ABSTRACT:
The aviation industry faces a rapidly-emerging need for integrating Unmanned Air Systems (UAS) into the national airspace (NAS). This trend will present challenging questions for the safe operation of UAS in controlled and uncontrolled airspaces based on new Communications, Navigation and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating ever increasing numbers of UAS worldwide? Does the communications network provide ample Internet Protocol (IP) address space to allow Air Traffic Control (ATC) to securely address each UAS? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?
Under NASA contract NNA16BD84C, Boeing is developing an integrated CNS architecture to enable UAS operations in the NAS. Revolutionary and advanced CNS alternatives are needed to support UAS operations at all altitudes and in all airspaces, including both controlled and uncontrolled. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. Our approach considers CNS requirements that address the range of UAS missions where they will be most beneficial and cost-effective.
A cybersecure future UAS CNS architecture is needed to support the NASA vision for an Unmanned Air Traffic Management (UTM) system in uncontrolled airspace and a cooperative operation of manned and unmanned aircraft in the controlled global Air Traffic Management (ATM) system. The architecture must, therefore, support always-available and cyber secure operations. This paper presents UAS CNS architecture concepts for large UAS operating in the ATM system in controlled airspace. Future companion works will consider small UAS operating in the UTM system in uncontrolled airspace.
Complete paper in Adobe Acrobat format.