatted re-
sponse. All of the other protocol handling — Ethernet MAC,
IP and TCP — remains in programmable logic.

The second to fourth intermediate points involve differ-
ent partitions of the implementation of TCP. In the second,
namedTCP/DATA, processing of the SYN and FIN pack-
ets used for TCP connection setup and teardown is handled
by the PowerPC, with all other TCP functions remaining
in programmable logic. A rationale for this partition is to
place less frequently used, or potentially more algorithmi-
cally complex, functionality on the embedded processor. In
the third intermediate point, namedTCP/SYN/FIN, pro-
cessing of TCP data transfers is handled by the PowerPC
with other TCP functions (checksum calculation and pro-
cessing of SYN/FIN packets) remaining in programmable
logic. A rationale for this partition is to place TCP data
packet handling alongside HTTP handling. In the fourth in-
termediate point, namedTCP/CHKS, only calculation of
TCP checksums remains in programmable logic, with all
other functions handled by the PowerPC. This corresponds
to the conventional checksum offload case.

The fifth intermediate point, namedIP, involves all TCP
(and HTTP) processing being handled by the PowerPC, with
the remaining (Ethernet MAC and IP) processing being han-
dled in programmable logic. The final intermediate point,
namedETH, involves the IP processing also being handled
by the PowerPC. This processing includes swapping source
and destination IP addresses, computing IP header check-
sums and checking the IP protocol field to determine the
higher level protocol processing.

3.3. Mutable codesign methodology

The first step in the methodology was to produce a HAEC
representation of the whole web server, leading to an im-
plementation entirely in programmable logic. In this rep-
resentation, separate HAEC threads were used for each of
the four protocols (Ethernet MAC, IP, TCP and HTTP). The
HAEC external interface mechanism was used to integrate
the gigabit Ethernet core, and the memory block mechanism
was used to create buffers for storing arriving and depart-
ing packets. This resulted in a working implementation of
the web server for the Virtex-II Pro, without the embedded
PowerPC being used. A benefit of using HAEC was that
the system was implemented by a non hardware expert, and
indeed a HAEC novice, within four weeks.

Two factors were then critical to enabling the speedy de-
velopment of the other codesign points. The first was that
the high-level nature of the HAEC language simplified the
removal of particular functions that were to be reassigned to

the processor, without disturbing the remainder of the im-
plementation in programmable logic. In the case of com-
plete protocol handling, complete threads could be removed.
In the case of partial TCP handling, separable parts of the
TCP threads could be cleanly removed. The second factor
was that a further Xilinx Research Labs prototype tool was
available to completely automate the integration of the em-
bedded processor component with the programmable logic
component. It takes an arbitrary block of C code to act as a
packet handler, and wraps its PowerPC implementation into
a black box with a highly efficient gigabit-rate interface via
the OCM bus from and to the programmable logic fabric.
This interfacing arrangement uses the techniques described
in [2]. Thus, the only new work to create a new codesign
partition point was to write a piece of C code to match the
function of an existing piece of HAEC code. Ultimately, a
C event handler was created that contained the entire pro-
tocol handling functionality of the web server. As a sanity
check, this could be compared with an existing similar C
implementation [13].

The codesign methodology described is semi-automated,
but one that proved realistic and productive in the setting of
embedded networking. There are two main steps towards
a fully automated approach based on a single system de-
scription. The first would involve automation of the move-
ment of pieces of high-level code from one side of the logic-
processor partition to the other. The second would involve
mapping a single description efficiently to both hardware
and software. The current compromise is attractive because
the remaining non-automated features are those that engage
human creativity, expressed at a high level of abstraction,
with the more unpleasant aspects taken care of by tools such
as the HAEC compiler and the PowerPC black-boxer. This
exercise proved very worthwhile purely in terms of using
two previously independent tools in tandem, and so point-
ing the way to future integration.

4. EXPERIMENTAL RESULTS

The web server system was targeted at a Xilinx XC2VP7
Virtex-II Pro platform FPGA, which includes eight multi-
gigabit transceivers. The standard Xilinx ISE 6.3 tools were
used to produce the bitstream for the FPGA from the VHDL
description of the programmed soft platform generated by
the HAEC compiler. The system was tested using a Xil-
inx ML300 [1] board, which includes four gigabit Ether-
net interfaces, one of which was connected by optical fiber
to a Linux workstation that acted as a client for the server.
The GMAC core, which has an eight-bit packet interface,
was clocked at 125 MHz for full gigabit Ethernet rate. The
threads in logic, which operate on 32-bit data, were clocked
at 31.25 MHz. The PowerPC was clocked at 300 MHz, with
the OCM bus running at 100MHz.



Version name Logic PowerPC Total
HTTP 1312 0 1312
TCP 1312 4391 5703
TCP/DATA 1312 6551 7863
TCP/SYN/FIN 1312 7951 9263
TCP/CHKS 1312 10111 11423
IP 928 15651 16579
ETH 576 22911 23487
PPC 0 27850 27850

Table 2. Protocol handling latency

For the codesign trade-off experiments, ModelSim sim-
ulation was used, to allow fast evaluation of the different
codesign points. In all cases, timings were measured for
handling a single HTTP request. Through a simulation har-
ness, TCP packets were transmitted to the FPGA to set up
a connection (TCP three-way handshake), then to request
a web page, and then to close the connection. Separate la-
tency measurements were made for the amount of time spent
on protocol handling in programmable logic and on the em-
bedded processor. The latter measurements include the time
for transferring packets between the logic fabric and the pro-
cessor. In carrying out the PowerPC measurements, an ini-
tial HTTP request was made in order to fully populate the
PowerPC instruction and data caches, and the measurements
were made for a subsequent request.

4.1. Latencies

Table 2 reports the protocol handling latency (in nanosec-
onds) associated with the programmable logic and embed-
ded processor for each codesign point. This latency does not
include time taken for the physical reception and transmis-
sion of packets, and also eliminates any unavoidable latency
from arbitrary gaps between the receipt of packets.

The PowerPC-only codesign point has the highest la-
tency, which is as might be expected. When Ethernet MAC
handling is moved to logic, the total latency decreases by
17%, and when the IP handling is moved to logic, latency
is reduced by an additional 23%. With the TCP checksum
handling only moved, an additional 19% latency reduction
is experienced. The most dramatic decrease in latency oc-
curs when the PowerPC is not used at all, where the protocol
processing is 21 times faster.

These various total latency decreases would have been
fairly predictable in advance, certainly the decreasing trend,
if not the exact numbers. However, the use of the codesign
methodology has pointed out the constant programmable
logic latency for all the different partitions across the TCP
protocol. This is because of the concurrent execution of
threads, and indicates that calculation of the TCP checksum

Version name Logic PowerPC Total
(LUTs) (bytes) (pseudo-LUTs)

HTTP 2806 0 2806
TCP 2683 640 2736
TCP/DATA 1955 832 2024
TCP/SYN/FIN 2119 976 2200
TCP/CHKS 1391 1168 1488
IP 1185 1424 1304
ETH 488 2804 722
PPC 0 3092 258

Table 3. Resources for protocol handling

is the dominant factor in the concurrent mix. Thus, with
the threaded implementation, a full implementation of TCP
costs as little as just checksum offload, from a latency per-
spective, although clearly has resource costs. Note too that
there is no latency overhead when the HTTP protocol is also
implemented in logic, since the HTTP thread executes con-
currently with the TCP thread.

In terms of the actual web server application, the laten-
cies show a range from 1.31µs to 27.85µs for handling a
request for a web page. Given that a simple fixed web page
is served, these latencies can be interpreted as the embedded
networking overhead on top of the time required for more
sophisticated web page serving. The whole latency range is
very positive in terms of fast response.

4.2. Logic and memory resources

Table 3 reports the amount of programmable logic (in terms
of LUTs) and the size (in bytes) of the PowerPC code+data
responsible for protocol processing, for each version of the
web server. The number of LUTs does not include the fixed
number for the gigabit Ethernet MAC core: around 1400
LUTs on Virtex-II Pro. However, for Virtex-4 FX, there is
no LUT overhead since the hard tri-mode Ethernet block can
be used. The number of bytes of code+data does not in-
clude the fixed number used for low-level support functions,
which was around 4300 bytes in the configuration used. In
fact, this overhead could be significantly reduced if unused
support functions were eliminated. The third column show
an overall ‘pseudo-LUT’ total, counting each 12 bytes of
PowerPC memory as one LUT.

It can be seen that, in general, the resource utilization for
TCP handling is fairly low, as is desirable in this context, but
it is important to remember that this is a stripped-back em-
bedded networking version of TCP, which is much less com-
plex than a full implementation. Performing the TCP check-
sums in logic is a fairly inexpensive codesign point. How-
ever, once TCP connection state processing is introduced to
logic, the logic utilization grows fairly quickly.



HTTP

TCPTCP/DATA

TCP/SYN/FINTCP/CHKS

IP

ETH

PPC

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

Total resource (pseudo-LUTs)

T
o

ta
l l

at
en

cy
 (

n
s)

Fig. 1. Summary of resource latency trade-offs

When the entire TCP handling is placed in logic, the
resource utilization has more than doubled from the case
where TCP is entirely handled by the PowerPC. It is in-
teresting to note that the TCP/DATA codesign point illus-
trates better logic utilization then the TCP/SYN/FIN code-
sign point. Having the connection set up and tear down
state processing implemented on the PowerPC saves a fair
amount of resource. The HTTP implementation is extremely
simple, thus its logic implementation requires a relatively
small number of LUTs. Upon receiving an HTTP request, it
just responds with a web page containing the word “Hello”,
and so here there is little algorithmic complexity that might
be better placed on a processor.

4.3. Area-time results

Figure 1 summarizes the area-time trade-offs for the differ-
ent codesign points. This scatter graph illustrates a clear‘re-
source step’ occurring for the TCP protocol, and emphasizes
a non-trivial pattern of latency gain resulting from moving
different TCP functions between logic and processor. As
might be expected, performing partitioning between proto-
cols has a greater relative effect on latency than partitioning
within the TCP protocol.

4.4. Results for Virtex-4 FX implementation

The designs have also been investigated for Virtex-4 FX
platform FPGA implementation. The newer technology pro-
vides two main benefits for the web server system. First, the
presence of two hard tri-mode Ethernet MAC blocks means
that it is no longer necessary to consume LUTs for the soft
GMAC core, saving around 1400 LUTs. This overhead was
not included on the LUT counts reported here. It was found
that there was no significant change in the numbers of LUTs
used for protocol handling. Second, the Virtex-4 FX has the
same PowerPC 405 embedded processor as Virtex-II Pro,
but it is possible to clock it faster. Using a 400 MHz clock
instead of the 300 MHz clock used in the Virtex-II Pro ex-
periments results in the expected 25% reduction in latency,

and a slightly larger reduction if the OCM clock rate was
raised to 200 MHz.

5. CONCLUSIONS

This paper has illustrated a practical methodology for rapidly
investigating trade-offs between different codesign points,
when implementing embedded networking protocols on a
platform FPGA. Two new research tools were critical to au-
tomating the exploration process: first, a domain-specific
compiler for mapping software-style function descriptions
to programmable logic; and second, an assembler for gen-
erating efficient interfaces between programmable logic and
code running on the embedded processor. Given these, it
was possible for a non hardware expert to carry out the nec-
essary programming for all of the codesign points within a
total of six weeks. The resulting implementations have at-
tractive attributes in terms of resources used and/or packet
handling latency, and a variety of measures have been pre-
sented in order to assess their relative merits.

6. REFERENCES

[1] Xilinx, “Homepage,”http://www.xilinx.com/.

[2] P. James-Roxby, G. Brebner, and D. Bemmann, “Time-
critical software deceleration in an FCCM,” inProc. 12th
IEEE FCCM, 2004, pp. 3–12.

[3] E. Keller, G. Brebner, and P. James-Roxby, “Software decel-
erators,” inProc. 13th FPL, 2003, pp. 385–395.

[4] E. Keller and G. Brebner, “Programming a hyper-
programmable architectures for networked systems,” inProc.
3rd IEEE FPT, 2004, pp. 1–8.

[5] Miniweb, “Homepage,” http://www.sics.se/-
adam/miniweb/.

[6] W. Stevens,TCP/IP Illustrated, Volume 1: The Protocols.
New York: Addison-Wesley, 1994.

[7] Broadcom, “BCM5706 TCP offload engine,”
http://www.broadcom.com/.

[8] Qlogic, “Homepage,”http://www.qlogic.com/.

[9] D. Schuehler and J. Lockwood, “A modular system for fpga-
based tcp flow processing in high-speed netwo rks,” inProc.
14th FPL, 2004, pp. 301–310.

[10] Xilinx, “Gigabit system reference design,” Xilinx XAPP536,
Aug. 2004.

[11] S. Narayanaswarmy, “High performance TCP/IP on Xilinx
FPGA devices using the Treck embedded TCP/IP stack,” Xil-
inx XAPP546, Dec. 2004.

[12] S. Thammanur and C. Borrelli, “TCP/IP on Virtex-II Pro de-
vices using lwIP,” Xilinx XAPP663, Aug. 2004.

[13] M. Muggli, M. Ouellette, and S. Thammanur, “Web server
reference design using a PowerPC-based embedded system,”
Xilinx XAPP434, Nov. 2004.


