
Extensible Network Configuration and

Communication Framework

Todd Sproull and John Lockwood

Applied Research Laboratory
Department of Computer Science and Engineering:

Washington University in Saint Louis
1 Brookings Drive, Campus Box 1045

St. Louis, MO 63130 USA

http://www.arl.wustl.edu/arl/projects/fpx/reconfig.htm

Abstract. The effort to manage network security systems has increased
in complexity over the past years. Network security for a company, uni-
versity, or government agency can no longer be provided using a single
Internet firewall or Intrusion Prevention System (IPS). Today, network
administrators must deploy multiple intrusion detection and prevention
nodes, traffic shapers, and firewalls in order to effectively protect their
network. As the number of devices increases, maintaining a secure en-
vironment becomes difficult. This paper presents an infrastructure for
control, configuration, and communication between heterogeneous net-
work devices. The approach presented uses a Publish/Subscribe model
built on top of a peer-to-peer overlay network in order to distribute in-
formation between network intrusion detection and prevention devices.

1 Introduction

Network administrators have become overwhelmed by the task of securing their
networks against attacks on hosts in their network. End hosts are difficult to
protect because they can be subverted via attacks against flaws in their operat-
ing system, trojan programs, and misconfiguration by users. Firewalls, Network
Intrusion Detection Systems (NIDS) and Intrusion Prevention Systems (IPS)
integrated within the network help protect against exploitation of such flaws.
Many organizations also deploy traffic shapers to help organize bandwidth more
fairly.

Today, network administrators spend much of their time patching or changing
device configurations to prepare or recover from the latest computer worm or
system exploit. The manual configuration and administration of each device
contributes to down time of the network.

It is difficult to manage a group of firewalls, NIDS, IPS, and traffic shapers
because today’s different devices each user proprietary management infrastruc-
ture. Developing a common framework for these devices to communicate would
greatly reduce the time associated with control and configuration of all systems



in the network. In this work, we propose a unified management network that
exchanges information using an eXtensible Markup Language (XML).

The proposed infrastructure allows heterogenous nodes to communicate via
XML messages sent over an adhoc, Peer-to-Peer (P2P) overlay network. Experi-
mental results demonstrate the performance of the overlay forwarding high level
security alerts.

2 System Architecture

2.1 Services

Nodes in the overlay network subscribes to services of interest. Nodes subscribe
to the services by issuing discovery queries to the network. Nodes implementing
services respond with a list of the services they offer as well as advertisements
of other peers in the group.

Services include, but are not limited to: rule updates for intrusion detection
and prevention, signatures distribution for viruses and trojan horses, anomaly
detection and SPAM filters. In general, these services run in hardware or software
in the network infrastructure and communicate through an overlay network.

2.2 Overlay Network

The P2P overlay network is developed using JXTA [7]. JXTA provides an open
infrastructure allowing developers to create P2P networks operating across a
variety of platforms. The original implementation of JXTA was developed in
JAVA. JXTA-C and JXTA for mobile devices also exist. The default message
distribution broadcasts messages to communicate with nodes. JXTA also sup-
ports a two tiered hierarchy for the overlay network, Which could be used to
reduce the amount of traffic forwarded between nodes when discovering services.

2.3 Connecting JXTA with Services

In order for JXTA to interface with existing software running on hosts that
provide network services, a mechanism was needed to hook into applications
that need to communicate. This was accomplished through a generic wrapper
around the process implementing the security service. Updates to the peer sent
from an administrator or authorized node are processed by the peer. The peer
reformats the control and configuration commands for the specific application
executing the service. Commands are redirected to a configuration file and the
application level process is restarted.

3 Implementation

Table 1 identifies several types of security services and how each maps to a
particular platform.



Services were implemented for three types of network processing platforms:
a Linksys Wireless Router, (model WRT54GS) [5], a workstation running Linux
and a Global Velocity GVS1500 Extensible Network Switch [1]. The applications
which run on these platforms include Intrusion Detection or Prevention, Quality
of Service, and Anomaly Detection.

In this work we modified a Linksys wireless router to serve as a node in
the network-wide managed infrastructure. The wireless router consists of a 54
MBit/sec WiFi connection, a 4 port 100Mbit/sec Ethernet switch and one ex-
ternal 100Mbit/sec uplink connection. The Linksys router uses a 200 MHz em-
bedded processor with 32MBytes of RAM. An experiment has been discussed
demonstrating the IDS software Snort [10] running on the Linksys router in [3].
This implementation of Snort on the Linksys router is limited in terms of the
number of rules it supports and the rate at which it processes requests. The
router provides native support for application and port based Quality of Ser-
vice. Performing anomaly detection at the wireless router was not the intended
purpose of the device and only works to a marginal degree because of limited
CPU and memory resources. Anomaly services are better implemented using
higher powered nodes.

A workstation configured with the Linux operating system is another plat-
form we support for distributed management. Linux workstations are commonly
used by network administrators implementing IDS. Networks running IDS soft-
ware operate at rates measured in the 100’s of Megabits/sec range. Two open
source software tools perform IDS, Snort and Bro [9]. Linux systems can be
used to provide some types of Quality of Service. The Hierarchical Token Bucket
(HTB) packet scheduler [2] is found in standard Linux distributions from 2.4.20
and up. Anomaly detection can be performed using Linux with the Statistical
Packet Anomaly Detection Engine (SPADE) [4]. SPADE is a Snort preprocessor
plugin which sends alerts through the standard Snort reporting mechanisms.

The Global Velocity GVS1500 system uses the FPX hardware platform [?]
to process packets in reconfigurable hardware at Gigabits/second rates. is a re-
configurable hardware device able to process traffic at gigabit link rates using
FPGA’s. The device also contains a single board computer executing software
applications. FPGA Circuits have been developed for FPX modules that process
Snort rules operating in both Intrusion Detection and Prevention modes. This
work was presented in [6], and demonstrated Gigabits/sec header and payload
processing of TCP streams. An application to detect worm activity was pre-
sented in [8]. This approach demonstrated the use of Bloom filters to maintain
statistics on commonly occurring content. The GVS1500 also contains a single
board computer that can be used to perform management functions.

4 Experimental Results

4.1 High level

In order to test the capabilities of the overlay network, experiments were per-
formed to measure the overhead of JXTA and the publish/subscribe model for



Wireless Router Workstation Extensible
Switch

Intrusion Detection Snort with Snort or Bro FPGA Snort
or Prevention limited ruleset Lite

Quality of Service Linksys QoS HTB FPGA Queue
Support Manager

Anomaly or None SPADE FPGA Worm
Event Detection Detector

Table 1. Security Applications for each respective platform

nodes. Specifically, the time to process alerts and forward relevant information
to nodes or groups of nodes interested in the alerts or aggregation of alerts. Fig-
ure 1 illustrates the network created to test the overlay network. The topology
consists of an XML generator running on one host, a host which advertises and
publishes alerts, the server, and clients interested in subscribing to the server.
The XML generator creates XML alerts and sends them to the server. The server
processes the XML alerts and forwards them to the subscribers.

4.2 Experiment Setup

The Emulab [11] environment is used to test the performance of the P2P overlay
network. The nodes in the experiment consist of three 2Ghz Pentium 4 comput-
ers executing the Linux 2.4.20 kernel. The links between each node are set to
100Mbits/sec with 0ms delays between links. The XML generator injects 1000
144byte XML alert packets at various link rates. JXTA version 2.3.3 is used on
all hosts. Communication between the nodes is through the JXTA API, using
unreliable unicast pipes on top of TCP. JXTA pipes provide a mechanism to
connect the input of one service (or node) to the output of another.

4.3 Results

Figure 2 represents the number of packets per second the generator is able to
inject while avoiding packet loss at the client. The client is subscribed to one

XML Generator

100Mbit/sec100Mbit/sec

10.1.2.X 10.1.1.X

Server/Publisher
Clients/Subscribers

Workgroup Switch

Catalyst

Workgroup Switch

CatalystCiscoSystemsCiscoSystems

Fig. 1. Network topology constructed in Emulab



0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

Packets per Second

P
ac

ke
t

L
o

ss
%

Fig. 2. Percentage of dropped as the number of packets per second increases

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of Subscribers

P
ac

ke
t

L
o

ss
%

Fig. 3. Percentage of dropped packets as the number of subscribes increases

service, which consists of every alert from the XML generator. The number of
dropped alerts increases with the increase of packets per seconds from the XML
generator. At approximately 55 packets per second, JXTA is able to forward all
1000 alerts to a client.

Figure 3 illustrates the percentage of alert traffic dropped as the number
of subscriptions increase. For each subscription an additional copy of the alert
is generated. For example, when seven clients are subscribed, JXTA attempts
to send out 1000 alerts to each of the seven clients (7000 total alerts). In this
example, the clients are individual nodes, however they are capable of acting as
rendezvous peers connected to a large group of nodes, similar to the top tier of a
two tier overlay network. From the graph, we observe that with two subscriptions
the number of alerts the server processes and forwards is cut almost in half.
As the number of subscriptions increase, the total amount of alerts generated
increases, however the number received at each client continues to decline.

During both of these experiments the CPU utilization of both the client and
the server operated around 60-70%. The main reason for such low performance



stems from the amount of overhead necessary for a single JXTA alert message.
In order to send a message, the server first creates a JXTA unidirectional output
pipe to connect to the client. A reason for this is to ensure that the client is alive,
as JXTA makes no assumptions about reliable nodes. The overhead associated
with this however, is around 40ms per alert. The overhead of transmitting the
JXTA alert was observed with tcpdump. Nine packets were transmitted between
the client and server to create the output pipe and deliver the message.

Despite this drawback, optimizations exist to increase performance. The au-
thors chose an implementation consist with examples provided by the JXTA
tutorials. Maintaining individual state per client should increase overall per-
formance. Keeping the connection open or queueing data at server are both
optimization that should reduce the amount of overhead between the client and
server.

5 Conclusion

The goal of this initial research is to investigate techniques for deploying ser-
vices in the network for heterogeneous communications. Migrating to an open
XML based solution imposes a fair amount of overhead as observed through the
experiments. Characterizing the overhead and investigating appropriate uses of
this technology is necessary. Moving forward, the goal is to developing more au-
tomated network management using open standards targeting network security.

References

1. Global Velocity. http://www.globalvelocity.com/
2. Heirarchical Token Bucket. http://luxik.cdi.cz/devik/qpos/htb/
3. SNORT on a WRT54G http://www.batbox.org/wrt54g.html, Sept. 2003.
4. Spade - Statistical Packet Anomaly Detection Engine. http://www.-

computersecurityonline.com/spade, 2004.
5. Linksys. http://www.linksys.com, 2005.
6. M. Attig, S. Dharmapurikar, and J. Lockwood. Implementation results of bloom

filters for string matchings. In FCCM, Napa, CA, Apr. 2004.
7. B. Traversat, et al. Project JXTA 2.0 Super-Peer Virtual Network.
8. B. Madhusudan and J. Lockwood. Design of a system for real-time worm detection.

In Hot Interconnects, pages 77–83, Stanford, CA, Aug. 2004.
9. V. Paxson. Bro: a system for detecting network intruders in real-time. Computer

Networks (Amsterdam, Netherlands: 1999), 31(23–24):2435–2463, 1999.
10. M. Roesch. SNORT - lightweight intrusion detection for networks. In LISA

’99: USENIX 13th Systems Administration Conference, Seattle, Washington, Nov.
1999.

11. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. In Proc. of the Fifth Symposium on Operating Systems
Design and Implementation, pages 255–270, Boston, MA, Dec. 2002. USENIX As-
sociation.


